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The Existence of a Multiple Spider Martingale in the Natural Filtration of a
Certain Diffusion in the Plane

Shinzo Watanabe, Kyoto University

Introduction

The notion of spider martingales (martingales-araignées) with n rays, n = 2,3,...,00,
has been introduced by Yor ([Y]) by generalizing Walsh’s Brownian motions. A spider
martingale with 2 rays is essentially a continuous local martingale and, on the other hand,
a non-trivial spider martingale with n > 3 rays is called a multiple spider martingale. By
the recent works by Tsirelson ([T]) and Barlow, Emery, Knight, Song and Yor ([BEKSY]),
it has been recognized that a multiple spider martingale plays an important role in distin-
guishing a filtration from a Brownian filtration or, more generally, from a filtration which
is homomorphic to a Brownian filtration; that is, any filtration which is homomorphic to
a Brownian filtration can not contain a multiple spider martingale. In other words, as a
noise generating the randomness of probability models, multiple spider martingales could
sometimes provide us with a more useful information than a usual martingale could do.
So it seems important to study, for a given stochastic process, if there exists a multiple
spider martingale or not in its natural filtration. For the convenience of readers, we give
in Section 1 a brief survey on the isomorphism problem of filtrations in connection with
spider martingales.

The filtration of a smooth diffusion, ”smooth” in the sense that it can be obtained
as a strong solution of an Itd’s stochastic differential equation (SDE) driven by a Wiener
process, can not contain a multiple spider martingale because, as a strong solution of
SDE, the natural filtration of the diffusion is homomorphic to the Brownian filtration
generated by the driving Wiener process. On the other hand, the natural filtration of a
Walsh’s Brownian motion on n > 3 rays is a typical (and, indeed, a trivial) example of a
filtration containing a multiple spider martingale. In Section 2, as a main purpose of this
note, we give a less trivial example of a diffusion process on the plane R? whose natural
filtration contains a multiple spider martingale. This diffusion process has been studied
by Ikeda and Watanabe ([IW 1] or [IW 2]) as an example of diffusions whose infinitesimal
generators are not differential operators in the classical sense.

1 The isomorphism problem of filtrations

As we said in Introduction, we give here a summary of recent important results on the
isomorphism problem of filtrations by Tsirelson ([T]) and Barlow, Emery, Knight, Song
and Yor ([BEKSY]). No proofs are given. The reader is recommended to refer to [T] and
[BEKSY] for proofs and more details.

As usual, by a filtration F = (F(t))e[0,0c) ON & complete probability space (£, F, P),
we mean an increasing family of sub o-fields of F satisfying the usual conditions, that is,
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it is right-continuous and F(0) contains all P-null sets. We set F(oo) = Viefo,o0) F(2).
Let F be a filtration on (0, F, P) and F' be another filtration on (<, F', P').
Definition 1.1. By a morphism 7 from F to ¥’, denoted by 7 : F — F', we mean a map
my + LY(Q'; F'(00)) — L°(; F(00))

satisfying the following conditions (i)~ (iii). (L°(Q; F(c0)), or L°(F(c0)), stands for the
real vector space formed of all F(0o)-measurable real random variables on (Q.)

(i) For any X,...,X, € L%(Y; F'(c0)),
(X1,- - Xa), P) £ ([mu(X0), ..., m(Xn)], P).

(ii) For any X,,...,Xn € LO(SY; F'(00)) and f : R® — R which is Borel measurable,
Tl f( X1y, X))l = f(m(Xy), ..., mu( X))

(iii) For any X € L*(§Y; F'(c0)), (then, obviously ,(X) € L}(Q; F(c0)),)
T [E(X|F'(t)] = E[r.(X)|F(t)], forall t>0.

A morphism is also called a homomorphism; we say that F' is homomorphic to F if there
exists a morphism 7 from F to F'.

Note that the map , is obviously one-to-one and non-anticipative in the sense that, for
every t > 0, m,(X) is F(t)-measurable if X is F'(t)-measurable.

Definition 1.2. A morphism = from F to F' is called an isomorphism from F to F' if
.+ LO(SY; F'(00)) — LO(; F(00)) is onto. We say that F' is isomorphic to F or, F and
F' are isomorphic, if there exists an isomorphism w from F to F'.

