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ON CERTAIN PROBABILITIES

EQUIVALENT TO WIENER MEASURE,
D’APRÈS DUBINS, FELDMAN,

SMORODINSKY AND TSIRELSON

W. SCHACHERMAYER

ABSTRACT. L. Dubins, J. Feldman, M. Smorodinsky and B. Tsirelson gave an
example of an equivalent measure Q on standard Wiener space such that each
adapted Q-Brownian motion generates a strictly smaller filtration then the origi-
nal one. The construction of this important example is complicated and technical.

We give a variant of their construction which differs in some of the technical-
ities but essentially follows their ideas, hoping that some readers may find our
presentation easier to digest than the original papers.

1. INTRODUCTION

This paper grew out of the author’s attempt to understand the construction
of the admirable paper [DFST 96] as well as its extensions given in[FT 96] and
[F 96].

Here is their main result:

1.1 Theorem. (Dubins, Feldman, Smorodinsky, Tsirelson) :
Let B = (Bt)t>o be a standard real-valued Brownian motion starting at Bo = 0
defined on a stochastic base (~t, X, IF) and its natural filtration .

For 6 > 0, there is a probability measure Q on ~’, equivalent to P, with
1-~  ~  1 +~ and such that for every process B’ = 
which is a standard Brownian motion under Q (relative to the filtration ,

the process B’ generates a strictly smaller filtration than 
-

We refer to [SY 81], [RY 91], p. 336, [RY 94] p. 210 and [DFST 96] for an
account on the significance of this theorem, which settled a 15-year-old question
related to the Girsanov-transformation.

Let us also mention that recently B. Tsirelson [T 97] (see also [EY 98] and
[BEKSY 98]) gave another example of a filtered probability space (H, JF, P),
namely the space generated by a Walsh-martingale, which displays similar fea-
tures as the present example (Q, ~’, ~): both examples are filtered prob-
ability spaces of "instant dimension 1" and not generated by a Brownian motion;
the example in [T 97] is even robust under an equivalent change of measure (while
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the present one, of course, is not). These two examples are, nevertheless, differ-
ent in spirit: roughly speaking in the present example the argument is based on
the independence of the increments of Brownian motion while the example from
[T 97] is based on the difference of Walsh-martingales and Brownian motion,
when these processes hit zero.

The author frankly admits that he found it quite hard to understand the
construction in [DFST 96]. After having paved his own way through the con-
struction he thought that it might be helpful to the probability community to
write up his understanding of the construction in order to give a somewhat dif-
ferent presentation of the example. However, no claims of originality are made
(we just translate the ideas from [DFST 96] into a slightly alternative language)
and we are not even sure whether our construction is "simpler" (of course, it
seems simpler to the author; as usual in Mathematics, everything that you know
how to do, seems simple to you). There are some technical differences in the
construction of the present paper, as compared to [DFST 96] : firstly, we include
the strengthening of the construction obtained in [FT 96], i.e., the control on
the L~-norm rather than on the L2-norm of the Radon-Nikodym-derivative dQ dP,
from the very beginning into our construction (at little extra cost). This is nat-
ural, as the splitting into two steps (as in [DFST 96] and [FT 96]) apparently is
only due to the way these authors gradually improved their example. Secondly
we isolate a crucial step of the construction of [DFST 96] into the elementary
combinatorial lemma 2.7 below, which - at least to the author - also allows
for some intuitive understanding.

As regards the final strengthening by J. Feldman [F 96] we don’t have any
contribution: let us just note that this strengthening can be put on top of our
example exactly in the same way as it was originally put on top of the example
from [DFST 96] and [FT 96].
We have made an effort to keep our presentation entirely selfcontained; but,

of course, we strongly recommend the reader to have a copy of [DFST 96] at
hand.

My sincere thanks go to J. Feldman and M. Smorodinsky for a pleasant con-
versation on this topic and in particular to M. Smorodinsky for an inspiring talk
in June 1997 at the Schrodinger Institute, Vienna, as well as to M. Emery and
M. Yor for making me familiar with the content of the papers [T 97], [EY 98]
and [BEKSY 98] and in particular to M. Emery for a lot of help and advice
in the final redaction of the paper. After the completion of a first version of
the present paper, S. Beghdadi-Sakrani and M. Emery also have given a further
variant of the construction of [DFST 96] as well as some more general results
[BE 99].

2. THE EXAMPLE

Let X = (Xo, Xl, ~ ~ ~ ) be a real valued stochastic process defined on a sto-
chastic base (St, .~, We shall look at the process "in reverse order", i.e., we
define the filtration be

0n = 
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In the present paper we always shall assume that X is tail-trivial, i.e., that
the sigma-algebra only consists of sets of probability zero or one.

