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The Existence of a Multiple Spider Martingale in the Natural Filtration of a
Certain Diffusion in the Plane

Shinzo Watanabe, Kyoto University

Introduction

The notion of spider martingales (martingales-araignees) with n rays, n = 2, 3, ... , oo,
has been introduced by Yor ([Y]) by generalizing Walsh’s Brownian motions. A spider
martingale with 2 rays is essentially a continuous local martingale and, on the other hand,
a non-trivial spider martingale with n > 3 rays is called a multiple spider martingale. By
the recent works by Tsirelson ([T]) and Barlow, Emery, Knight, Song and Yor ([BEKSY]),
it has been recognized that a multiple spider martingale plays an important role in distin-
guishing a filtration from a Brownian filtration or, more generally, from a filtration which
is homomorphic to a Brownian filtration; that is, any filtration which is homomorphic to
a Brownian filtration can not contain a multiple spider martingale. In other words, as a
noise generating the randomness of probability models, multiple spider martingales could
sometimes provide us with a more useful information than a usual martingale could do.
So it seems important to study, for a given stochastic process, if there exists a multiple
spider martingale or not in its natural filtration. For the convenience of readers, we give
in Section 1 a brief survey on the isomorphism problem of filtrations in connection with
spider martingales.

The filtration of a smooth diffusion, "smooth" in the sense that it can be obta.ined
as a strong solution of an Ito’s stochastic differential equation (SDE) driven by a Wiener
process, can not contain a multiple spider martingale because, as a strong solution of
SDE, the natural filtration of the diffusion is homomorphic to the Brownian filtration
generated by the driving Wiener process. On the other hand, the natural filtration of a
Walsh’s Brownian motion on n > 3 rays is a typical (and, indeed, a trivial) example of a
filtration containing a multiple spider martingale. In Section 2, as a main purpose of this
note, we give a less trivial example of a diffusion process on the plane R2 whose natural
filtration contains a multiple spider martingale. This diffusion process has been studied
by Ikeda and Watanabe ([IW 1] or [IW 2]) as an example of diffusions whose infinitesimal
generators are not differential operators in the classical sense.

1 The isomorphism problem of filtrations

As we said in Introduction, we give here a summary of recent important results on the
isomorphism problem of filtrations by Tsirelson ([T]) and Barlow, Emery, Knight, Song
and Yor ([BEKSY]). No proofs are given. The reader is recommended to refer to [T] and
[BEKSY] for proofs and more details.

As usual, by a filtration F = on a complete probability space (f2, F, P),
we mean an increasing family of sub 03C3-fields of F satisfying the usual conditions, that is,
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it is right-continuous and F(0) contains all P-null sets. We set F(oo) = F(t).
Let F be a filtration on (H, F, P) and F’ be another filtration on (0/, F’, P’) . 

~ ’~~’~

Definition 1.1. By a morphism 7r from F to F’, denoted by 7r: F -~ F’, we mean a map

7r* L°(S~’; F’(oo)) ~-’ L°(~; F(oo))

satisfying the following conditions (L°(S~; F(oo)), or stands for the
real vector space formed of all F(~)-measurable real random variables on 03A9.)

(i) For any Xl, ... , Xn E F’(oo)),

(~Xl, ... P’) d (~~r*(Xl), ... , ~r*(Xn)], P).

(ii) For any Xl, ... Xn E F’(oo)) and f : R’~ -~ R which is Borel measurable,

7r.[/(Xi,... , Xn)] = ,f (~*(X 1), ... , ~*(Xn)).

(iii) For any X E L1(S~’; F’(oo)), (then, obviously ~r*(X) E F(oo)),)

= 
, for all t > o.

A morphism is also called a homomorphism; we say that F’ is homomorphic to F if there
exists a morphism 03C0 from F to F’.

Note that the map x* is obviously one-to-one and non-anticipative in the sense that, for
every t > 0, x*(X) is F(t)-measurable if X is F’(t)-measurable.

Definition 1.2. A morphism 7r from F to F’ is called an isomorphism from F to F’ if
~r* : F’(oo)) -> F(oo)) is onto. We say that F’ is isomorphic to For, F and
F’ are isomorphic, if there exists an isomorphism ~r from F to F’.

