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BROWNIAN FILTRATIONS ARE NOT STABLE

UNDER EQUIVALENT TIME-CHANGES

M. Emery and W. Schachermayer

1. - Introduction

L. Dubins, J. Feldman, M. Smorodinsky and B. Tsirelson have shown in

[DFST 96] that a small perturbation of its probability law can transform Brownian
motion into a process whose natural filtration is not generated by any Brownian mo-
tion whatsoever. Nlore precisely, they construct on Wiener space ~W. ,~~, a, 
a probability  equivalent to the Wiener measure A, with density arbitrarily
close to 1 in L°°-norm, but such that no process with -independent increments
generates the canonical filtration fact, the p constructed in [DFST 96J
has the stronger property of being non-cosy [BE 99]. The notion of cosiness was
invented by Tsirelson [T 97] as a necessary condition for a filtration to be Brownian;
non-cosiness turns out to be a most convenient tool to construct new examples of
"paradoxical" filtrations.

Marc Yor raised the following question: Is there something similar to the DFST-
phenomenon, with a change of time instead of a change of probability law? Nlore
precisely, does there exist on Wiener space an absolutely continuous, strictly
increasing time-change such that the time-changed filtration is no longer Brownian?

This question is reasonable only for those time-changes that are absolutely
continuous (with respect to dt) and strictly increasing. Indeed, if a time-change
is not absolutely continuous, it transforms some non dt x dP-null subset of R+ x W
into a null one A, and the canonical Brownian motion into a martingale M such

that  1A d[M, M] ~ 0; but such a martingale cannot exist in a Brownian filtration.
Similarly, if the time-change is not strictly increasing, it transforms a dt x dP-null
set into a non null one A, and all martingales M for the new filtration verify
f llA d[M, M] = 0, so no Brownian motion can be a martingale in this filtration.

The present paper shows that the answer to Yor’s question is positive; moreover,
as was the case with the perturbation of measure considered in [DFST 96], the
perturbation of time can be made arbitrarily small. Our main result. Theorem 4.1
below, is the existence of a family stopping times on Wiener space
(W,.~~, a, (,~)t>o), with the following two properties:
(i) almost surely, the function t - is null at zero and differentiable, with
derivative verifying 1-~  dTt/dt  

(ii) the filtration defined by 9t = is not generated by any Brownian
motion (more precisely, it is not cosy).
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We end this introduction with an outline of the organisation of the paper: in
section 2 we present the basic example 2.1 underlying the whole paper. We make an
effort to present it as intuitively and non-technically as possible: we only consider
sequences of finitely valued random variables which we interpret as "lotteries"
and "pointers" . Also, we avoid technical concepts such as "cosy filtrations" and
"immersions" (although these ideas are behind the construction). We end this
section by isolating in Proposition 2.3 a seemingly innocent property of Example 2.1,
which will turn out to be crucial.

In section 3 we develop the notion of "cosy filtrations" as introduced in [T 97]
(see also [BE 99]). We then show that the property of Example 2.1 isolated
in Proposition 2.3 is a sufficient criterion for the non-cosiness of the generated
filtration. Next, we show that non-cosiness of Example 2.1 implies in particular non-
substandardness in the terminology of ([DFST 96]), i.e.. the filtration generated
by Example 2.1 cannot be immersed into a filtration generated by a sequence of
independent random variables.

Finally in section 4 we use Example 2.1 to construct a time change of Brownian
motion that destroys Brownianness of the filtration, as announced in the title.
This section is completely elementary and only contains the task of translating
Example 2.1 into a time-change.

2. - The discrete example

2.1. EXAMPLE. - We denote by -N the set {... , -2. -1. 0 ? and we fix a sequence
of natural numbers, 2, such that L p,a 1  oo; for example

pn = 2-n+1 is a good choice. nE-N

Now fix a probability space (SI, A, P) on which the following objects are defined: a
family ((~?)~i)~_~ of independent random variables such that Rn,q is uniformly
distributed on {1, n~,~n+1}, and a sequence random variables such that
Qn is uniformly distributed on { 1, ... , pn }, independent of for m > n, and
such that

(2.1) Rn,Qn’ > a.s., for n  -1.