The subsequent definition describes the way in which the independence of
Brownian increments will come into play. As we have learned from M. Smorodin-
sky the idea behind this definition goes back to P. Levy (in [V 95], p. 756 it is
referred to as the Levy-Bernstein-Rosenblatt problem): :
2.1 Definition (compare [S 98]). . A parametrisation of the process X is given
by a two-dimensional process (X, Y) = (Xn, defined on a stochastic base

~, and a sequence ( f n)~ 1 of deterministic Borel-measurable functions
defined on [0, 1] x l~~ such that

(i) the processes X and X are identical in law,
(ii) the sequence is a sequence of i.i.d. random variables uniformly

distributed on [0,1] and such that Yn is independent of 
(iii) the equation

Xn-1(w) = 
holds true, for each n > 1 and almost each w.

We call the parametrisation generating if, in addition, for each n, the random
variable Xn is u(Yn, )-measurable.
We have been somewhat pedantic in the above definition, as regards the

joining of the processes X and Y, by distinguishing between the processes X
and X to have a safe ground for the subsequent, rather subtle, considerations
about the sigma-algebras which are generated by Y and X rather than by Y
and X (the latter being, strictly speaking, defined on different stochastic bases).
But, if no confusion can arise, we shall follow the common habit in probability
theory and write X instead of X.

Assertion (iii) requires that, for each n, there is a deterministic rule, prescribed
by the functions such that, for almost each w, we may determine the
value from the history and the "innovation"

the latter coming from a sequence of independent random variables.
It is easy to see that any real-valued process X (in fact, any process taking its
values in a polish space) admits a parametrisation. The notion of a generating
parametrisation captures the intuitive idea of a parametrisation which is chosen
in such a way that we can determine (a.s.) the value of Xn(w) by only looking
at the history (Y~ (w), Yn+1 (w), ~ ~ ~ ) of the "innovations".

It is rather obvious that a process X admitting a generating parametrisa-
tion has to be tail-trivial: indeed, suppose to the contrary that there is a set
A E with 0  P[A]  1 and suppose that X admits a generat-
ing parametrisation: then the set A is in u(Xo, Xl, ~ ~ ~ ) and is independent of
(Yn ) ~ o and therefore not in Yl,...), a contradiction to the requirements
of definition 2.1.

But the converse does not hold true, i.e., a tail-trivial process X does not,
in general, allow a generating parametrisation. This highly non-trivial and re-
markable fact was first proved by A. Vershik [V 70], [V 73]. We refer to ([DFST
96], p. 885) and [S 98] for a presentation of this example.
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In fact, the construction given in [DFST 96] and its presentation in the present
paper is just an example displaying the phenomenon of a tail trivial {-1, +1}-
valued process X not admitting a generating parametrisation and such that, in
addition, the process is obtained from an i.i.d. sequence of
Bernoulli-variables defined on (H.~.P) by putting a slightly altered equivalent
measure Q on (H..F).
We start by giving an easy motivating example which should help to develop

some intuition for the concept of a generating parametrisation (we have learned
it from M. Smorodinsky and found it illuminating despite its simplicity). As the
example is not needed for the sequel the reader may just as well skip it.

Exanlple. (compare [V 95], p. 756) Let 0  7y  1 2 and define the {-!,+!}-
valued Markov process via the transition probabilities

for each n. Clearly this well-defines a stationary tail-trivial Markov process

A possible way to define a parametrisation of this process is given by the fol-
lowing coupling technique: let be an i.i.d. sequence of random variables

uniformly distributed in [0,1]. Define, for m C N, the process (x~~ by

letting = 1 and, for n = 1,..., m, 
n=o

~ 

~(o,~)(~-i)"~+~i)(~-i)
/ ~ ~ 2014 1y(~) -. ~ /~ ~ 2014 . 

11 ~ 2014 i

~(o~-~)(~-i) - ~v ~ ir R(~-~i)(~-i) ~v ~

One easily checks that, for n > 0 fixed, the sequence of random variables

m=~ converges almost surely to a random variable Xn and the sequence
satisfies the above Markov transition probabilities as well as the rela-

tions

ll(0,1 2+~)(Yn-1)-ll(1 2+~,1)(Yn-1)
if Xn = 1

if Xn = -1
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Let us verify explicitly that this parametrisation is generating: let n E N

and c~ E S~ be such’ that Yn(cv) ~ ( 2 - r~, 2 + r~). In this case determines

already regardless of the history Xn+2 (W), ~ ~ ~ ). But from

now on we know everything about the trajectory (w), ~ ~ ~ , Xo(cv))
by only looking at Y,~_1 (w), ~ ~ ~ Yo(w)): the number Xn_1 (W) then is a
deterministic function of the numbers Yn (w) and Yn-l (w) , and so on.