Remark 1.1. Since the map ., is one-to-one, we can say equivalently as follows: F and
F' are isomorphic if and only if there exists a morphism © from F to F’ and a morphism
7' from F’ to F such that 7’ om = id and o7’ = id, i.e., m, o 7, = id, on LO(R; F(00))
and 7, ow, = id, on LO(; F'(00)).

Generally, for two filtrations F = (F(t)) and G = (G(t)) on the same probability
space (@, F, P), we denote G C F if G(t) C F(t) forallt>0.

A probability space (2, F, P) endowed with a filtration F is called a filtered probability
space and is denoted by {(Q, F, P),F}.

Definition 1.3. For an F-adapted stochastic process X = (X(t)) on {(Q, F, P),F} and
an F’'-adapted stochastic process Y = (Y'(t)) on {(, F', P'),F'}, we say that Y has a
canonical representation by X if the natural filtration FY (C F') of Y is homomorphic to
the natural filtration FX(C F) of X.

Definition 1.4. If, in Def. 1.3, FX and FY are isomorphic, then we say that Y has a
properly canonical representation by X.
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We denote by M(F) the space of all locally square-integrable F-martingales M =
(M(t)) with M(0) = 0.

Proposition 1.1. (1) Y has a canonical representation by X if and only if
3Y'LY suchthat FY' CFX and M(FY') Cc M(FX).
(2) Y has a properly canonical representation by X if and only if
3Y'2Y suchthat FY' =FX, (then, obviously, M(F¥') = M(FX).)

Remark 1.2. By Proposition 1.1, we can see clearly that the notions of the canonical
and properly canonical representations exactly correspond to Hida’s ([H]) (in the case of
linear representations of Gaussian processes by a Wiener process) and Nisio’s ([N]) (in
the case of nonlinear representations of general stochastic processes by a Wiener process).

Remark 1.3. We say that a map m, : L%(F'(00)) — L°(F(c0)) is a morphism in the
weak sense if it satisfies the same conditions as in Def. 1.1 in which (iii) is replaced by:
(iii)’ If X € L}(F'(c0)) is F'(t)-measurable, then m.(X) is F(t)-measurable for every
t>0.

The existence of a weak morphism corresponds, in the case of stochastic processes, to
the condition: 3Y' £Y such that FY' C FX. In such a case, we say that Y has a
non-anticipative representation by X. However, this notion is very weak compared to that
of canonical or properly canonical representation. Indeed, denoting by BM°(m) an m-
dimensional standard Brownian motion starting at 0, if X = BM°(m) and Y = BM°(n),
then a non-anticipative representation of Y by X exists for any m and n. However, a
canonical representation of Y by X exists if and only if n < m, and a properly canonical
representation of Y by X exists if and only if n = m. (These facts follow immediately from
Theorem 1.1 and its Corollary given below since the multiplicity of the natural filtration
of X = BM°(m) ism.)

In the problem of existence or non-existence of canonical and properly canonical rep-
resentations for stochastic processes, or more generally, existence and non-existence of
homomorphisms and isomorphisms for filtrations, a useful and well-known invariant is
the multiplicity or the rank of filtrations (cf. Davis-Varaiya ([DV]), Skorohod [S], cf. also,
Motoo-Watanabe ([MW]), Kunita-Watanabe ([KW])).

Let F = (F(t)) be a filtration on (2, F, P). We assume that the filtration is separable
in the sense that the Hilbert space La(S2, F(00), P) is separable.

Theorem 1.1.
(1) There exist My, M, ... € M(F) such that
(M, M) =0 if i#j, (M)> (My)>---

and every M € M(F) can be represented as a sum of stochastic integrals for some
F-predictable processes ®; as

M=Y / ®,dM;.
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If Ny, Ny, ... is another such sequence, then

(My) = (Ny), (My) = (Ny), ---

Such a system My, My, --- is called a basis of M(F). Here as usual, (M, N) for
M,N € M?*(F) is the quadratic covariational process, (M) = (M, M) and, >
and = denote the absolute continuity and the equivalence of increasing processes,
respectively.

In particular, the cardinal of a basis is an invariant of the filtration F which we call
the multiplicity of F and denote by mult(F').