It is easy to see that such random variables and can

indeed be defined on a suitable stochastic basis (f2, A. P) (first consider only n  no,
then take a projective limit) and that the above properties properties already
characterize the joint law of the random variables (((R~,,q)q~ 1~~~_1, 

Instead of giving a formal proof of these assertions we give a.n intuitive explanation
of the situation: for fixed n, we interpret the random variables 1 as pn
successive "lotteries" yielding random results uniformly distributed in { 1, ... , 
The random variable Qn, taking its value in a uniformly distributed way in

{ 1, ... , pn}, will be interpreted as the "pointer" which tells us, which of these
lotteries (which are drawn independently of Qn ) is relevant for us: if = qn for
some Pn, we look at the lottery Rn,qn (and ignore all the other lotteries

the outcome (w) = of this lottery defines by (2.1) the
value of the next pointer Qn+1, which tells us which lottery among is
relevant for us at time n + 1 and in turn determines the pointer Qn+2 via (2.1), and
so on.
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The basic feature of the example is as follows: if we know the value of the pointer
Qno, for some no E -N which we should think of as lying in the remote past, then
we can determine the values of Qno+1, Qno+2, ... , Qo by only observing the results
of lotteries On the other hand, if we only
know the results for all the lotteries (without additional knowledge
of some then we do not know enough to determine Qo. This should be rather
obvious on an intuitive level (provided tends fast enough to infinity) and
will be proved below. Hence the random variables contain some additional

information which is not provided by the random variables ((R~)~=i) ~,.
But although, for any no E -N the information provided by Qno in conjunction

with determines the value of Qo, we shall see that the intersection
of the sigma-algebras Qno = no) is trivial, i.e., 9no consists only
of sets of measure zero or one, and therefore contains no information.

So far, we have only reencountered a well-known pathology of decreasing
filtrations (see Exercise 4.12 of [W 91] for a particularly easy example, pointed out
by NI. Barlow and E. Perkins, also displaying the above described phenomenon; see
[vW 83] for a detailed study). The present example has-in contrast to the Barlow-
Perkins example-the additional feature that it gives rise to a filtration that is not
standard, thus displaying the same (additional) phenomenon as an example due to
A. Vershik [V 73~ .
We now proceed to prove the above assertions.
We consider the two-dimensional process (Xi)iEI = where

the index set I = {(n, q) : : 1  q  pn, n  -1} is ordered lexicographically. We
denote by = the filtration generated by the process X;
we shall give below an intuitive explanation of the following fact: for 1 ~ q  pn,
n  -1 and arbitrary 

(2.2) Fn,q 
= 03C3(Rm,r,Qt : (m,r)  (n,q) and l  n) =
= 03C3(Rm,r,Ql : (m,r)  (n,q) and l  n0).

Formula (2.2) implies in particular that, for 1  q  pn and n  -1,

: (m, r)  (n, q))~

i.e., the information gained, by passing to (n, q) from its predecessor (which is

(n, q -1) for q > 1 and (n - 1,Pn-l) for q = 1), is given by Rn,q.
Here is the intuitive explanation of the above formulae (2.2): at time (n. q)

the sigma-algebra contains, by definition, all the information of the previous
lotteries as well as the information of all the previous pointers

. If instead we only know the positions of the pointers for some

no  n, then we don’t lose any information as the knowledge of Qno in conjunction
with the knowledge of allows us to reconstruct via (2.1) the

positions of the pointers Qno+1 ? ~ ~ ~ ~ Qn. .

LEMMA 2.2. - The intersection 
’

) ) 

is trivial, i.e., consists only of sets of measure zero or one.
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PROOF. - We start with an observation, which is notable in its own right: 
is an independent sequence of random variables. It is instructive to convince oneself
on an intuitive level of this property: although, for n 5 -1 fixed, Qn determines
which of the lotteries is chosen to define the value of Qn+l via (2.1), we
nonetheless have that the result of the lottery is independent of Qn as all
the random variables (R~,,q)~n 1 are independent of Qn and have the same law. The
independence of the whole sequence now follows easily.

Next we observe the ’’skip-independence" of the process for no  -1 the
family Q~,)qn 1)~~~o is independent of ((Rn.q, _2, 

which again is
rather obvious. 

. 