More formally, for each n, the sigma-algebra Y~+1, ~ ~ ~ ) contains the
sigma-algebra on the set

A n _ U Y a ~ 2 1_ 2 1+ . °z>~

Noting that =1, for each n E N, we deduce that Xn is Yn+1, ’ ’ ’ )-
measurable, which readily shows that the above parametrisation is generat-
ing. 0

We now give the basic example which relates the assertion of theorem 1.1
with the notion of a generating parametrisation.

2.2 Lemma. Let (Bt)t>o be a Brownian motion defined on (fZ,,~’, ~) equipped
with its natural and let Q be a probability measure on 3i equiv-
alent to P.

Fix a sequence strictly decreasing to zero and define the process 
by letting

Xn = { 
+1 if . Btn - > 0~ - if tn - C 0

Suppose that there is an process defined on (S~, .~)
which is a Brownian motion under Q, and such that generates the fil-
tration . 

-

Then the process X = (Xn)~ o under the measure Q admits a generating
parametrisation.

Proof. Let be the sequence of random variables, defined on (5~,,~, Q),

n = lBt ( > - ! n = 0, ) 1 ...

where n takes its values in the polish space tn]. As the law of n is
diffuse we may find Borel-isomorphisms from tn] to ~0,1~ such
that Yn = in o Y~ is uniformly distributed on [0, 1], which furnishes an i.i.d.
sequence of uniformly distributed [0, 1]-valued random variables under
the measure ~.

Note that, for each n E N, the sigma-algebras and 

coincide, and by assumption are equal to .

It follows that, defining the random variables pn and ~~, by
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’Pn = ((Bt - Btn+1 )tn.f.l ...)
= (Ym ~ X n+2, ...~

taking their values in C[ tn+ 1, tn] x {-1, +1}~ and [0, 1] x t-l, +1}~ respectively,
pn and generate the same sigma-algebras (up to null-sets) on H, if we equip
the respective target spaces with their Borel sigma-algebras. In particular, we
may find a nullset N in H such that, for w, w’ E we have cpn(w) = cpn(w’)
iff we have = We infer that we may define a Borel map Fn =
Fn(ym xn+1, xn+2, . .. ) from ~0,1~ x {-1, +1}~ to C[tn+1, tn] x {-l, +1}~ induc-
ing pn o (to be precise: we define Fn by letting Fn o = cpn (w), for
w E and extend Fn in a Borel-measurable (but otherwise arbitrary) way
from the range to the entire space [0,1] x {-1, +1}~). Defining fn to be
the sign of the first coordinate (i.e., the tn~-coordinate) of the function
Fn, evaluated at tn, we have found the parametrisation

X n = f n (Yn, Xn+2, ... ).

The sequence ( f n ) ~ o therefore defines a parametrisation of the process (X n) o
and it is clear that the parametrisation is generating, as by hypothesis
u(Yn, Yn+l, ... ) = for each n E N. O

Remark. We have used the concept of generating parametrisation, as in [S 9$~, in-
stead of the concept of substandard processes, i.e., processes admitting a standard
extension, as in [DFST 96], because we find the former notion more intuitive.
Both concepts are equivalent and may be mutually translated one into the other
(compare also [S 98]).

The message of lemma 2.2 is that the proof of theorem 1.1 may be reduced
to a coin-tossing game, indexed by the negative numbers.

2.2a Corollary. In order to prove theorem 1.1 it suffices to give a proof for the
subsequent assertion:

Denote by À the Haar probability measure on the Borel sigma-algebra B of
X === and by en : ~ ~ {-1, +1} the n’th coordinate projection. For
ê > 0, there is a probability measure ~c on X with 1- ~  ~  1 + ~ and such
that the process as defined on (~, ~3, ~), does not admit a generating
parametrisation.

Proof. . Using the notation of lemma 2.2 consider X = defined there as
a measurable map from (0, F) to (3~, ~3). Assuming that there is a measure ~
on X satisfying the above assertion define the measure Q on F by letting

~() d~( ())~ 
This definition is done in such a way that the process (En ) ~ 1, defined on

(~, B, ~c) and the process > defined on (S~, .P, Q) are identical in law.
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By assumption, does not admit a generating parametrisation under ~u,
hence does not admit one either under Q. It follows from lemma 2.2
that cannot be generated by a Q-Brownian motion D

The remainder of the paper will be dedicated to construct a measure p on X

satisfying the assertion of the above corollary.
The principal component of the construction is given in the subsequent lemma.
Let us fix some notation: for n E N, we denote by Xn the space {-1, +1}n

and by or just À, if there is no danger of confusion, the uniform probability
distribution on Xn. By we denote the coordinate functions on Xn. Note
that is an i.i.d. sequence of Bernoulli-variables if we equip Xn with the
probability measure Àn .
A little notational warning: in the subsequent lemma the time i =1, ~ ~ ~ , p will