(2) Let F' C F be a sub-filtration of F and suppose M(F') ¢ M(F). Let {M;} and
{M]} be the basis of M(F) and M(F'), respectively. Then

(M7) < (My), (M3) < (M), -~
In particular, mult(F') < mult(F').
Corollary 1.1. IfF’ is homomorphic to F, then mult(F') < mult(F).

Let M°(F) be the totality of continuous elements of M(F). Then the property that
M¢(F) = M(F), is an invariant for the existence of homomorphisms: If M*(F) = M(F)
and F’ is homomorphic to F, then we must have M¢(F') = M(F").

The notion of the multiplicity of filtrations is useful to distinguish various filtrations.
However, it is by no means complete; in fact, we have several examples of filtrations F
such that M¢(F) = M(F) with a single base M; such that (M;)(t) = t and F is not a
natural filtration of BM?(1). An example was given by Dubins, Feldman, Smorodinsky
and Tsirelson ([DFST]) and recently, a conjecture of Barlow, Pitman and Yor ([BPY])
that the natural filtration of a Walsh’s Brownian motion on n > 3 rays is not a Brownian
filtration has been finally settled affirmatively by Tsirelson ([T]). For this, Tsirelson in-
troduced another invariant notion for filtrations, the notion of cosiness of filtrations. We
would formulate this notion as follows:

Definition 1.5. A family F, = (Fy(t)), @ € [0,1], of filtrations on (Q, F, P) is called a
T-system (Tsirelson system) if it satisfies the following properties:

(1) There exists a filtration F such that, for every o € 10,1, Fo C F and M(F,) C
M(F) so that the injection i, : LO(Fa(00)) — LO(F(00)) satisfies the conditions
(i)~ (iii) of Def. 1.1.

(2) For every c € (0,1], there exists 0 < p(a) < 1 such that, for all M € M(Fo) C
M(F) and N € M(F,) € M(F), the following holds:

(M, N)(B)] < p(a)y/(M)(8) - (N)(t), Vt20, as.

(3) V a € (0,1], 3 isomorphism 7, : Fq — Fo, ie., (mq)s L°(F‘o(oo)) — LY(Fy(00))
such that
[1X = (ma)s(X)|l2 =0 as a—0

for all X € L*(Fy(c0)). Note that, by (1), X € L(Fy(o0)) C L*(F(c0)) and
(ma)s(X) € L3(Fa(00)) C LA(F(c0)).
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A typical example is that induced from a family of Brownian filtrations as follows:

Example 1.1. On a suitable probability space (R, F, P), we set up a BM°(2d) as B =
(B(t)) = (Bi(t), B2(t)) where By, B, are two mutually independent BM°(d)’s. Set

Wa(t) =V1—a2Bi(t) + aB(t), a€l0,1].

Then W, is a BM®(d) for all a. Set ¥ = F2 and F, = F¥. Then, {(Q, F, P), {F.},F}
is a T-system.

Indeed, if (W¢, F(W?), u?) is the d-dimensional Wiener space, i.e.,
= {w € C([0,00) — R¥) | w(0) = 0}

and p¢ is the d-dimensional Wiener measure defined on the o-field F(W¢) of y-measurable
sets, then for every X € L%(Fp(0o)), there exists a unique X € L(F(W?)) such that
X (w) = X(Wo(w)). Define (ma). : L°(Fp(00)) — L(Fa(00)) by (a)s(X) = X(Wa(w)).
(2) can be deduced, by taking p(c) = v/1 — a2, from the martingale representation the-
orem for M(F,) and the relation (Wy, Wy)(t) = v1—a?-t- I, I being d x d-identity
matrix. Finally, (3) can be deduced from the relation

X = (2)a(X)ll2 = 1X = TeX|lz2uey, X € LA(Fo(00))-

Here, 1 — o® = e=% and T, is the Ornstein-Uhlenbeck semigroup on the Wiener space.

Definition 1.6. A filtration F on (Q, F, P) is said to be cosy if there exist a T-system
{(¥,F', P"), {F.},¥'} and a morphism r : Fj — F; that is, F' is homomorphic to Fj,.