°

Hence, any event measurable with respect to the sigma-algebra generated by
for some no E -N is independent of which implies the

triviality of 

PROPOSITION 2.3. - Let (S~,,A, ((J~~n,q)qn 1)n-1~ P) be a filtered probability space
and suppose that two processes ((R~,q, Qn)qn 1)n~_1 and ((Rn,q, Q~)qn 1)n~_1 are
defined on S~, such that
(i) ((R’n,q,Q’n)pnq=1)n-1 and ((R"n,q,Q"n)pnq=1)n-1
are adapted to the filtration and

(ii) ) the processes Q~)qn 1)n~_1 and ((R~,Q, 
both have the law of the process defined in Example ,~.I and, for each (n, q), the
random variables (.R~,r)~~?r~~~,~,q) and (R~,r)(m,r)>(r~,q) are independent of the
sigma-algebra 

~ 

Thert, for n  0, we have

(2.3) =1- pn+i on the event {Qn ~ 
PROOF. - It suffices to show (2.3) on the event {Q~ - q~, Qn - where

qn and qn are such that 1  q’n  pn, 1  q"n  pn and q’n ~ qn. So fix such
qn and q and assume w.l.g. that q~  qn. We shall show. more precisely, that
(2.4) ~~Q~+1 7" 1 - on the event = qna Qn " ~

Indeed, for each fixed 1 ~ qn+1  pn+1, use assumption (i) to conclude that the
event = qn+1} _ q~,+1~ is in and therefore in By
assumption (ii) the random variable is independent of and uniformly
distributed on { 1; ... , pn+1}. Hence the Fn,q"n-1-conditional probability for 
to be different from identically equals This proves the validity of (2.4)
on the event {Q = q~, Q~ = qn, Qn+1= q~+1} and therefore (2.4) and (2.3). 1

As the next section will show, Proposition 2.3 implies that the filtration 
is not generated by any independent sequence of random variables. This will be

proved by Proposition 3.2, which relies on two hypotheses. In the case of the above
example, the first hypothesis is just Property (2.3) together with the convergence of
the series ~ the second hypothesis is the fact that the sequence Q = 
has a diffuse law. And indeed, by independence of (Qn),~~o (seen in the proof of
Lemma 2.2), for any deterministic sequence q = one has

P~Q=q~ = n fl fl 1 =0.
nE-N 

"
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3. - Cosiness

Tlis section is borrowed, almost verbatim, from [BE 99~ , to which we refer for
details, comments, and complements.

We shall consider filtrations where T is totally ordered; this includes the
discrete filtrations considered in the previous section, as well as the continuous case
T = R+. We denote by F~ the 03C3-field  Ft generated by the field U Ft (note that
~’~ _ ~ when T = -N). tET tET

DEFINITION. - An embedding of a probability space (S~, ,A, P) into another one
(S2. ,,4, P) ~is a mapping W from ~1. P) to L°(S~, ,A, P) that commutes with Borel
operations on finitely many r.v.’s:

~( f (Xl, ... , Xn)) = f (~(X1), ... , for every Borel f

and preserves the probability laws:

E E] = P ~X E E~ for every Borel E.

An embedding is always injective and transfers not only random variables, but
also sub-03C3-fields, filtrations, processes, etc. It is called an isomorphism if it is

surjective; it then has an inverse. An embedding W of (S~. A. P) into (S~, A, P, ) is

always an isomorphism between (S~, A, P) and (S~, ~ (,A) ; P) . ~
DEFINITIONS. - Let .~ and G be two filtrations on a probability space (S~, A, P). .

The filtration .F is immersed in G if every F -martingale is a G-martingale.
(Note that this implies in particular c ~t for each t E T.)

The filtrations .F and g are separate if P [F = G] = 0 for all random variables
F E L0(F~) and G E ) with diffuse laws.

DEFINITION. - A filtered probability space (S~, ,A, P..~) is cosy, if there exist a
filtered probability space h, P, ~’) and a sequence of embeddings
of (S~, .~’~, P) into (S~, ,A, P) such that
(i) for each n  ~, the filtration 03A8n(F) is immersed irc F;

(ii) for each finite n, the filtrations and are separate;

(iii) for each U E L0(03A9,F~P), the r.v.’s E L°(S2,,A, P) converge in

probability to 

Instead of saying that (S~, A, P, .F), is cosy, we shall often simply say that the
filtration .F is cosy. But it should be remembered that cosiness does depend on the

probability P.