Remark 1.1. Since the map x* is one-to-one, we can say equivalently as follows: F and
F’ are isomorphic if and only if there exists a morphism 7r from F to F’ and a morphism
~r’ from F’ to F such that ~r’ o 7r = id and 7r 01r’ = id, i.e., 7r. o ~r~ = id* on LO(O; F(oo))
and 7r~ = id. on L°(~’; F’(oo)).

Generally, for two filtrations F = (F(t)) and G = (G(t)) on the same probability
space (Q,F, P), we denote G C F if G(t) C F(t) for all t > 0.

A probability space (Q, F, P) endowed with a filtration F is called a filtered probability
space and is denoted by {(Q, F, P), F}. .

Definition 1.3. For an F-adapted stochastic process X = (X(t).) on ~(S~, F, P), F} and
an F’-adapted stochastic process Y = (Y(t)) on ~(S~’, F’, P’), F’}, we say that Y has a
canonical representation by X if the natural filtration FY(C F’) of Y is homomorphic to
the natural filtration F) of X.

’ 

Definition 1.4. If, in Def 1.3, FX and FY are isomorphic, then we say that Y has a
properly canonical representation by X.
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We denote by M(F) the space of all locally square-integrable F-martingales Nf =
(M(t)) with NI (0) = 0.

Proposition 1.1. (1) Y has a canonical representation by X if and only if

such that FY’ C FX and C 

(2) Y has a properly canonical representation by X if and only if

3 Y’ d Y such that FY’ = FX, ( then, obviously = )

Remark 1.2. By Proposition I.I, we can see clearly that the notions of the canonical
and properly canonical representations exactly correspond to Hida’s (~HJ) (in the case of
linear representations of Gaussian processes by a Wiener process) and Nisio’s ([N]) (in
the case of nonlinear representations of general stochastic processes by a Wiener process).

Remark 1.3. We say that a map ’1r. : L°(F’(oo)) -~ is a morphism in the
weak sense if it satisfies the same conditions as in Def. I.I in which (iii) is replaced by:
(iii)’ If X E is F’(t)-measurable, then is F(t)-measurable for every
t  O.
The existence of a weak morphism corresponds, in the case of stochastic processes, to
the condition: 3 Y’ d Y such that FY’ C FX. In such a case, we say that Y has a
non-anticipative representation by X. However, this notion is very weak compared to that
of canonical or properly canonical representation. Indeed, denoting by BM°(m) an m,-
dimensional standard Brownian motion starting at 0, if X = BMO(m) and Y = BNI°(n), ,
then a non-anticipative representation of Y by X exists for any m and n. However, a
canonical representation of Y by X exists if and only if n  m, and a properly canonical
representation of Y by X exists if and only if n = m. (These facts follow immediately from
Theorem 1.1 and its Corollary given below since the multiplicity of the natural filtration
of .x = is m.)

In the problem of existence or non-existence of canonical and properly canonical rep-
resentations for stochastic processes, or more generally, existence and non-existence of
homomorphisms and isomorphisms for filtrations, a useful and well-known invariant is
the multiplicity or the rank of filtrations (cf. Davis-Varaiya ([DV]), Skorohod ~5~, cf. also,
Motoo-Watanabe ([MW]), Kunita-Watanabe ([KW])).

Let F = (F(t) ) be a filtration on (O,:F, P). We assume that the filtration is separable
in the sense that the Hilbert space F(oo), P) is separable.
Theorem 1.1.

(1) There exist Mi M2, ... E such that

{Mz, M~) = 0 if i ~ j, {Ml) » (M2) » ...

and every M E M(F) can be represented as a sum of stochastic integrals for some
F-predictable processes ~~ as

M = 03A303A6idMi.
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If Nl, N2, ... is another such sequence, then

(Ml) ~ (M2) ~ (N2)~ .... .