From this definition and Example 1.1, we can easily deduce the following proposition:

Proposition 1.2. (1) The Brownian filtration, i.e., the natural filtration of a BM°(d),
for any dimension d, is cosy.

(2) If ¥ is cosy and F’' is homomorphic to F, then F’ is cosy.

The notion of spider martingales (martingales-araignées) has been introduced by Yor
([Y], p-110). We follow the definition given in [BEKSY]: Before proceeding, we give some
notions and notations. Let n > 2 and E be a real vector space of n — 1 dimension. Let
U = {uy,...,un} be a set of n nonzero vectors in E such that U spans the whole space
and Yp_, ur = 0. Let

T(= T(U)) := |J{hue | A € [0,00)} C E.

k=1

T is called a web (une toile d’araignée) of n-rays. When n = 2, then U = {uy,up = —u;}
and
T={ My |A€[0,00)}U{luy | A€ (~00,0]} ={Du; | \eR} =R

so that a web of 2 rays is essentially a real line.
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Definition 1.7. A spider martingale is a T(C E)-valued continuous local martingale
M = (M(t)) with M(0) = 0 for some web T in E. If T is a web of n rays, then M is said
a spider martingale with n rays.

Thus a spider martingale with 2 rays is essentially a continuous local martingale A with
M(0) =0.

Definition 1.8. A nontrivial spider martingale with n > 3 rays is called a multiple spider
martingale.

When martingales are referred to a filtration F, we say an F-spider martingale.

We denote by WBM?*(n;py,...,p.) a Walsh’s Brownian motion (cf. [BPY]) on n
rays from the origin with the rate of excursions at the origin given by py,...,pn, (0 >
0, ,p; = 1) and starting at z. A Walsh’s Brownian motion WBM®(n;1/n,...,1/n)
is a typical example of a spider martingale with n rays and, indeed, a spider martingale
with 7 rays is essentially obtained from a WBM?%(n;1/n,...,1/n) by a time change.

Theorem 1.2. (Tsirelson 1996, cf. [T], [BEKSY]). If there exists a multiple F-spider
martingale in a filtration F, then F is not cosy. In particular, such a filtration can not
be homomorphic to a Brownian filtration in any dimension. In other words, when a
filtration F is the natural filtration of a stochastic process X = (X(t)) and a multiple
F-spider martingale exists, then X can not have a canonical representation by a Wiener
process in any dimension. ’

It is not difficult to see that a Walsh’s Brownian motion W BM*(n; py, ..., Pn) contains
a multiple spider martingale with n rays in its natural filtration. Also, the following result
was obtained by Barlow et al. (cf. [BEKSY]).

Theorem 1.3. If F is a filtration which is homomorphic to the natural filtration of a
WBM?=(n;p1,...,ps) and if m > n, there does not exist any multiple F-spider martingale
with m rays.

We recall the operation of time change on filtrations (cf. [IW 3], p.102). Given a
filtration F on (Q, F, P), we mean, by a process of time change with respect to F, an
F-adapted increasing process A = (A(t)) such that, A(0) = 0, t — A(t) is continuous,
strictly increasing and lim;eo A(t) = 00, almost surely. If A is a process of time change
with respect to F, then, for each t > 0, A7}(t) = inf{u|A(u) = t} is an F-stopping
time and the o-field F(A~'(t)) := F4)(t) is defined as usual. Then, we have a filtration
F@ = (FA(t)) and, with respect to which, the increasing process A~! = (A7(t)) is a
process of time change. We can easily see that F = {F(4)}(A™): More generally, if A is a
process of time change with respect to F and B is a process of time change with respect
to F(4), then C = Bo A = {C(t) := B(A(t))} is a process of time change with respect to
F and F(© = {F4}(B). Also, the following proposition can be easily deduced:

Proposition 1.3. If 7 : F — ¥’ is a morphism (i.e., F' is homomorphic to F) and
A’ = (A'(t)) is a process of time change with respect to ¥’, then the process A = (A(t))
defined by A(t) = m.(A'(t)) is a process of time change with respect to F and the same
map T, : LO(F'(00)) — LY(F(00)) induces the homomorphism 7 : F4 — F/(4),
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Remark 1.4. The property of cosiness of filtrations is not invariant under the time
change; indeed, as we shall see, the filtration of a sticky Brownian motion, which is a
time change of a Brownian filtration, is not cosy.