"run into the future" as opposed to the setting above, and - when speaking
about a stopping time - we shall refer to the filtration where Fi =

2.3. Lemma. Let ~ > ~ > K/4 > r~ > 0, and define the density
process Z = (Zi)f=o on (Xp, Àp) by Zo =1,

Zi/Zi-l = 1 + i = 1,... ,p

and the stopping time T by

T =inf{1  i  p : : Zi ~ [1- (~ W(~+~))~1+(~-~l(1+~))J} 

Denote by and  respectively the probability measures on Xp with Radon-
Nikodym derivatives

da 
= p and 

da 
= zT .

We then have:

(i)  p]  4-~-~
(ii) 1-~ d 1+~

(iii) for every pair and of parametrisations of the coordinate
process (ei," ’ , Ep) under the measures  and a respectively we have that

P[(f i)pi=1 = (f03BBi)pi=1] ~ (1 - ~ 2)p + 4p~2 k2
Before aboarding the proof we want to clarify - again somewhat pedanti-

cally - the precise meaning of assertion (iii): we equip H = Xp x =

{-1, x with measure P = a ® m, where m denotes the p-fold product
of Lebesgue-measure on [0,1]. We denote by Xi,’" , Xp, Yi,’ " , Yp the pro-
jections to the coordinates of 0 and by (xl, ~ ~ ~ zp, yl, ~ ~ ~ yp) the elements
of n. By the parametrisations and we mean deterministic

functions f i (yi, xi-1, ... , , xl) and f i (yi, xi-1, ’ ’ ’ , xl) such that the processes



228

X;- i , ... , and X~i~. , are versions of the co-
ordinate processes defined on and (Xp.A) respectively.
Proof o/ Lemma 2. 3. (i) Writing the defining equation of as

Zi+1 - Zi = Zi~~i

we see that Z is a martingale with respect to the measure A and that

~-i!!~)=!~-Zo!!~)
=  ~ZTi - ZTi-1~2L2(03BB)
p[~(l+(~-~(l+~))~2~.

Here we denoted by Z~ = the stopped process Z~ = Noting
that on {T  p} we have that Zo! > k - ~(1 + It) we get

03BB[T  p] ~ 2p~2 (k - ~(1+k))2 ~ 4p~2 k2.

(ii) is rather obvious as we have defined T in such a way that ZT is certain
to stay within [1 - It, 1 + /~].

(iii) We first reason with the measure ji instead of  and we shall write fi for
a parametrisation of under ji. Note that, for every 1  ~  p and every
a?i,’ ... , we have that

= 1|X1 = x1,...,Xi-1 = xi-1] = 1 + ~ 2
and 

Hence, conditionally on each set{X1 = a?i,..., = the event =

depends only on Yt and has probability at most 1 - ~. Using the indepen-
dence of the random variables Yi,..., ~ we therefore get

W=~!Xi,..~x~i~,...~~]i-~
which gives

 (i - 

and therefore 

p[(ff)f=l = (f03BBi)pi=1] ~ (1- 2)P. 1]P[(fi)pi=1=(f03BBi)pi-1] ~ (1 - ~ 2)p.
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To pass from  to p note that on the set {T = p} the measures  and p,
coincide which, using (i), readily implies the inequality

~ [(fa )i=1 (fi )i=1, - (1 - 2 + 0

The message of the above lemma is quite counter-intuitive and surprising,
at least to the author (when choosing the parameters such that the bounds in
(i) and (iii) are close to zero and in (ii) close to one): on one hand side (ii)
asserts that the random variables (Xi,’’’ ,Xp) = (~1, ~ ~ ~ ep) have a very simi-
lar joint distribution under J.L and under À; on the other hand (iii) implies that
if we try to parameterise the process (X1, . . . Xp) under J.L and À respectively
then, for each parametrisation there are only few w’s such that

= for i =1~... p.
Loosely speaking: although the result of the random variable (Xl,’" , , Xn) is

likely to be the same under p as well as under À we cannot materialise this proba-
ble coincidence by a sequential pathwise procedure parametrised by independent
increments on the coordinates i =1, ... , p.
A similar interpretation of the above lemma goes as follows: There is a Borel-

measurable transformation T (3Ep x [0,1], a®~n) -~ Xp such that T (a~m) _ p
and such that

~ Xp~ Y) = (xi, . .. xi, . .. ~ Xp = x~~ ~ 1- ~~

for each (.ri,’" , a?p) E Xp, where P denotes This is just a straightforward
reinterpretation of the assertion d > 1- x. In particular we have

~ Xp~ Y) = (Xl,.’. Xp)~ ~ ~. - x.