Such a system Ml, M2, ~ ~ ~ is called a basis of M(F). . Here as usual, (M, N) for
M, N E M2(F) is the quadratic covariational process, (NI ) = (M, M) and, »
and ~ denote the absolute continuity and the equivalence of increasing processes,
respectively
In particular, the cardinal of a basis is an invariant of the filtration F which we call
the multiplicity of F and denote by mult(F).

(2) Let F’ C F be a sub-filtration of F and suppose M(F’) C M(F). . Let and

{~h~ be the basis of ,Nl(F) and .N1(F’), respectively. Then

« (Ml)~ (Mz) « (Ma), ... 
,

In particular, mult(F’)  mult(F). .

Corollary 1.1. If F’ is homomorphic to F, then mult(F’)  mult(F).

Let MC(F) be the totality of continuous elements of M(F). Then the property that

M (F) , is an invariant for the existence of homomorphisms: If M(F)
and F’ is homomorphic to F, then we must have MC(F’) = N((F’).

The notion of the multiplicity of filtrations is useful to distinguish various filtrations.
However, it is by no means complete; in fact, we have several examples of filtrations F
such that MC(F) = M(F) with a single base Mi such that (Mi)(t) = t and F is not a
natural filtration of BMO(l). An example was given by Dubins, Feldman, Smorodinsky
and Tsirelson ([DFST]) and recently, a conjecture of Barlow, Pitman and Yor ([BPY])
that the natural filtration of a Walsh’s Brownian motion 3 rays is not a Brownian

filtration has been finally settled affirmatively by Tsirelson ([T]). For this, Tsirelson in-
troduced another invariant notion for filtrations, the notion of cosiness of filtrations. We
would formulate this notion as follows:

Definition 1.5. A family Fa = (Fa(t)), a E (o, l~, of filtrations on (S~, F, P) is called a
T-system (Tsirelson system) if it satisfies the following properties:

(1) There exists a filtration F such that, for every a E ~0,1~, Fa C F and M(F a) C
M(F) so that the injection i* : : LO(Fa(oo)) -~ satisfies the conditions

(i)N(iii) of De£. 1.I. .

(2) For every a E (0,1], there exists 0  p(a)  1 such that, for all M E M(Fo) C
M(F) and N E M(F a) C Nl (F), the following holds:

I (M, N) (t) I  P(a) (M) (t) ’ (N) (t), > 0, a.s.. °

(3) V a E (o,1~, ~ isomorphism F« -~ Fo, i.e., : LO(Fo(oo)) --~ 

such that

(~«)*(X)II2 -~ 0 aS a -~ 0

for all X E Note that, by (I), X E L2(Fo(oo)) C L2(F(oo)) and
(1Ta).(X) E C 
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A typical example is that induced from a family of Brownian filtrations as follows:

Example 1.1. . On a suitable probability space (Q, F, P), we set up a BM°(2d) as B =
(B(t)) = (B1(t), B2(t)) where Bi B2 are two mutually independent Set

Wa(t) = 1- a2B1(t) + aB2(t), , a E (0,1~. .

Then Wa is a BMO(d) for all a. . Set F = FB and Fa = Fwa. . Then, {(~2, F, P), {Fa}, F}
is a T-system.

Indeed, if (Wd, is the d-dimensional Wiener space, i.e.,

Wd = {w E C(~0, oo) -; Rd) ~ w(0) = 0}

and d is the d-dimensional Wiener measure defined on the a-field F(Wd) of d-measurable
sets, then for every X E there exists a unique X E that

X(w) = X(Wo(w)). Define (7ra). : by (7ra).(X) = X(Wa(w)).
(2) can be deduced, by taking p(a) = B/1 2014 o~, from the martingale representation the-
orem for M(F a) and the relation (W°,Wa)(t) = 1- a2 ~ t ~ I, I being d x d-identity
matrix. Finally, (3) can be deduced from the relation

~X - (03C003B1)*(X)~2 = ~X - Tt~L2( d), X ~ L2(F0(~)).

Here, 1 - a2 = e-2t and Tt is the Ornstein-Uhlenbeck semigroup on the Wiener space.

Definition 1.6. A filtration F on (Q, F, P) is said to be cosy if there exist a T-system
{(03A9’, F’, P’), {F’03B1}, F’} and a morphism 03C0 : F’0 ~ F; that is, F is homomorphic to Fo.