The following strengthens a little Theorem 1.2.

Theorem 1.4. If there exists an F-multiple spider martingale in a filtration F, then F
can not be homomorphic to any time change of a cosy filtration, in particular, to any
time change of a Brownian filtration in any dimension.

Indeed, if F is homomorphic to a time change G\4) of a cosy filtration G, then G
contains a G-multiple spider martingale and hence, G contains a G-multiple spider
martingale. However, this contradicts with Theorem 1.2.

Finally, we introduce the notion of the direct product of filtrations. Given filtrations
F® on (Q©, F®, PV, i=1,...,m, define their direct product ®7,F®, as a filtration
on the product probability space (II2,Q%, @7, F®, @™, PY), by

QP FD = (|7, FO(t))e0,

where ®T, F()(t) is the usual product o-field. Then the following propositions are easily
deduced:

Proposition 1.4. If m: F — F'®, §=1,...,m are morphisms, then there exists a
unique morphism . _
QL : ®?;1F(') - ®;:-1FI(I)

such that (®T,m).(®M,X:) = ®F,[(m).(X:)] for X; € LY(QY; F¥(c0)).

Here, as usual, [®%,Xi](w),-..,whp) =02 Xi(w)), (W), wp) € e, Q0.
Proposition 1.5. If {(Q(i),F("),P(")),{Ffj)},f:fi)}, i = 1,...,m, are T-systems, then
{(H?LIQ(”’ ®§l1F(')» ®F,PY), {®?;1Fg)}7®;';1F(i)} is a T-system.

Corollary 1.2. If F® are cosy for all i, then their direct product ®,F® is cosy.

2 The existence of a multiple spider martingale in a diffusion on the plane

In the plane R2, let Ly,..., L, be n different straight half-lines (rays) starting at the
origin 0. Let e®) = (e¥, k), k =1,...,n, be the unit direction vector of Ly, respectively.
Let Dy be the space of all C®-functions on the plane R? with a compact support and
vanishing also in a neighborhood of the origin 0. Define the following bilinear form for
f g € DO;

2 n 2 i
£(f,g) = %Azzmggiz_)dz_{_zﬁ > ekeka_ﬂz_)%ﬂd“k(m) (1)
i=1 k=1

i i i¥j i j
ozt Or kigo1 Ozt Ozl

where dpy is the (one-dimensional) Lebesgue measure on the half-line Lg. Then, set-
ting D = R?\ {0}, £(f, g) with domain Dj is a closable Markovian form on L?*(D;dzx)
and its closure is a regular and local Dirichlet form. Hence, by the general theory of
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Dirichlet forms ([FOT]), there corresponds a unique diffusion process X = {X(¢t), P} on
D. Locally, the sample paths of this diffusion can be constructed by a skew product of
two mutually independent BM*(1)’s so that the diffusion is precisely defined for every
starting point in D. As is proved in [IW 1] or [IW 2], we have that P,(¢ < 00) = 1 and
P (limg¢ X(t) = 0) = 1 for every € D, where ( is the lifetime of X and the terminal
point (cemetery) can be identified with the origin 0. X is a symmetric diffusion with re-
spect to the Lebesgue measure dz on D and it possesses the continuous transition density
p(t,z,y), (t,,y) € (0,00) x D x D, so that p(¢, z,y) = p(t, y, T).

We say that a continuous function u(z) on D is X-harmonic if u(z) = E,[u(X(oy-))]
for every z € D and every bounded neighborhood U of z such that U C D, where
oye = inf{t|X(t) ¢ U}. u(z) is X-harmonic if and only if, writing L = L, N D,

(i) u(z) is continuous in D,
(ii) u(z) is harmonic in the usual sense in the open set D\ {Ur.; Lk},

(iii) foreach k=1,...,n

8«
ulg; € CH(LY) and 2662(5 ,0) = n(§,0+)—5:‘-’(£,0—)

where we introduce a local coordinate (€,7) of y € U, in a sufficiently small neigh-
borhood U of z € L2, by y—z =¢&-el) + 7. e®L; (et = (—ek e) : the unit
vector perpendicular to e(®).)

