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On the joining of sticky Brownian motion
J. WARREN1

Abstract

We present an example of a one-dimensional diffusion that cannot be inno-
vated by Brownian motion. We do this by studying the ways in which two copies
of sticky Brownian motion may be joined together and applying TsireFson’s cri-
teria of cosiness.

There has been much recent interest in Tsirel’son’s idea [9] of studying the filtration
of Walsh Brownian motion through the behaviour of pairs of such processes. A general
technique has been developed by Tsirel’son [10] and others which involves taking two
copies of a filtration and jointly immersing them in a larger set-up. See also Emery
and Yor [5], Beghdadi-Sakrani and Emery [4] and Barlow et al. [2]. This note is

motivated by applying these ideas to a particular process - sticky Brownian motion.
Let 9 be a real constant satisfying 0  9  oo. Suppose that (Q, is

;x filtered probability space satisfying the usual conditions, and that (Xt; t > 0 is

a continuous, adapted process taking values in [0, oo) which satisfies the stochastic
differential equation

(0.1) Xt = x + It + 9 It 
where (Wt; t > 0) is a real-valued 3i-Brownian motion and x > 0 is some constant.
We say that X is sticky Brownian motion with parameter B started from x, and refer
to W as its driving Brownian motion. Unless stated otherwise we will assume x = 0.
Sticky Brownian motion arose in the work of Feller [6] on strong Nlarkov processes
taking values in [0, oo) that behave like Brownian motion away from 0. In fact it

can be constructed quite simply as a time change of reflected Brownian motion so
that the resulting process is slowed down at zero, and so spends a real amount of time
there. However here our interest will be focused on it arising as a solution of the above
SDE. This equation does not admit a strong solution, it is not possible to construct
X directly from W, and the filtration ~’ is not generated by W alone. Warren [12]
obtained a description of the extra randomness (hereafter referred to as the singular
contribution) in terms of a mutation process on trees. Here we will suppose that our
set-up carries two 0t-Brownian motions W(l) and W(2) and two adapted processes

and X~2~ such that each pair (X~~~, W~=~) satisfies an equation of the same form
as (0.1), the value of e being the same in both. We refer to this as a joining of sticky
Brownian motion.

In the first section of this note we consider the case =.W~2~, and show that
there is a family of different joinings such that this is so, which may be parameterised
by p E [0,1]. This parameter may be thought of as the correlation between the
singular contributions. If p = 1 then the singular contributions are identical and
hence so are and X ~2~, whereas for any p  1 the process (X~1~, X~2~) can and
does spend time away from the ’diagonal’.
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In the second section, following Tsirel’son’s method, we consider joinings with the
instantaneous correlation between and W(2) bounded in modulus away from 1,
and investigate what happens as this correlation is allowed to approach 1. We will
find that the limiting law is that of the joining constructed in the previous section
with p == 0.

TsireFson’s concept of cosiness is a necessary condition for Brownian innovation.
By this we mean the existence of a probabilistic setup (H, P) carrying a 0t-
adapted sticky Brownian motion X, a 0t-Brownian motion tV, with the pair X and W
satisfying equation (0.1), and such that the filtration t>o 

is the natural filtration
of a Brownian motion (necessarily different from W). For a discussion of innovation
see [11]. The limiting behaviour of the joinings we observe in the second section is
exactly the failure of the cosiness criteria, and so we deduce that Brownian innovation
of sticky Brownian motion is impossible. In particular the filtration generated by X
and W is not Brownian.

1 Correlated mutations and some singular planar
diffusions

Theorem 1. Let p E ~0,1~. There exists a joining of sticky Brownian motion with
= W(2) such that

(1.1) V X~2~) = 2(2 - 
where A°° = fo and L° is the semimartingale local time of 
at 0. The joint law of the processes X~1~, X~2~, , and the common driving Brownian
rnotion is uniquely determined.

Proof We begin by considering an arbitrary joining with and W(2) equal to
some common process W. We can write V X~2~ as the sum of three contributions,
of which, at any time, at most one is non-zero.

X(1)t V = + + 

where

Z(=)t = X(1)t1( X(1)t=X(2)t) 
= X(2)t1(X (1)t-X (2)t),

and for z = 1,2, with j denoting 3 - i,

Z(i)t =X(i)t(

X(i)t> X(j)t).