As mentioned in the introduction, the notion of cosiness is due to Tsirelson [T 97~ .
We have slightly modified his definition: our separabililty condition is not equivalent
to his. (His definition was intended only for filtrations where all martingales are
continuous; the sufficient condition for non-cosiness given by Proposition 3.2 works

simultaneously for the discrete example of section 2 and for the Brownian time-

changes in section 4.)
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PROPOSITION 3.I. - Let be a filtered probability space and
U E L°(.~’~) a rando~m variable assuming only finitely many values. Fix > 0.

Suppose that for any filtered probability space P,F) and for any two
filtrations .~’’ and .~" isomorphic to ,~, immersed in ,~’ and separate, one has
P [U’ ~ U"] > 03B3 (where U’ and U" are the copies of U in the 03C3-fields F’~ and F"~).

Then .~’ is not cosy.

PROOF. - Let (S~, A, P..~), U and satisfy the hypothesis of this proposition.
Suppose we have some filtered probability space ,A. P, ,~) and some sequence

of embeddings of (S~, ~’~, P) into (S~.,A, ~). fulfilling the first two
conditions (i) and (ii) in the definition of cosiness. For every finite n, our hypothesis
can be applied to the filtrations .F’ = and .F" - this gives
P ~ > ~~. As U takes finitely many values, the third condition in
the definition of cosiness is not satisfied. Consequently, ;: cannot be cosy.
PROPOSITION 3.2. - Let (S~,,A, P, be a filtered probability space. Suppose
given a strictly increasing sequence in T (that is, tn-1  tn), a sequence

in T such that 03A3n ~n  ~, and an R-N-valued random vector 
with diffuse law, such that Un is ~ -measurable for each n and Uo takes only
finitely many values. 

"

Assu~me that for any filtered probability space ,A. ~. ,~) and for any two
filtrations .F’ and ,F" isomorphic to F and immersed in F, one has f or each n  0

on the event 

Un and U,~ denote the copies of Un in the ~ ; fields ~’~ and ~’~’).
Then ,~ is not cosy.

PROOF. - If .~’’ and .~" are isomorphic to .F and immersed in ,~, we know that

T Un J P ~ un } ( 1 C’ .

by induction on n. this implies

~ (1-t_1)...(1-~n,~ >
and a fortiori

(3.1) ~y on the event {U.n ~ Un } , ,
where 03B3 > 0 denotes the value of the convergent infinite product 03A0

n0

To establish non-cosiness, we shall apply Proposition 3.1 with U = Uo. So
suppose ,F’ and .F" are two filtrations isomorphic to .~’, separate and immersed
in some .~. As the law of (Un)no is diffuse, the separation assumption gives
P ~ Un for some n  0~ = 1 , and there exists an m  0 such that

P [Un # U;’ for some n E {m, m+1, ... , o}~ > 2 .
Call N the smallest n in {m, m+I, ... , 0} such that Un ~ U~’ (if there is one). The
random variable T equal to tN if N exists and to +oc else. is an F-stopping time.
that verifies and U~ # U~’ on {T = The minoration (3.1) gives

> ~ on {Toe} . ,
whence P ~Uo ~ Uo ~ > and Proposition 3.1 applies..
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As shown by Tsirelson [T 97~, a Brownian filtration is always cosy. His proof
works just as well with our definition, and shows more generally that the filtration
generated by a Gaussian process is always cosy (see [BE 99~ ). It is easy to verify
that a filtration immersed into a cosy filtr ation is itself cosy.

DEFINITIONS. - A filtration is standard if it .is generated by an indepen-
dent sequence of random variables with diffuse laws.
A filtration is substandard if it is isomorphic to a filtration immersed in a

standard filtration.
For instance, a filtration generated by an independent sequence of

random variables is always substandard ; indeed, up to isomor phism, it is possible
to consider Vt as given by Vt = f t(Vt), where Vt are independent and diffuse; and
in this case. the natural filtration of V’ is immersed in that of V.

Clearly, all standard filtrations are isomorphic to each other. A standard filtration
is generated by an independent sequence of Gaussian random variables, so it is

always cosy; consequently, all substandard filtrations are cosy too.

Proposition 2.3 shows that the filtration generated by Example 2.1 satisfies the
criterion for non-cosiness formulated in Proposition 3.2. So it is not cosy, and a

fortiori not substandard.