It was shown in [IW 1] or [IW 2] that, for each k = 1,...,n, there exists a unique bounded
X-harmonic function ug(z) such that

lim wug(z) =064k, Jj=1,...,n
z—0,z€ L,

It satisfies 0 < ug(z) < 1 and, furthermore, every bounded X-harmonic function u(x) can
be expressed as

n
=Y cxux(z), c €R,
k=1

the expression being unique because ¢, = lim;—.ozeLg u(z). In particular,

i wu(z) =1.
k=1

If we set
=® = {X(t) — 0 as t T ¢ tangentially along L}, k=1,...,n,
(for the precise meaning of ”tangentially along,” cf. [IW 1] or [IW 2]), then
ug(z) = P.(Z®), zeD, k=1,...,n
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For each k = 1,. ,n, u(z) is an X-excessive function and we can define the u-
subprocess X*) = (X (t), P®), i.e., the diffusion on D obtained from X by the transfor-
mation by the multiplicative functional (cf. [FOT], Chap. 6.3),

ue(X(t))
M(t)=1 C— .
O =hen u(x0)
This process satisfies
P® (k) =1 2
for all z € D. For j = 1,...,n, u;(z)ur(z)™! is an X¥)-excessive function and, by

the symmetry of X, the measure u;(z)ux(z)dz is X(¥)-excessive measure. Then, we can
construct the X*¥)- Markovian measure Njy, called also the approzimate process or quasi-
process, associated to X(¥)-excessive measure u;(z)ux(z)dz, cf. e.g. Weil ([We]): Ny is a
o-finite measure on the path space

W = {weC([0,00) = R?) | w(0) =0, 3 o(w) € (0,00) such that
w(t) € R?\ {0} for ¢t € (0,0(w)) and w(t) =0 for t > o(w) }

endowed with o-field B(W) generated by Borel cylinder sets, uniquely determined by the
following properties:

()
[t [ fw)iewsoNudw) = [ fap@ue)iz, 1 € (D),
(ii) for ¢t > 0,E € B(D) and U € B(W),
Nie({ w | wlt) € E,6(w) € UY) = [ PU(X € Ul uoesyNin(dw),  (3)
where 8,(w) is the shifted path: 6,(w)(s) = w(t + s).
Since X is symmetric, we can deduce the following property under the time reversal:
Nu{T™(U)} =Ng(U), Ue€BW), jk=1,...,n (4)
where T : W — W is the time reversal operator:

o —-t), 0<5t<o(w),
(Tw)(t)={gi( (=9 tZa(w;()

If we set, for k=1,...,n,
Z® = {w e W | w(t) — 0 as t | o(w) tangentially along L;}

and
0® = 7-1(Z®) = {w € W | w(t) starts at 0 tangentially along Ly},

then, obviously, =1, ..., =™ are mutually disjoint and so are also IV, ... [I™. From
(2), (3) and (4), we can deduce the following:
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Proposition 2.1.
N;W\{IWUZ®Y =0, jk=1,...,n
If we set n
Nj=,§Njk, i=1,...,m, (5)
then N; is the X-Markovian measure associated to X-excessive measure u;(z)dz.

Now, the possible extension of X to a diffusion on the whole plane can be obtained
by applying It6’s theory of excursion point processes {cf. [I]).

Theorem 2.1. ([IW 1] or [IW 2].) An extension X = (X(t), P,), for which the origin
0 is not a trap, is determined by the nonnegative parameters py,...,p, and m such
that Y p_; Dk =1lm=0 if and only if [§° 1(0y(X(t))dt = 0 a.s. with respect to P, for
every = € R2. X is symmetric with respect to some measure on R? if and only if p, =
-++ =p, = 1/n and, then, a symmetrizing measure is given by m(dz) = dz+m- ;o) (dz).
In this case, the corresponding Dirichlet form is the closure on L*(m(dz)) of the £(f,g)
given by (1) with the domain CP(R?).

The sample paths of X starting at the origin 0 can be constructed as follows. Let N =
Y. PN which is a o-finite measure on (W, B(W)) with infinite total mass. We set
up a Poisson point process p on the state space W with the characteristic measure N
(cf. [1} or [IW 3], p.43 and p.123-130). Note that each sample of p is a point function
p: D, €t p, € W, where the domain D, of p is a countable subset of (0,00). Set

A)=mt+ Y. o(ps).