From this definition and Example 1.1, we can easily deduce the following proposition:

Proposition 1.2. (I) The Brownian filtration, i.e., the natural filtration of a BM°(d), ,
for any dimension d, is cosy.

(2) If F is cosy and F’ is homomorphic to F, then F’ is cosy.

The notion of spider martingales (martingales-araignees) has been introduced by Yor
([Y], p. 110). We follow the definition given in [BEKSY] : Before proceeding, we give some
notions and notations. Let n > 2 and E be a real vector space of n - 1 dimension. Let
U = {nl, ... , un} be a set of n nonzero vectors in E such that U spans the whole space
and = 0. Let

n

T(= T(U)) := U [0, E.
k=l

T is called a web (une toile d’araignee) of n-rays. When n = 2, then U = {ul, u2 = 
and

~E(-~,Ol}={~ul ~ 
so that a web of 2 rays is essentially a real line.
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Definition 1.7. A spider martingale is a T(c E)-valued continuous local martingale
M = (M(t)) with M(0) = 0 for some web T in E. If T is a web of n rays, then M is said
a spider martingale with n rays.

Thus a spider martingale with 2 rays is essentially a continuous local martingale AI with
kI(0) = 0.

Definition 1.8. . A nontrivial spider martingale with n > 3 rays is called a multiple spider
martingale.

When martingales are referred to a filtration F, we say an F-spider martingale.
We denote by , pn) a Walsh’s Brownian motion (cf. on n

rays from the origin with the rate of excursions at the origin given by pi, ... , pn, (pz >
0, 03A3ni=1 pi = 1) and starting at x. A Walsh’s Brownian motion W BM°(n;1/n, ... ,1/n)
is a typical example of a spider martingale with n rays and, indeed, a spider martingale
with n rays is essentially obtained from a W BMO(n; I/n, ... I/n) by a time change.

Theorem 1.2. (Tsirelson 1996, cf. [BEKSYJ). If there exists a multiple F-spider
martingale in a filtration F, then F is not cosy. In particular, such a filtration can not
be homomorphic to a Brownian filtration in any dimension. In other words, when a
filtration F is the natural filtration of a stochastic process X = (X(t)) and a multiple
F-spider martingale exists, then X can not have a canonical representation by a Wiener
process in any dimension. 

°

It is not difficult to see that a Walsh’s Brownian motion , pn) contains
a multiple spider martingale with n rays in its natural filtration. Also, the following result
was obtained by Barlow et al. (cf. [BEKSY]). .

Theorem 1.3. If F is a filtration which is homomorphic to the natural filtration of a
p1, ... , pn) and if rrt > n, there does not exist any multiple F-spider martingale

wi th m rays.

We recall the operation of time change on filtrations (cf. [IW 3], , p.102). Given a

filtration F on (0, F, P), we mean, by a process of time change with respect to F, an
F-adapted increasing process A = (A(t)) such that, A(0) = 0, t --~ A(t) is continuous,
strictly increasing and limtioo A(t) = oo, almost surely. If A is a process of time change
with respect to F, then, for each t > 0, A-1(t) = = t} is an F-stopping
time and the := is defined as usual. Then, we have a filtration
F(A) = (F~A~ (t)) and, with respect to which, the increasing process A-1 = (A-1 (t) ) is a
process of time change. We can easily see that F = {F~A~}(A ’~: More generally, if A is a
process of time change with respect to F and B is a process of time change with respect
to F(A~, then C = B o A = {C’(t) := B(A(t))} is a process of time change with respect to
F and F(C) = {F(A~}(B~. Also, the following proposition can be easily deduced:

Proposition 1.3. If : F --~ F’ is a morphism (i.e., F’ is homomorphic to F) and
A’ = (A’(t)) is a process of time change with respect to F’, then the process A = (A(t))
defined by A(t) = ~r*(A’(t)) is a process of time change with respect to F and the same
map : L°(F’(oo)) --~ L°(F(oo)) induces the homomorphism -~ F’(A,~.
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Remark 1.4. The property of cosiness of filtrations is not invariant under the time

change; indeed, as we shall see, the filtration of a sticky Brownian motion, which is a

time change of a Brownian filtration, is not cosy.