On the other hand, (iii) can be interpreted as the fact that for every Borel-
measurable transformation T : : 3Ep x E0,1~~° --3 Xp which maps À @ mP to p
and in addition, is 7(Xi,’’’ , Ya) --~ ~(~i~’’’ ; Xi) measurable, for each

~ ~ ... . .. _ (Xi, . .. ~ 1- 2 ~l 
2 + 4p~12

At the danger of being repetitive, let us rephrase this once more in terms of a
mind experiment: suppose you are told the laws A and J.t as above and you are

given a machine which produces an i.i.d. sequence (Yl,". , Yp) of [0, 1]-valued
uniformly distributed random variables. Define (w.l.g.) the functions

f$ (y=) - + 1 if . Yz E [0,~]

so that = is a fair sequence of p coin tosses. Now you
are asked to define a (deterministic) mechanism which associates to every out-
come (~i,’" , xp) = (Xl(c~), ~ ~ ~ , Xp(c~)), possibly using the information of
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the underlying random numbers (y1, ... , yp) = (Yl (03C9), ... , Yp(03C9)), a "manip-
ulated" outcome (1, ... , xp) = T(xl, ... yl , ... , yp) such that the process
(Xl, ... , kp) has law and, in addition, this application of "corriger la for-
tune" should only be applied rather seldomly, i.e. P[(1,...p) ~ (Xl, ... , Xp)]
should be small. The question is: can you do this? The answer depends on the
interpretation of what we mean by "deterministic mechanism". If we are al-
lowed to first wait until we know the entire realisation (xl, ~ ~ ~ xp), the answer
is yes, as the map T constructed above, (xl, ~ ~ ~ , xp) = T (xl, ~ ~ ~ , xp, y) satisfies
~~(Xl, ~ ~ ~ , Xp) ~ (Xl, ~ ~ ~ Xp)]  r~ (as random source Y we may, e.g., take the
fractional part of the random variable 2Y1 ). But if we are confined to make our
choice "in real time" (compare ([T 97], def. 1.1 and the subsequent discussion)
for a precise definition of this notion), i.e., we have to decide whether we let
xz = x~ or xa after having only seen the outcomes xl, ~ ~ ~ , xz-1 and using
the information then the answer is no: assertion (iii) above implies that for
each such rule producing a process under the
law ~, the probability that we have to change xa into xi ~ xi, for at least one i,
is close to one.

For the proof of theorem 1.1 we shall apply the above lemma in a slightly
more technical form which we describe in the next lemma.

2.4 Lemma. Let p, x, ~ be as in lemma 2.3 above and suppose we are given in
addition 0  a  1. .

Let be two elements in {-1, such that

# {i : i ~ Tz } ~ CYp.
Define two density processes Z, Z’ by letting Zo = Zo =1 and

=1-I- i~~i , Z’i/Z’i-1 =1 + 

and two stopping times T and T’ by

T i p: ~1-(~-rl(1+~))~1+(~-~l(1+~))~~~p
p: ~Zz ~ ~l-(~W(1+~))~1+(~-rl(1+~))~~~p

and by , , ’, ’ the measures with densities

d d03BB 
= Zp, d  d03BB 

= ZT
, 

d’ d03BB 
= Z’p, d ’ d03BB = Z’T’.

We then have

(i) ~~T  p, T’  p]  8~,
(ii) 1-~d 1+r~andl-~ 
(iii) for every pair and of parametrisations of the coordinate

process (~1,...,~p) under the measures  and ’ respectively we have
that 

P [(ft)I=I ’ (ft’ )I=1] ~ (1 - ~)03B1p + 8p~2 k2
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The proof of lemma 2.4 is analogous to that of 2.3 and therefore skipped.
We now indicate for which values of the parameters p, ~, rI, a we shall apply

lemma 2.4 in our subsequent inductive construction indexed by k = ko, ko+1, ~ ~ ~ ;
in the sequel we shall (almost) always remain the following relations between the
integers k, n and p:

n=2k

p = 2~ = n/2.

This rather peculiar notation comes from the fact that we want to stick as
close as possible to the notation in [DFST 96], who used the symbols k and n in
a similar way as we do and, on the other hand, we want to avoid constant use
of the notation k - 1 and ~/2 for quantities which will constantly be used.

2.5 Corollary. For kEN we shall choose

p = p03BA = 203BA-1,

a=ak = p-1 403BA,
/~ = xk = ~"~ ,
~ _ = ~-32-k j2 .