4. - A continuous time-change for Brownian motion

THEORENI -i.l. - On some (03A9, A, P), let B be a Brownian motion and F its natural
filtration. any t > 0, there exists a family of stopping times such that

(i) To = 0;
( ii ) almost all functions t H Tt are smooth, increasing, with derivative 

t 
verifying

|dTt dt - 1|~ ~ ;

(iii) the time-changed filtration G defined by Gt = FTt is not cosy.

We start proving the theorem. From now on, E. S~, ,A, P, Band .~’ are fixed. The
construction of the time-change Tt will use a small lemma, notationally complicated
but actually quite elementary.

LEMMA 4.2. - The data are an integer p > 2 and an interval I = [a, b] (with
a  b). There exist p increasing bijections ~1, ... from I onto itsel f, p n~um ber~s
sl  ...  sp in I, and an interval J c I with non-empty interior, such that

(i) each a~q is smooth, is identity in a neighbourhood of a and b, and its derivative
satisfies 

|d03C3q dt - 1 |  ~ ;
(ii) for 1rqp, sup J03C3r(sq); for 1qrp, 
PROOF OF LEMMA 4.2. - Let $ be a C°° function equal to 1 on the interval

~3~, ~~ and with compact support included in the open interval (a, b). Setting
a = E/(psup (~’~), the functions = t - aq ~(t) clearly satisfy (i).

Put sq = a+b 2 + qa. Using sup |03C6’| > 4/ (b-a) and ~  1. one easily sees that
 sl  ...  sp  ~, implying ~(sq) = 1 and = a2 b + (q-r)a. So (ii)

holds with J = ~ a 2 b -a, 



274

The next lemma describes the elementary bricks to be used in the construction.
If J is an interval ~s, t] with 0 ~ s  t. BJ will denote the normalized Brownian .

increment (Bt-BS)/ which is N(0,1)-distributed.
LEMMA 4.3. - Given an interval I = [a. b~ with 0  a  b, an integer p > 2, 
a bounded, Borel function f defined on ~, let o~l, ... sl, .... sp and ~I be as ~ir
Lemma 4.2; let Q be an Fa-measurable r.v. with values in {1, ..., p) set Tt = 
and R = 

(i) For each t ~ I, the random variable Tt is an F-stopping time: the function
t - Tt from I to I is smooth, with derivative e-close to 1. .

(ii) For each q E {1,... p} , there exists an -measurable r. v. Rq, equal to R on
the event {Q  q}. 

~~

(iii) For each q E { l, ... , p} and every bounded, Borel ~, on the event {Q > q} one
has = 

The meaning of (ii) and (iii) is that, at time R is already known if Q  q,
but still completely unknown if Q > q.

PROOF OF LEMMA 4.3. - (i) Since Q is $§-measurable; so is Tt too; as Tt > a, it is
a stopping time. For fixed ;~. the function t ~2014~ Tt(w) is one of the aq’ s constructed
in Lemma 4.2, so its derivative is close to 1.

(ii) On the event {Q  q}. Lemma 4.2 (ii) gives sup J  = so Rq can
be defined by

if sup J  Tsq;
~ 0 if sup J > .

(iii) On the event {Q > q}, Lemma 4.2 (ii) gives inf J > = so on this

event J is equal to the random interval

if Tsq  inf JK ={
J if Tsq inf J

[Tsq,Tsq+1] if Tsq > inf J
and R to the random variable S = f(BK). But the Nlarkov property at time T3~
implies that BK is independent of with law ~V(0,l); so, on the Jp -event
{Q > q}, one can write ] = = E ~~oR~ . 

~ 
1

PROOF OF THE THEOREM. - Put In = ~2’~, 2n+1]; when n ranges over Z, the
intervals In form a subdivision of (0, oo). Choose a sequence integers
such that 2 and  oo. For each n E Z, Lemnia 4.2 applied to h~
and pn gives pn bijections 03C3nq from In to itself, pn numbers sq E In and a sub-
interval Jn C In. Choose some functions fn : R ~ {1,..., pn+1} such that the image
of N(0,1 ) by fn is the uniform law on { 1, ... , pn+1}, and define Qn = this

random variable is ~~+1-measurable and uniformly distributed on {l.... , 
Set To = 0 and for t E In let

Tt = (t) .