The following strengthens a little Theorem 1.2.

Theorem 1.4. If there exists an F-multiple spider martingale in a filtration F, then F
can not be homomorphic to any time change of a cosy filtration, in particular, to any
time change of a Brownian filtration in any dimension.

Indeed, if F is homomorphic to a time change of a cosy filtration G, then G(A)

contains a G(A)-multiple spider martingale and hence, G contains a G-multiple spider
martingale. However, this contradicts with Theorem 1.2.

Finally, we introduce the notion of the direct product of filtrations. Given filtrations
on (S~~=), F~~), P~~)), i =1, ... , m, define their direct product ®m 1F~=), as a filtration

on the product probability space ®m 1P~~)), by

where is the usual product 03C3-field. Then the following propositions are easily
deduced:

Proposition 1.4. If 03C0i : F(i) ~ F’(i), i =1, ... , m are morphisms, then there exists a

unique morphism 
--+ 

such that (~mi=103C0i)*(~mi=1Xi) = ~mi=1[(03C0i)*(Xi)] for x= E 

Here, as usual, = (Wi, ... E .

Proposition 1.5. If {(S~~i), F~~), P~~)), {Fai)}, F~:)}, , i = 1, ... , m, are T-systems, then

ll~m 1~(1)~ ®~in--1F(~)~ ®i~--~ lp(~))~ t®fil~--1Fa)J? ®Tir~--1F(1)I jS T t

Corollary 1.2. If F~~) are cosy for all i, then their direct product ®m 1F~~) is cosy.

2 The existence of a multiple spider martingale in a diffusion on the plane

In the plane R2, let L 1, ... , Ln be n different straight half-lines (rays) starting at the
origin 0. Let e(k) = (e, e2), k =1, ... , n, be the unit direction vector of Lk, respectively.
Let Do be the space of all C°°-functions on the plane R2 with a compact support and

vanishing also in a neighborhood of the origin 0. Define the following bilinear form for

~(f, g) = 1 2 R2 03B8f(x)03B8g(x) 03B8xi 03B8xidx + ekiekj03B8f(x) 03B8xi 03B8g(x) 03B8xjd 03BA (x) (1 )

where is the (one-dimensional) Lebesgue measure on the half-line Lk. Then, set-

ting D = R2 B {o}, E( f g) with domain Do is a closable Markovian form on L2(D; d~)
and its closure is a regular and local Dirichlet form. Hence, by the general theory of
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Dirichlet forms ([FOT]), there corresponds a unique diffusion process X = {X (t), Px } on
D. Locally, the sample paths of this diffusion can be constructed by a skew product of
two mutually independent so that the diffusion is precisely defined for every
starting point in D. As is proved in [IW 1] or [IW 2], we have that Px((  oo) = 1 and
Px(limt~~ X(t) = 0) = 1 for every x E D, where ( is the lifetime of X and the terminal
point (cemetery) can be identified with the origin 0. X is a symmetric diffusion with re-
spect to the Lebesgue measure dx on D and it possesses the continuous transition density
p(t, x, y), (t, x, y) E (0, oo) x D x D, so that p(t, x, y) = p(t, y, x).

We say that a continuous function u(x) on D is X-harmonic if u(x) = Ex[u(X(auc))]
for every x 6 D and every bounded neighborhood U of x such that U C D, where
auc = ~ U}. u(x) is X-harmonic if and only if, writing Lk = Lk ~ D,

(i) u(x) is continuous in D,

(ii) u(x) is harmonic in the usual sense in the open set D B Lk},

(iii) for each k = 1,..., n

|Lok ~ C2( Lok) and 203B82u d03BE2(03BE, 0) = 03B8u 03B8~(03BE
, 0+)-03B8  03B8~(03BE,0-)

where we introduce a local coordinate (03BE, ~) of y E U, in a sufficiently small neigh-
borhood U of x E Lok, by y - x = 03BE.e(k) + 77. = (-ek2, ek1) : the unit
vector perpendicular to e~~l . )

It was shown in [IW 1] or [IW 2] that, for each k = 1 , ... , n, there exists a unique bounded
X-harmonic function uk (x) such that

lim j =1, ... , n.

