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Abstract

We consider an Rd-valued continous semimartingale (Xt)tE[O,T], the
space of processes ~p = ~8 . X ( 6 X is a semimartingale in S~~ and the
space of their terminal values ~T. We give necessary and sufficient con-
ditions for completeness of gP in the norm ~(~ ’ . X ) * and closedness of

~~, in LP. These results are related to some problems in mathematical
finance and have been given for p = 2 in [DMSSS].

1 Introduction

As the results of our paper are given in [DMSSS] for the case p = 2, we have
tried to be as short as possible and refer for a motivating section on the financial
interpretation to [DMSSS] (see also [DM] especially for the discontinuous case).

By construction, the stochastic integral with respect to a square integrable
martingale M is an isometry. The space

{T0 03B8dMB20220 03B8dM is a square integrable martingale
* Supported by "Fonds zur Forderung der wissenschaftlichen Forschung in

Osterreich",Project Nr. P11544
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is therefore closed in L2. Quite recently a characterization of the closedness of
the space of stochastic integrals with respect to a continuous semimartingale
has been given in an L2-setting [DMSSS]. The aim of this paper is to generalize
some of these results to the case LP (p ~ 2).

After some definitions in section 2 we consider in section 3 the space of

processes CP = ~(e ~ E for a fixed continuous semimartingale X
and an appropriately chosen space of integrands ep. We give necessary and
sufficient conditions for the closedness of this space with respect to the norm

IIHIIRP = IIH*IILp. The idea of the proof of Theorem 3.1 comes from [DMSSS].
We have simplified parts (i) =~ (ii) and (i) =~ (iv). It is remarkable that if this

space is closed for some p > 1, then it is closed for all p > 1.
In section 4 we consider ~T = ~(8 ~ the terminal values of the

space of processes of section 3. Again we give necessary and sufficient conditions
for the closedness in LP . In [DMSSS] the variance optimal martingale measure
plays a prominent role in the characterization of the closedness of ~CT . Here the
q-optimal measure, i.e. the martingale measure for X, which has minimal Lq
norm (q conjugate to p) is an important tool for the main result of section 4.

2 Definitions

Let (~, ~, P, be a stochastic basis satisfying the usual conditions.
Let 1  p  oo be fixed in the whole paper.

Definition 2.1 For a real valued adapted continuous process H we define

~H~Rp = ~H*t~Lp(P),
where Ht = sup0~s~t |Hs|,
and Rp = {HIIIH1Ixp  oo} is a Banach space.

Definition 2.2 For a continuous martingale Y we denote

~Y~Hp = .

Definition 2.3 We say that a (not necessarily continuous~ martingale N is in
bmop (see (PJ), if there is a constant C, such that for any t

-  C, ,

or equivalently, if there is a- constant C such that for any t

E(([N]T -  C ~ .

If N is continuous then above conditions are equivalent for all p. The class of
such processes is called BMO (see 

In the sequel denotes always a fixed Rd-valued continuous semi-

martingale with decomposition X = M+A and Xo = 0, where M is a continuous
local martingale and A is a continuous finite variation process.
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Definition 2.4 For an Rd-ualued predictable process 0 we define

~03B8~Lp(M) = (E(T0 03B8’td[M]t03B8t)p 2)1 p

and _ {B :  +oo} . .

Definition 2.5 For an Rd-valued predictable process 0 we define

~03B8~Lp(A) = (E(T0 |03B8tdAt|)p)1/p

and LP(A) = {9  +oo} . .

Definition 2.6 We define

©p = LP(M) n LP(A), ,

equipped with the seminorm

= I IBI I Lp(M) + I IBI ILp(A) . .

This is the space of 0, for which 0 . X is in the space SP of semimartingales.
We denote by 6P the quotient Banach space obtained from 0 in the canonical
way by identification of zero-seminorm processes with zero).

Definition 2.7 We define a mapping i : Op H Rp by

i(e)=e.x. .