It follows from the formula for balayage of semimartingales, see [7] and the appendix
of this note, that the processes Z(=), Z(1), and Z(2) are themseives continuous semi-
martingales, and that,

c

Z(=)t = t0 1(Z(=)s>0)dWs + 1 2L0t(Z(=)),

- 1 2ci>>o dWs + 1 2L0t(Z(i)),
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where, as always. La.(Z) denotes the local time at level a of the semimartingale Z.
For each of the three processes Z~-), and Z~2), the measure dLO(Z) is supported
on the set of times {t = X~2) = 0}. We must also observe that

def ‘Yt~)1 ( 
= ° 1 (Y~ ~;~ >0) dW .. s +8 ° 1 

(Z~ ~o >U, Y~ .a,_ ds.
Nutice that this time the balayage formula does not introduce an additional term
which grows when = = 0. That this is so may be deduced from an appro-
priate application of théorème 2 of [7] (see the appendix again! ) .

Next we have that

V X(2)~ = L°(Z(=)~ + + L°(Z(2),~,
and since

Xt=) = Zt=) + + 

we also find that

28A°° = L°(Zl’)) + L°(Z~z)).
Thus if V X~2)) = 2(2 - for some fixed p E ~0,1~ then we infer that

L0t (Z(=)) = 2p03B8A00t, and L° (Z(i)) = 2(1- p)8A°°.

Let Zt ~ = V then the process t > 0) is itself a sticky Brownian motion2
with parameter (2 - p)8. For i = 1, 2 let

A(i)t = t0 1(Z(i)s>0)ds = t01(X(i)s>X(j)s)ds,
and aii) be the right continuous inverse of Aiz). Then define Y(i)t = and construct
the Brownian motions

act)

W(i)t = 

Each pair (Y(i),W(i)) satisfies an equation analogous to (o.l).
A (rather laborious) construction of (X~1), X~2)) now suggests itself. We will

describe it informally- there are no real difficulties here. Start with a Brownian
motion W, and choose (Z~ according to the conditional law of sticky Brownian motion
with parameter (2 - p)B given W as its driving Brownian motion. Independently
assign each excursion of to be an excursion of Z~-), or with probability
( 1- p) / ( 1 + p), p/ ( 1 + p) and p/ ( 1 + p) respectively. Now for i = 1, 2 construct the
Brownian motions as above, and then choose Y~~) according to the conditional
law of sticky Brownian motion with parameter 8 given as its driving Brownian

2 ~ to recall the modulus of the Walsh Brownian motion on three rays.
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motion, and independently of anything else. Finally put Y(1~ = Y(~~, and then let
= Z~-~ + + 

~t

If we consider any joining with the same value of p the joint law of the processes
W, Z(1~. Z(2~, and Y(2~ has the same structure as we have just constructed,
and the uniqueness assertion follows from this. Note that we are using here that the
joint law of 4Y’ and X solving (o.l) is unique, and also that there is uniqueness for
the martingale problem formulation of the Walsh process on 3 rays, see ~3~. D

Observe that, had we not known that sticky Brownian motion was not generated by
its driving Brownian motion, we would be now able to deduce this from the existence
of the non-diagonal joinings displayed in the preceding theorem. This is precisely the
technique used by Barlow in ~1~, although he, dealing with a general class of SDEs
which have no strong solutions, has to do much work to see non-diagonal joinings
exist. Here things are much easier because we understand the nature of the singular
contribution very well.

Recall the description of the law of Xt conditional on W, given in ~I2~.
Theorem 2. Suppose that (X, W) satisfy the SDE equation (o.l). . Let Lt = .

t. the conditional law of ..-Yt given W is determined by

W ) ~aw + Lt - T)+~ W ~
where T is an independent exponential random variable with mean 1/28.

We may make repeated application of Theorem 2 to the construction of Theorem 1,
and hence obtain the following description of the conditional law of Xt2~) given
the common driving Brownian motion. Those familiar with interpreting Theorem 2
in terms of mutations on trees will easily extend the idea to cover the present case.

Corollary 3. Let p E ~0,1~ and consider the corresponding joining of sticky 
motion constructed in Theorem 1. The conditional law of Xt2~) the

common driving Brownian motion W is determined by

Xt2)~ W) caw ( (Wt + Lt - ~,(1))+~ (Wt + Lt - T(2~)+, W ,
where, Lt = , and the law of (T(1~,T{2~) is described as follows.

Let ~ ~o = ~y2)) be a Markov chain with state space {0,1}2, and let
its transition rates be given by the following diagram.
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Then .we take:

(T(1), T(2)) taw (inf{y : M(1)y =1 }, inf{y : M(2)y =1 } ) ..

As particular cases. if we take p =1, then X~1~ = X~2~, , while at the other 
h = 0, and :Y(1~ and are conditionally independent given the common driving
Brownian motion W.