It satisfies 0   1 and, furthermore, every bounded X-harmonic function u(x) can
be expressed as

n

= ~ Ck2Gk(x), , Ck E R,
k=l

the expression being unique because ck = limx~0,x~Lok u(x). In particular,
n

~ uk(x) ~ 1.
k=1

If we set

~~k~ = {X (t) --~ 0 as t ~ 03B6 tangentially along Lk}, k =1, ... , n,

(for the precise meaning of "tangentially along," cf. [IW 1] or (IW 2]), then

= Px (~~k~ ), xED, k = l, ... n.
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For each k = 1,..., n, is an X-excessive function and we can define the uk-

subprocess = (X (t), i.e., the diffusion on D obtained from X by the transfor-
mation by the multiplicative functional (cf. [FOT], Chap. 6.3),

M(t) = L{c>c} ’ .,(X(0))’

This process satisfies
= 1 (2)

for all x E D. For j = 1, ... , n, is an X(k)-excessive function and, by
the symmetry of X, the measure is X(k)-excessive measure. Then, we can
construct the X(k)-Markovian measure called also the approximate process or quasi-
process, associated to X(k)-excessive measure uj(x)uk(x)dx, cf. e.g. Weil ([We]): Njk is a
a-finite measure on the path space

W = { w E C([0, oo) --~ R2) = 0, 3 a(w) E (0, oo) such that

w(t) E R2 B {0} for t E (0, a(w) ) and w(t) = 0 for t > a(w) }

endowed with a-field B(W) generated by Borel cylinder sets, uniquely determined by the
following properties:

(i)

~0 dt wf(w(t))1{03C3(03C9)>t}Nj03BA(d03C9) = Df(x)uj(x)uk(x)dx, f ~ C0(D),

(ii) for t > 0, E E B(D) and U E B(W) ,

I w(t) E E, 6t(2u) E U}) = w E (3)

where Bt(w) is the shifted path: 9t(w)(s) = w(t + s).

Since X is symmetric, we can deduce the following property under the time reversal:

= U E ~i(W)~ j, k =1, , .. , n (4)

where T : W -~ W is the time reversal operator:

~ t)’ 0 ~ t ~ 

~~~"} 0, _ 

If we set, for k =1, ... , n,

~~k~ _ {w E W -~ 0 as t T a(w) tangentially along Lk}

and
= T-1(~~k~) _ {w E W starts at 0 tangentially along Lk},

then, obviously, ~tl~, ~ ~ ~ , ~~"~ are mutually disjoint and so are also TI~1~. ~ ~ ~ , From

(2), (3) and (4), we can deduce the following:
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Proposition 2.1.

Njk(W B {n(~) ~ ~~k) }) = 0, j, k =1, ... , n.

If we set
n

~=1,...,~L, (5)
jb=i

then Nj is the X-Markovian measure associated to X-excessive measure 
Now, the possible extension of X to a diffusion on the whole plane can be obtained

by applying Ito’s theory of excursion point processes (cf. [I]). .

Theorem 2.1. ([IW 1] or (IW 2J.) An extension X = (X(t), for which the origin
0 is not a trap, is determined by the nonnegative parameters pl, ... , pn and m such

that = 1. m = 0 if and only if fo 1{o}(X(t))dt = 0 a.s. with respect to Px for
every x E R2. . X is symmetric with respect to some measure on R2 if and only if pi =
... = pn = and, then, a symmetrizing measure is given by = d~ + m . (dz) .
In this case, the corresponding Dirichlet form is the closure on of the E( f g)
given by (1) with the domain 

The sample paths of X starting at the origin 0 can be constructed as follows. Let N =

pkNk which is a ~-finite measure on (W, B(W)) with infinite total mass. We set
up a Poisson point process p on the state space W with the characteristic measure N
(cf. [1] or [IW 3], p.43 and p.123-130). Note that each sample of p is a point function
p : Dp E t ~ pt E W, where the domain Dp of p is a countable subset of (0, oo). Set

A(t) = mt + L, 

Then, it is a cadlag increasing process with stationary independent increments and A(0) =
0. Since N(W) = oo, t - A(t) is strictly increasing and limtioo A(t) = oo, a.s. Hence, for
each t > 0, there exists unique s > 0 such that A(s-)  t  A(s). s E Dp if and only if
A(s) > A(s-). Set, for each t ~ [0, ~),

X(t) = ps(t- A(s-)), s~ Dp, A(s-)~ t ~ A(s),
0, t=A(s-)=A(s).

Then, X = (X(t)) is the sample path starting at 0 of the diffusion which is the extension
of X corresponding to the parameters pl, ... , pn and m.

Let A = {k E {1, ... , n}~ pk > 0}. Let F = FX be the natural filtration of the
diffusion X constructed above.

Theorem 2.2. Assume that the set A contains I 2: 2 elements. Then there exists a

non-trivial F-spider martingale with d rays. Hence, if A contains l > 3 elements, there
exists a multiple F-spider martingale so that the filtration F is not cosy.

Proof. Let X = (X(t)) be the diffusion constructed above and F = {F ( t)} be the natural
filtration of X. For t > 0, set

g(t) = sup{s E [0, t] | X{s) = oj.
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Then, g(t) is an F-honest time and, by Proposition 2.1 and an excursion theory, we deduce

F(g(t)+) = F(g(t)) E A}~

where

e~ = E k E A.

The existence of a non-trivial F-spider martingale with rays follows from a general result
in [BEKSY].

Or, we can give a more direct construction of a non-trivial F-spider martingale by
piecing out some part of each excursion by the method given in [Wat], (the collection of
excursions is the point process p from which we have constructed the process X).

Multidimensional extensions of Theorem 2.2 are of course possible. We give a typical
example in the case of a three dimensional diffusion process. We define a diffusion X on
D = R3 B {0} similarly as above by the following Dirichlet form: Let Ih, j = 1,..., m,
be m different planes in R3, each passing through the origin 0 , and let Lk, k = 1, ... , n,
be n different half lines, each, starting at the origin and lying on some plane IT;. Let Do
be, as above, the space of all C°°-functions with a compact support and vanishing also
in a neighborhood of origin. Let D(u, v), u, v E Do, be the usual Dirichlet integral on
R3, Dn~ (u, v) be the two-dimensional Dirichlet integral for on Ih (by regarding
I1j as two-dimensional Euclidean space by the imbedding) and DLk (u, v) be the one-
dimensional Dirichlet integral for 03C5|Lk on Lk. For positive constants =1, ... , m
and vk, k =1, ... , n, define a bilinear form on Do by

1 m n

~(u, v) = v) + 03A3 jD03A0j( , v) + vkDLk ( , v) , u, v E Do.
- 

~=i

Then, it is a closable Markovian form on L2(D; dx) and its closure is a regular Dirichlet
form. Therefore, there corresponds a unique diffusion X on D with a finite life time. We
can obtain similar results as above: the space of bounded X-harmonic functions are n-
dimensional and the possible extensions of X as diffusions on R~ are determined in exactly
the same way as Theorem 2.1. Also, Theorem 2.2 is valid in the same way: Namely, if an