3€Dy,8<t

Then, it is a cadlag increasing process with stationary independent increments and A(0) =
0. Since N(W) = oo, t — A(t) is strictly increasing and lim;o A(t) = 00, a.s. Hence, for
each t > 0, there exists unique s > 0 such that A(s—) <t < A(s). s € D, if and only if
A(s) > A(s—). Set, for each t € [0, 00),

_ | ps(t = A(s=)), s€Dy A(s—) St < As),
X(t) = { o A T

Then, X = (X(t)) is the sample path starting at 0 of the diffusion which is the extension
of X corresponding to the parameters p, ..., p, and m.

Let A ={k € {l,...,n}| pr > 0}. Let F = FX be the natural filtration of the
diffusion X constructed above.

Theorem 2.2. Assume that the set A contains | > 2 element_s. Then there exists a
non-trivial F-spider martingale with | rays. Hence, if A contains | > 3 elements, there
exists a multiple F-spider martingale so that the filtration F is not cosy.

Proof. Let z = (X (t)) be the diffusion constructed above and F = {F(t)} be the natural
filtration of X. For £ > 0, set

9(t) = sup{s € [0,¢] | X(s) = 0}.
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Then, g(t) is an F-honest time and, by Proposition 2.1 and an excursion theory, we deduce

F(g(t)+) = F(g(t)) V{Or. k € A},

where .
Ok = [0y X € T¥], ke A.

The existence of a non-trivial F-spider martingale with ! rays follows from a general result
in [BEKSY].

Or, we can give a more direct construction of a non-trivial F-spider martingale by
piecing out some part of each excursion by the method given in [Wat], (the collection of
excursions is the point process p from which we have constructed the process X).

Multidimensional extensions of Theorem 2.2 are of course possible. We give a typical
example in the case of a three dimensional diffusion process. We define a diffusion X on
D = R3?\ {0} similarly as above by the following Dirichlet form: Let IT;,j =1,...,m,
be m different planes in R3, each passing through the origin 0, and let Ly, k = 1,...,n,
be n different half lines, each, starting at the origin and lying on some plane II;. Let D
be, as above, the space of all C*°-functions with a compact support and vanishing also
in a neighborhood of origin. Let D(u,v), u,v € Dy, be the usual Dirichlet integral on
R?, Dp,(u,v) be the two-dimensional Dirichlet integral for u|r,, v|n, on II; (by regarding
II; as two-dimensional Euclidean space by the imbedding) and Dy, (u,v) be the one-
dimensional Dirichlet integral for u|r,,v|r, on Lg. For positive constants pj,j =1,...,m
and v,k =1,...,n, define a bilinear form on Dy by

1 m n
E(u,v) = §D(u, v) + Y p;iDn;(u,v) + 3 v Dp, (uv,v), u,v € Dy.
j=1 k=1

Then, it is a closable Markovian form on L?(D;dz) and its closure is a regular Dirichlet
form. Therefore, there corresponds a unique diffusion X on D with a finite life time. We
can obtain similar results as above: the space of bounded X-harmonic functions are n-
dimensional and the possible extensions of X as diffusions on R3 are determined in exactly
the same way as Theorem 2.1. Also, Theorem 2.2 is valid in the same way: Namely, if an
extension X which corresponds to nonnegative parameters py,...,Pn and m, is such that

#{ k£ | px > 0} = [, then the natural filtration of X contains a multiple spider martingale
with [ rays.

3 An application to sticky Brownian motions

Here we apply Theorem 2.2 to show the non-cosiness of the filtration of one-dimensional
Brownian motion which is sticky at the origin 0.