2 Non-cosiness of sticky Brownian motion

We have just seen that when a joining possesses common driving Brownian motions
there is a ’hidden’ parameter p which may be thought of as describing the correlation
of the singular contributions. We want to know whether this possibility exists even
if the driving Brownian motions are not identical. The answer to this does not seem,
r~ prio’ri, obvious. With any joining the pair ~X(1~, X~2~) spends plenty of time at
the origin- which is where they need to be to do something mischievous. However

the argument of the next paragraph shows that, at least in a special case, nothing
untoward happens.

We consider the case W(1), W(2)> = 0. In this case the four martingales

. o o o and o 
are mutually orthogonal. Consequently Knight’s theorem tells us that if we time

change each martingale to obtain a Brownian motion, then these resulting Brownian
motions are mutually independent. But, for i = 1, 2, the pair (X~i~, W(i}~ is mea-

surable with respect to the two Brownian motions arising from the two stochastic
integrals with respect to W(~~. Thus ~X(1~, W~1~) W(2~) are independent.
Hence we see that there is a unique (in law) joining such that the driving processes

and W~2~ are orthogonal, and in this case the singular contributions are neces-
sarily independent.

Throughout this section we will consider joinings such that there exists a 03C1max  1

such that i~W~l~, W(2~)t - ~W(1~, W(2~)9)  for all t,8 2: 0, we say the
maximal correlation of the joining is less than 1.

Lemma 4. Any random variable belonging to ,C2 ~X, W) can be expressed as a stochas-
tic integral with respect to W .

By virtue of this representation property (which is proved in the appendix), the
maximal correlation of the joining being less than 1 makes available to us the impor-
tant hypercontractivity inequality, see Tsirelson [10] for an outline of the proof.
Lemma 5. Suppose that a joining satisfies, for some  1

I~W(1~, W(2~)t -- ~W(1~, W~2~)gl  , for all t, s > 0.

Then if ~ is a bounded path functional

~. ‘Y X~1~ ‘Y lY~2~ ~ ~ ,

where X possesses the common law of and X (2~ .
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Theorem 6. If the maximal correlation of the joining is less than 1, then

L°(X~1) V X(2)) = 48A°°,
where A00t = t01(X(1)s=X(2)s=0)ds, and L° is the semimartingale local time of X(1)X(2)
at U. 

’ ~ 

Prooj. Observe that

+ X(2)) = 48A°°.
Now as a consequence of the occupation time formula (see Revuz and Yor [8] ) we
find that

|L0t(X(1) + X(2)) - L0t X(1) V X(2)|  lim sup 4 ~ t0 1(0Xs(1)> )1(0X(2)s~)ds.

We use the preceding Lemma to show the expectation of the righthand-side is zero.
A simple computation confirms that, if X is a sticky Brownian motion, then,

= 0(E)~

uniformly for all s. Hence, by virtue of hypercontractivity, for some 03C1max  l,

IE[1(0X (1)s) 1(0X (2)s) ] =O(~2/(1+03C1man)),

uniformly for all s, and this suffices. 0

This proof displays very clearly how the process (X(l), X(2»), living in the positive
quadrant uses motion along axes to visit the origin. But be careful in interpreting
this.

Now recall Tsirelson’s definition, [10], of cosy. In order for the filtration generated
by sticky Brownian motion to be cosy there must exist a sequence of joinings each
with maximal correlation less than 1, such that if ~ is any bounded path functional
then

~(xn) _ ~(X(2)) ~ 0,
as we tend along the sequence. We are actually considering (to use Tsirelson’s termi-
nology more properly) self-joinings of the filtration generated by the sticky Brownian
niotion and the driving motion together. But this distinction, is in fact, unimportant,
since any self-joining of the filtration generated by sticky Brownian motion alone is
easily enriched to become a joining of the type we are considering.
Corollary 7. The filtration generated by sticky Brownian motion is non-cosy.

Proof : Fix À > 0 and let 03B3 = If X is sticky Brownian motion started from 0
then

+ (03B303B8 + a) / 0
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is a ma.rtingale, and

~g ~-As ~ ~~~ °~ ~ ~ ~ _ ’l’° l + X
For any joining of sticky Brownian motion X(1)tX(2)t is a submartingale with quadratic
variation process J§ 1(X(1)sX(2)s>0)ds. If the joining has maximal correlation less than I ,

t.hen, by virtue of the preceding Theorem, L0t(X(1) X(2)) = 40A[" , and an application
of Itô’s formula shows that

~ ’~~~~~~~~~~ ~~ + (27° + X) it l 

is ;i supermartingale. In this case we may deduce that

IE [~0 e-03BBs1(X(1)s=X(2)=0)ds] ~ 1 203B303B8 + 03BB.