extension X which corresponds to nonnegative parameters pi,... pn and m, is such that

pk > 0} = l, then the natural filtration of X contains a multiple spider martingale
with I rays.

3 An application to sticky Brownian motions

Here we apply Theorem 2.2 to show the non-cosiness of the filtration of one-dimensional
Brownian motion which is sticky at the origin 0.

For given c ~ 0, p > 0 with c + p > 0, consider the following stochastic differential
equation for a continuous F-semimartingale X = (X(t)) on R on a filtered probability
space {(S2, F, P), F}:

d[X (t) v 0] ~ dB(t) + c ~ d~(t), d[X (t) n 0] = ~ dB(t) - c ~ d~(t) (6)
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where B(t) is an F-Wiener process with B(0) = 0, ~(t) is an F-adapted, continuous
increasing process with ~(0) = 0 such that

y rt

~(t) = o d~(S)~ o ds = P~(t)~ (

Given x E R, a solution X = (X(t)) with X(0) = x exists on a suitable filtered probability
space and it is unique in the law sense ([IW 3]). When c = 0, then the solution X(t) is
the Brownian motion x + B(t) stopped at ~o = + B(u) = 0~. When p = 0,
the solution is irrelevant to c and coincides with the Brownian motion x + B(t). In these
two extreme cases, the natural filtration FX of the solution X is either homomorphic or
isomorphic to the Brownian filtration FB so that it is a cosy filtration.

So we assume c > 0, p > 0 and, replacing c~ by § and p by p/c, we can always assume
c = 1 in the equation (6). In the following, we assume that X(0) = 0, for simplicity, and
denote the solution by Xp.
Theorem 3.1. The natural filtration FxP of Xp is not cosy
Proof. Without loss of generality, we may assume p = 1. Let X~1~ and X~2~ be indepen-
dent copies of Xi and define a diffusion X = (X (t)) in the plane R2 by X = X~z~).
Then, FX = Fxl Let Li, L2, L3, L4 be the positive part of x-axis, the positive part
of y-axis, the negative part of x-axis and the negative part of y-axis, respectively, so that
L = L1 U L2 U L3 U L4 coincides with the union of x- and y-axes. Let

A(t) = 0 
Then, we easily deduce that t - A(t) is strictly increasing and limtiao A(t) = oo, a.s. so
that A = (A(t)) is a process of time change. Define X(t) = X(A-1(t)) and X = (( X(t)).
Then, the natural filtration FX is just the time change (FX)(A). A key observation is that
the diffusion process X is a particular case of diffusions given in Theorem 2.1: It is the
case of n = 4 with Li, L2, L3, L4 given above and, m = 0, pi = p2 = P3 = p4 = 1/4, cf.
[IW I], p.118. Hence, by Theorem 2.2, the filtration FX contains an FX-multiple spider
martingale with 4 rays. Since the filtration FX is obtained from the filtration FX by a
time change as FX = it also contains an Fx-multiple spider martingale with
4 rays. By Theorem 1.2, we can conclude that the filtration F~ = Fxl @ Fxl is not cosy.
Now, the non-cosiness of the filtration Fx’ follows from Corollary 1.2.

Remark 3.1. . Recently, J. Warren proved directly that the natural filtration of
a reflecting sticky Brownian motion is not cosy: His result is stronger than ours because
there is a homomorphism from the filtration of a bilateral sticky Brownian motion to
a reflecting sticky Brownian motion. However, we can give the following argument from
which we can also deduce that the natural filtration of a reflecting sticky Brownian motion
is not cosy.

Let X(1), X(2) and X ~3~ be independent copies of Xl and define a diffusion process
X = (X(t)) in R3 by X = (X(1), X(2), X(3)). Let 03A01, 03A02, II3 be coordinate planes in R3
and let II be their union. Let

A(t) = 0 and X (t) = X(A-1(t)).
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Then, the process X == ( (X (t) ) is exactly a kind of diffusions discussed in Section 2
as multi-dimensional extensions of Theorem 2.2: It is the case that m = 3, 03A01, 03A02, 03A03
are coordinate planes as above and, n = 6, Li,..., L6 are six half coordinate axes each
starting at the origin. Furthermore, ~~ 1, and X corresponds to parameters
pi = ... = ps =1/6 and m = 0. Hence, we can conclude that the natural filtration FX
of X contains a multiple FX-spider martingale with 6 rays. Then, the natural filtration
FX = FX1 of X contains also a multiple FX-spider martingale with 6 rays
because FX is obtained from FX by a time change. From this, we can deduce that the
filtration F = F’ @ F’ g) F’, where F’ is the natural filtration of ~Xi~ = has a

multiple F-spider martingale with 3 rays. Therefore, F is not cosy by Theorem 1.2 and
hence, by Corollary 1.2, the filtration F’, which is the natural filtration of the reflecting
sticky Brownian motion is not cosy.
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