Using these parameters in lemma we obtain, for k sufficiently large, the
estimates

(ii) 1-~ _ 2 ~ d  1-~-~ _ 2 and 1 - k-2  ~ ,  1-~-~‘2
(iii) )~ 1] ~ ~J~ 2.

Proof. . We have to estimate the quantities (1- and ~ in assertion (iii)
of lemma 2.4:

= (1_~-32-kl2)2 ~2 ~’ N ~1_2-k/2)2~- 1_2-k/2 2~’~2 12~‘~4 l N e 2k~4
and 

~ ~ ~~ ~~~ ~ ~ ~~=~’~"=4~. ° Q

We have used in the above proof the symbol ~ to describe an approximate
equality and we shall freely continue to do so when it is clear that the asymptotic
approximations work good enough to prove the desired estimates.
We now can formulate the result which parallels the "Fundamental Lemma"

of ([DFST 96], p. 894):
2.6 Fundamental Lemma. For k large enough, there is a family =

of probability measures on n = 2k such that

(ii) 1 - k-2 ~ d j d03BB ~ 1 + k-2, j=1,...,22n,
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(iii) for every pair j ~ j’ and parametrisations and ( f z ’ 1 )i 1 of the co-
ordinate process (Xl, ~ ~ ~ , Xn) on ~n under the measures p; and respectively,
we have

p )i=1 n -’ )i=1 n ~ 6k-2
. Of course, the idea to prove the fundamental lemma is to apply lemma 2.4 and
corollary 2.5, where we let n = p (in contrast to our above agreement on notation
p = n/2; the reason why we finally have to take p = n/2 will soon become clear) :
we would like to find 22n many different sequences Ti(j)a 1 taking their values
in {-1, +1}, where 1  j  22n, such that, for every fixed pair j ~ j’, we have,
for at least n3~4 many i’s, that Ti(j’). We advise the reader to convince
her- or himself that - if such a choice (Ti ( j ) ) i 1 )~ 2 i were indeed possible - it
were straightforward to deduce the fundamental lemma from lemma 2.4.

However, life is not always as nice and easy as we would like it to be: there
is no sequence of { -1, + 1 }-valued functions on a set of cardinality 22~
such that, for j 7~ j’, we have Ti( j’) for at least n3~4 many i’s. In fact,
such a sequence cannot even separate the points of a set of cardinality
22n (it needs 2n functions to do this job); hence there always will be 
such that Ti(j) = Ti(j’), for all i = l, ... , n.

So we have to proceed in a more sophisticated way: note that - in spite of the
above sad news - for a typical choice of j ~ j’ there will be approximately n/2
many (i.e., much more than the required n3~4 many) i’s such that Ti ( j’ ) if
we take to be an independent sequence of functions defined on (X2n, À2n)
assuming the values +1 and -1 with probability 2 (we now identify the set
{j : : 1  j  2~} with equipped with measure À2n). The basic idea is to
consider not only one sequence (from now on we are generous and use
only p = ~ many functions) but a large collection ((Ti )p 1)rp 1 of such sequences,
which we may think of as applying an i.i.d. sequence as above to 2P many
random permutations of the set If we do this it seems quite intuitive that
for the overwhelming majority of pairs j ~ j’ we have that for most of the
1  r  2P we have Ti (j) ~ T~ ( j’) for at least n3~4 many i’s.

The subsequent combinatorial lemma, whose proof is based on the above
ideas, shows that we even can replace the term for the overwhelming majority

by the term for each pair j 7~ j’ . 
’

2.7 Combinatorial Lemma. Letting p = 2k-1 and n = 2k, for k sufficiently
large, there is a family ((ri())pi=1)2pr=1 of { - l., +1 } -valued functions defined on
the set X2n = {-1, +1}2n such that, for each pair j 7~ j’ in we have

#{1 : #{i : ri(j) ~ ri(j’)} ~ n3/4} 2p 
~ 1 - p-1/2.

The proof of the lemma relies on elementary combinatorics and is somewhat
lengthy. Also we suspect that there are much stronger results known in the
combinatorial literature (but not known to the author). For these reasons we

banned the proof of the combinatorial lemma 2.7 to the appendix.



233

Proof of the Fundamental Lemma 2. 6. We shall define the measures on

Xn by defining the density processes (Zz )z 1 with respect to the measure a on
xn.

For the first p = n/2 coordinates, we don’t do anything! We simply let

for i =1, ... , p~ j =1, ... 22~

The first p = n/2 coordinates are only used to create 2P many atoms in

~ (Xl , ~ ~ ~ , Xp ) defined by {Xl = ~ 1, ~ ~ ~ Xp = f 1 }, for all choices 1, where

Xl, ... , Xp denote the first p coordinate functions on We enumerate these

atoms by 7i ... , , Ir ~ ... .