At this point, it is worth interrupting the proof for a minute, to compare this
formula with the discrete formula (2.1). The pointer depends only on the
behaviour of B in the interval In-1; ; it tells us which of the ~~ will be used to

time-change the interval In. According to Lemma 4.2, the image of Jn by
the chosen time-change will be included in one of the intervals [sr , and this
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interval is also completely determined by the pointer Qn-i. The role of the lotteries
Rn,q is played by the behaviour of B on those intervals [sr , as they are disjoint
intervals, the lotteries are independent. And the definition Qn = says that
the choice of the next pointer depends only on the result of the current lottery.
We resume proving the theorem. Since is F2n-measurable, Lemma 4.3 ( i )

tells us that Tt is a stopping time, depends smoothly upon t. and that its derivative
dTt / dt is ¿-close to 1. It remains to prove that the time-changed filtration Gt = FTt
is not cosy; this will be done by applying Proposition 3.2 to 9. with tn = 2~ and
Un = Qn_1.

As Q2n = ~~~., Qn-i is Q2n-measurable. As the Jn’s are disjoint, the Qn’s are
independent, and, for a deterministic sequence the estimation

P[Qn)n~0 = (qn)n~0] = 
1 pn+1 ~ 1 2 = 0

shows that the law of diffuse.
To obtain non-cosiness, we shall show that, for any filtered probability space
A P, and any two filtrations g’ and g" isomorphic to G and immersed in H,

one has for every n E ~

(*) =Q~ Ix2n] = 
1 

on the event {Q;~_1 ~ Qn_1};
Pn+l

since L 1/pn converges, Proposition 3.2 will then apply, with sn = 
n50

So n is now fixed, and, to simplify the notations, we shall write I, J, p, f , s~
instead of In, Pn, fn, We shall also set a = 2n and substitute Q for and

R for Qn; so Tt = 03C3nQn-1 (t) becomes Tt = Qn = fn(BJn) becomes R = f(BJ),
and we may freely use Lemma 4.3.

Supposing ~’ and g" are two filtrations isomorphic to g and immersed in some ?~,
Assertion (*) can now be written

P[R’ = 20142014 on the event {Q’ ~ Q"}.
Pn+l

As G’ and g" play the same role, it suffices by symmetry to establish this equality
on the event {Q’  Q"}. So we may fix q in {l, ... , p} and work on the event
A = {Q’ = q, Q" > q}. The event {Q’ = q} is in Ga, hence also in similarly
{Q" > q} is in and their intersection A is in Ha too. By isomorphic transfer,
the following two facts are obtained from Lemma 4.3 (ii) and (iii):

a) There exists -measurable r.v. R~ equal to R’ on {Q~ ~ g}; a fortiori, jR~ is
Hsq-measurable and equal to R’ on A.

b) For ~G~q~ = P (R" = r~ on the event {Q" > q}; since R"
is ~’~-measurable, g" immersed in and R uniformly distributed, this implies
P ~R" = r =1/pn+1 on {Q" > q}, and a fortiori on A.

For r E ~ 1, ... , we may write 
.

llA = llA P~A? 
= 1A P [A, R’q = R" = r|Hsq] = 1A 1{R’q = r}P [R" = r|Hsq]

= A11{R’ = r} 1 pn+1.
Summing over all r’s from 1 to pn+1 gives P R’ = R" 1 and, as
A E applying E ~ to both sides establishes the claim. 1
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REMARK. -Theorem 4.1 can be restated in terms of laws of martingales. Recall that
every continuous martingale NI with = 0 and [111, NI ] ~ = oc can be written as
a time-changed Brownian motion: = where B is some Brownian motion
and [AI, the quadratic variation of M. The sigma-field generated by M
always contains ~(B); when = ~(B), each is a stopping time for the
filtration of B. and one says that t1I is pure,. whether M is pure or not depends only
on its law. (For more on pure martingales, see for instance Section V.4 of [RY 91].) )

Call M very pure if it is pure and if the time-change t H [M,M] that makes it
Brownian is absolutely continuous and strictly increasing. If B, and C are
as in Theorem 4.1, the martingale Mt = BTt is a very pure martingale, whith a
non-cosy (and a fortiori non-Brownian) filtration g.
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