But if the filtration generated by sticky Brownian motion was cosy then as we tend

a.long some sequence of joinings, for each t > 0,

~2
~ 0’

and hence

IE [~0 e-03BBs1(X(1)s=X(2)s=0)ds] ~ IE [~0e-03BBs1(Xs=0)ds] .

In view of the above computations this is impossible. D

.# little more effort tidies things up. By the law of a joining we mean the joint law

of ( x ( I) , x(2) , w ( I) , w (2) ) ,
Corollary 8. Let Pn for n > 1, be the laws of a sequence of joinings of sticky Brow-
nian motion, each with maximal correlation less than I. Suppose that the law of

(W(1),W(2)), as we tend along the sequence, converges to the law of the diagonal
process (W, W) , where W is a Brownian motion. Then, as n tends to infinity, Pn

converges weakly to the law of the joining constructed in Theorem I with p 
= 0, that

is with independent singular contributions.

Proof. The sequence Pn is tight because the marginal laws of (X’> , W’» are constant.
Suppose Q is the limit of a convergent subsequence. Q is evidently the law of a joining
of sticky Brownian motion, with identical driving Brownian motions. Because of the

uniqueness assertion of Theorem 1 it suffices to identify that, almost surely under Q,

L0t(X(a)  X(2)) = 403B8A00t.

Consider f G Cb (R+) with f’ > 0, and f"(0+) = 40 f’(0+) . Note, for such f,

M/ # v X$~~) - ] / v 
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is a submartingale under any whence it is also a submartingale under Q. We may
deduce from this that

and re-examining the proof of Theorem 1 we see that this can only happen with
equality. Cl

Acknowledgments. This work was done while visiting VISRI, where I was very
lucky to be able to talk with both Boris Tsirel’son and Ruth Williams.

Appendix. The first part of this appendix contains an explanation as to the use
of balayage to deduce that the processes and Z(2) are continuous semi-
martingales.

First we denote by H the random closed set

{t : Xtl~ = Xt2i = 0},
and observe that each of the processes

(1(X(1)t=X(2)t))t~0 , (1(X(1)t>X(2)t))t~0, and (1(X(1)tX(2)t))t~0

is constant on each component of Hc. For each t > 0 we define random times Dt and

Tc by, 
.

Then we consider a process K defined by

Kt = lim inf 1BXu 

Because K is bounded and progressive, and X(1)Dt = 0 for all t, the balayage formula,
see [7], tells us that

where 03BA is the previsible projection of K and 7Z is an adapted, finite-variation pro-
cess, constant on each component of Hc. In particular KtX(1)t is a continuous semi-
martingale. Now Kt is equal to 1 if t is the left-hand end of an excursion into

{x~l~ = x~2> > 0}, but equal to zero at the left-hand end of other components of
Hc. Thus we see that

KtX(1)t = Z(=)t.

Finally we note that 03BAt =1(X(1)t=X(2)t) on Hc, whence we see that the semimartingale

decomposition of Z(=) must be as claimed in the proof of Theorem 1. By making
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appropriate changes to the definition of K we may consider and Z~1~ in the same
wav..
When we turn to considering the processes and Y~’l~ we need to alter our

choice of the closed random set H and the process K. Let us now take H to be set
of times at which X~2~ is zero, and define

Kt -1 x~l’>x~~? .
This clioice of K is previsible, and on applying the balayage formula we find that

KnX(2)t = t0 1(X(1)s>X(2)s> 0)dWs + 8 / 1(X(1)s>X (2)2 ds.
with no additional finite-variation term. The argument is completed by observing
that = Y~1~. The process Y~2~ may be obtained by making obvious changes
to the indices in these formulae.

The final part of this appendix contains a proof of Lemma 4. Introduce the two
Brownian motions W + and W ° defined by

W+t = ~0 1 (Xs >0,At ’

W0t = ~0 1(Xs=0 ,A0s~t)dWs,
where At = f o 1 ( x s >o ~ ds and At = f o 1 ( x s =o ds. Notice that the two stochastic

integrals above are orthogonal. We find that we are able to write exponential random
variables of the form

exp ~ a~ ~Wt +~ - + - W ~~
as stochastic integrals against W. But these exponential variables are total in ,C’- ~W+, 
and moreover

,Cz ~W, X ~ = G2 ~W+, ,

whence the martingale representation property extends to all of ,C2 (W, X) . .
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