Identifying the set {j :1  j  22n} with 2n apply lemma 2.7 to choose the
functions (Tz ( j ) ) ~° 1 satisfying

#{r : #{i: ri(j) ~ ri(j’)} ~ n3/4 2p ~ 1 - p-1/2.

Now define, for 1  j  22n, and p  i  n,

Z +11 Zi ~Ir -1 + r =1, . .. , 2p

where from now on the parameters p, a, are understood to denote the param-

eters defined in corollary 2.5. We again stop the density processes
at time

T~=inf{1in:Zz ~~1-(r~-r~(1+r~)),l+(~-r~(1+r~))~}~n
and define 

. 
= Z’~ ..da °

Assertion (ii) of the fundamental lemma now follows from assertion (ii) of
corollary 2.5.

To prove (iii) fix j ~ j’: : on at least (1 - p-1/2)2P many of the atoms Ir the
(renormalized) restrictions of and to the atom Ir satisfies the hypotheses
of lemma 2.4 and corollary 2.5. Hence, for any pair of parametrisations )z 1
and ( f i ’ ~ of the coordinate process (Xl , ~ ~ ~ , X~) under the measures and

respectively we have

= ( ~~’ I ( ... , Xp) E jr~  5k-2

for at least (1 - p-1/2 ) 2p = (1 - 2- k 21 ) 2p many r’s. Hence

= )i 1~ ~ 5~-2 + 2-~

which shows assertion (iii) and finishes the proof of the Fundamental Lemma. D
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Proof of Theorem 1.1. Similarly as in [DFST 96] we only have to paste the
ingredients together which are provided by the Fundamental lemma, in order to
construct a probability measure on X = ~-1, +1}~ satisfying the requirements
of corollary 2.2a: choose ko to be large enough such that, for k > ko, the
assertions of the Fundamental Lemma hold true and such that

(1 + k-2)  1 + ~ and (1 - 6k-2)>3 4,
k=ko k=ko 

4

where 2 > 6- > 0 is taken from the statement of Corollary 2.2a.
Let X be the compact space

oo oo

= 03A0 2k = 11 {-1,+1}2k,
k=ko k=ko

and define, for k > ko, the Markov transition probabilities to
be the family of probability measures on given by the Fundamental Lemma
2.6, where we identify the set {j : 1  j  22k+1} with the set xk+1 E

by an arbitrary bijection.
Denote by Vxk+1 (xk) the Radon-Nikodym derivative of with respect to

Haar measure on ~~ ~ 1’~’

Y _ 
d~ 2 ~ 

’

and by Z the density function on X,
oo

z(x) _ ~ (xk)
k=ko

where x = X. By assertion (ii) of the fundamental lemma 2.6 and
the above choice of ko we have ~Z-1~~  E and the measure p on X defined
by 

d  d03BB = Z

is the unique probability measure on the Borel sets of X inducing the transition
probabilities )x~+1 
We still have to show that the coordinate process on X, which we now denote

by X, under the measure p does not admit a generating parametrisation, which
will finish the proof of theorem 1.1 by corollary 2.2a. So, fix a parametrisation

((k,i)2ki=1)~k=k0 = ((fk,i(Yk,i, Xk,i+1, ..., Xk,2k,Xk+1,1, ...)) 2ki=1)~k=k0 .

of the process X, where we now are careful to write X instead of X (compare def-
inition 2.1 and the subsequent discussion). Assuming that the parametrisation
is generating let us work towards a contradiction.
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To alleviate notation, we write yk and xk (resp. Yk and Xk or Xjk if we refer
to random variables) for the elements yk = and xk = in 

and fk for the 3~-valued function ~ = . We then may write the

parametrisation as

(k)~k=k0 = (fk(Yk,k+1,k+2,...))~k=k0,

with the interpretation, that the components are defined inductively

(for i = 2k,2k - 1.....1) by the above more explicit formula, letting =

>

~~?~+i?"’)’
To further alleviate notation, note that by the construction of the measure

~ on X the random variable ~ = ~(~~+1~+2~..) is independent of
Xjb+2~+3,~ conditionally on Xjb+i. We therefore may assume w.l.g. that

the parametrisation is of the form

&#x26;=~o+l~...