For given ¢ > 0, p > 0 with ¢ 4+ p > 0, consider the following stochastic differential
equation for a continuous F-semimartingale X = (X(t)) on R on a filtered probability
space {(Q, F, P),F}:

d[X(¢) VO] = Lix(e)>0 - dB(t) + ¢~ d(t), d[X(t) AO] = 1ix(5<0} - dB(t) — c- dg(t) (6)
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where B(t) is an F-Wiener process with B(0) = 0, #(t) is an F-adapted, continuous
increasing process with ¢(0) = 0 such that

t t
o(t) = /0 Lix(s)=0} - dé(s), /0 Lix(s)=0)  d5 = po(t). (7)

Given z € R, a solution X = (X(t)) with X (0) = z exists on a suitable filtered probability
space and it is unique in the law sense ([IW 3]). When ¢ = 0, then the solution X(t) is
the Brownian motion z + B(t) stopped at o = min{u | z + B(u) = 0}. When p = 0,
the solution is irrelevant to ¢ and coincides with the Brownian motion z + B(t). In these
two extreme cases, the natural filtration FX of the solution X is either homomorphic or
isomorphic to the Brownian filtration F2 so that it is a cosy filtration.

So we assume ¢ > 0, p > 0 and, replacing c¢ by ¢ and p by p/c, we can always assume
¢ =1 in the equation (6). In the following, we assume that X(0) = 0, for simplicity, and
denote the solution by X,.

Theorem 3.1. The natural filtration F* of X, is not cosy.

Proof. Without loss of generality, we may assume p = 1. Let X and X® be indepen-
dent copies of X; and define a diffusion X = (X (t)) in the plane R? by X = (X, X)),
Then, FX = FX1  FX1. Let L, Ly, L3, L4 be the positive part of z-axis, the positive part
of y-axis, the negative part of z-axis and the negative part of y-axis, respectively, so that
L = L, ULyU L3 U Ly coincides with the union of z- and y-axes. Let

A= [  Lirony (X(5))ds.

Then, we easily deduce that ¢t — A(t) is strictly increasing and limy;., A(t) = 00, a.s. so
that A = (A(t)) is a process of time change. Define X(t) = X(A™1(t)) and X = ((X(2)).
Then, the natural filtration FX is just the time change (FX)(4). A key observation is that
the diffusion process X is a particular case of diffusions given in Theorem 2.1: It is the
case of n = 4 with L, Ly, L3, L4 given above and, m =0, pp=p=ps=p1= 1/4, cf.
[IW 1], p.118. Hence, by Theorem 2.2, the filtration F* contains an Fx—multipleAspider
martingale with 4 rays. Since the filtration FX is obtained from the filtration FX by a
time change as FX = {FX}(4™") it also contains an FX-multiple spider martingale with
4 rays. By Theorem 1.2, we can conclude that the filtration FX = FX: @ FX! is not cosy.
Now, the non-cosiness of the filtration FX* follows from Corollary 1.2.

Remark 3.1. Recently, J. Warren ([War]) proved directly that the natural filtration of
a reflecting sticky Brownian motion is not cosy. His result is stronger than ours because
there is a homomorphism from the filtration of a bilateral sticky Brownian motion to
a reflecting sticky Brownian motion. However, we can give the following argument from
which we can also deduce that the natural filtration of a reflecting sticky Brownian motion
is not cosy.

Let XV, X® and X® be independent copies of X; and define a diffusion process
X = (X()) in R® by X = (X, X® X®). Let II,,II,, II; be coordinate planes in R?
and let IT be their union. Let

At) = /0’1{R3\n,(X(s))ds and X(t) = X(A~\(2)).
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Then, the process X = ((Y (t)) is exactly a kind of diffusions discussed in Section 2
as multi-dimensional extensions of Theorem 2.2: It is the case that m = 3, II;, I, I3

are coordinate planes as above and, n = 6, Ly, ..., L are six half coordinate axes each
starting at the origin. Furthermore, 4; = v = 1, and X corresponds to parameters
p1=...=ps = 1/6 and m = 0. Hence, we can conclude that the natural filtration FX

of X contains a multiple FX-spider martingale with 6 rays. Then, the natural filtration
FX = FX1 @ F¥1 @ F* of X contains also a multiple FX-spider martingale with 6 rays
because FX is obtained from FX by a time change. From this, we can deduce that the
filtration F = F' ® F' ® F', where F’ is the natural filtration of |X;| = (|X1(¢)|), has a
multiple F-spider martingale with 3 rays. Therefore, F is not cosy by Theorem 1.2 and
hence, by Corollary 1.2, the filtration F', which is the natural filtration of the reflecting
sticky Brownian motion | X, is not cosy.
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