We now define, similarly as in [S 98], inductively the Borel functions 
by

gko 

gk0+1 (Yko (Yko fk0+1

~(~o~’’’ =~-l(~o~’ - -.~-1~ 

so that, for each k, the random variable Yk, ~+1) equals the random
variable k0 a.s.; the function gk describes how we may determine the random
variable k0 from the "past" k+1 and the "innovations" Yk,Yk-1,...,Yk0 .

claim. For k > ko and ~ x’k+1, where and are fixed elements

of , we have

[gk(Yk0,...,Yk,xk+1)~gk(Yk0,...,Yk,x’k+1)]> (1-6j-2)>3 4,
J=~0

where P denotes, as in definition ~.~, the probability under which is an

sequence uniformly distributed on [0,1].
To verify the claim we proceed inductively on k = ko , ko + I?" ~ for k = ko

the claim follows from the construction and assertion (iii) of the Fundamental
Lemma 2.6. Now suppose that the claim holds true for &#x26; - 1; applying assertion

(iii) of the Fundamental Lemma again we obtain that, for 7~ ~+i? ,

>1-~-’. . 
’
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Applying the inductive hypothesis on all pairs 7~ a;~ in 3~ that
are assumed by (A(~,~+i),A(~,~+i)) we have proved the above claim.
Now we shall use the assumption that the parametrisation (/~)~ is gener-

ating to obtain the desired contradiction: if X~. is ~.~,... )-measurable
we may find ~ ~ ~o and a Borel function G(!/~,..., ~) such that

IP[Xk0 =G(Yk0,...,Yk)]>7 8,
or, written differently,

P[~(~o~..~~~i)=G(~,...~)]>~
As, for each e ~+1, we have (1 - ~) ’ 2-~~’  = 

(1 + ~)2"~~’, and (T~o..... ~) is independent of under P, it follows that
there are at least two elements in X2A,+i such that

P[~(~o~..~.~+l)=G(~,...~)]>~
and P[~(~,...~~~)=G(~,...~)] >~ >

which implies

P[~(~o~..~~~l)=~(~o~.’~~~l)]>~
This contradiction to the above claim finishes the proof of theorem 1.1. D

APPENDIX

We now prove the combinatorial lemma 2.7. We consider the space X =
= {-1,+1}~ = {-1,+1}~ ~ equipped with uniform distributionP = A. We denote by x = the elements of X and by 

the coordinate functions.

A.I Lemma. For &#x26; large enough, p = 2k-1,n = 2k, and fixed a;o ~ X, the set

x ~ X : there are more than p-1/2 2p many r’s /or which 1A = 
there are less than n3/4 many i’s with ri(x0) ~ ri(x) J
2"~. ..

Proo/ o/ lemma A.1. We may assume w.l.g. that a?o = (1,1,’" ,1) so that
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Claim. For fixed 1  r  2P and

Ar = ~x : for less than n3/4many i’s we have Tz (x) = -1}

we have
 2-pI2.

To show the claim we first estimate the probability of the set

Br = {x : for exactly n3/4 many i’s we have Tz (x) _ -1 }

(assuming that n3/4 is an integer). Using the estimate (k~  nk we get

IP[Br] = (
p n3/4) 2-p ~ 2-p(p)(2p)3/4n3/4 

= (2-1p23/4p-1/4)p.

Noting that the term in the bracket tends to 2 , as p increases, we obtain

 2-~, for k > ko.

Finally we can estimate

= ~2p)3/~~~Br~  , for k > kp~

which proves the claim.

Using the assertion of the claim we can estimate the probability of the event

~ x 
E X : there are precisely many r’s for whichB - 

there are less than p3/4 many i’s with Tz r (x) _ -1 
.

Applying the inequality (k~  we obtain

IP[B] ~ (2p p-1/22p).IP[Ar]p-1/22p

~ (ep-1/2)p-1/22p. (2-p/2)p-1/22p
_ ep 1 I 2 2-pl 2 

p 1/22p 
N 2‘p 1 ~ 22p .

This allows us to estimate
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2~ . P[B]
 2P . 

= 
.

Noting that, for k tending to infinity, the term in the outer bracket tends to
zero, and therefore is eventually less than 2 , we finished the proof. D

Proof of lemma 2. 7. Let  = p2p and ( (Tr)p 1 be as above and carry
out the following inductive procedure: choose an arbitrary element xl and
remove from X the set

~ x 
E X, x there are more than p"1~22~ many r’s for which 1 .A(x~ ) == ~ ~ there are less than p 3/4 many i’s with j 

.

The remaining set has probability bigger than 1- 2-2P and therefore
is non-empty, so that we can choose x2 E 
Now remove the set A (x2 ), which is defined similarly, and choose x3 E

U A(x2 ) }. Continuing in an obvious way we may continue the proce-
dure to obtain 22n = 24p many elements (x3 )~2 i before this procedure stops. (In
fact we could even obtain in this way 2~p many elements which shows in par-
ticular how far the assertion of lemma 2.7 is from being sharp). Identifying the
points with 2n = {-1,1}2n and restricting the functions ((ri)pi=1)2pr=1,
to this set, the proof of lemma 2.7 now is complete. D
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