Since by the Burkholder-Davis-Gundy inequality

II (8 ’ X )* ~p  ~(03B8. M)* ~p + II (e ’ A)* ~p  + I IBI I Lp(A) ,

i is continuous. Moreover, the above inequality yields, that i induces a continu-
ous mapping i : p ~ Rp. This mapping is Indeed, if 0 . X is the
zero process, then so are its finite variation part 0 . A and its local martingale
part 0 . M. Thus = 0.
The image of the mapping i (or i~ will be denoted by ~p. .
We define ~T as the space of terminal values of processes in ~p, i.e.

.

We treat it as a subspace of LP(P).

The notation GS = E ~p }, s~p = {YT - E C P),
where S is a stopping time is also used.
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Definition 2.8 M’(X ) denotes the set of signed martingale measures for the
process X, i. e. measures ~C « P, which fulfill = l, P E Lq(P) and
E((0 . X)T a ) = 0 for all B E ©p..q is conjugate to the fixed p, which we use in
our paper. Me(X) C denotes the set of equivalent martingale measures

for X. We always identify a martingale measure with its density d . .
Definition 2.9 For 1  q  oo, we call the solution of the minimum problem

 SZdP = {S, Z} = 0 ~S E C 

~Z~qLq = |Z|qdP ~ min
Z~q~ _ ~ q-optimal martingale measure for the process X. . Noting that

is closed in and that Lq for 1  q  oo is uniformly convex,
we can conclude that there is always a unique solution of the minimum problem
above, if Ms (X) ~ ~.

Definition 2.10 We say that X satisfies ~structure condition) iff there

exists a predictable process a such that A = f 4 .

Proposition 2.1 The following conditions are equivalent
(i) 3C dB E LP(M) ~03B8~Lp(A)  C~03B8~Lp(M),
(ii) 3C de E LP(M) ~03B8~0398p~C~03B8~Lp(M),
(iii) 3C ’d9 E 

Proof. Equivalence of (i) and (ii), and implication (ii) ~ (iii) are obvious. To
prove (iii) ~ (ii), it is enough to consider the case 8 E LP(M), ~~

Define stopping times Tn = inf {t : t0 |03B8dA| = n} A T . Processes 03B8n = 

are in LP (A), so also in Op. By (iii) ~03B8n~0398p~ C~03B8n~Lp(M) _ 
Taking the limit n --~ oo we get a contradiction, that proves (ii).

Definition 2.11 If one of the conditions is fulfilled, then we say that
the Dp inequality holds.

Definition 2.12 If L is a uniformly integrable martingale such that Lo =1 and

LT > 0 P-a.s, then we say that L satisfies the reverse Holder inequality under

P, denoted by Rp(P), where 1  p  +oo, if and only if there is a constant ~~

such that for every t, we have E(( L )P I  K.

Definition 2.13 Let Z be a positive process. Z satisfies condition (S~, if there
exists a constant C > 0 such that 1 C Z_  Z  CZ_ . .

Definition 2.14 Let F be a Banach space. Then two vectors x E F, x* E F*

are aligned if  x,x* >= Ilxllllx*II holds. For LP-spaces this means equality in
the Holder inequality.
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3 On the closedness of gP in 7Zp.

Throughout this section C denotes a constant, which may vary at each occur-
rence.

The aim of this section is to give necessary and sufficient conditions for closed-
ness of ~P in RP. We shall prove

Theorem 3.1 Let 1  p  oo and let X be a continuous semimartingale. Then
the following conditions are equivalent
(i) Dp ho!ds,
(it) X satisfies (SC) and a ~ M is in BMO,
(iii) i is an isomorphism, i.e there exist a constant C such that for any B E Op

~03B8~0398p~~03B8. X~Rp

(iv) ~P is closed in RP.

Remark 1.
Since (ii) does not depend on p, (iv) is valid for all p > 1 if it is valid for some
p> 1.

Remark 2.
Let Iit A’d[M]A = [A .M]t. This process is called the mean-variance trade-
off process. If (ii) is fulfilled then (A . M)T possesses all moments and hence so
does KT. .

For the proof we will need the following generalization of Fefferman’s inequality.

Lemma 3.1 1, Y E HP, N E BMO are continuous martingales then

~T0 |d[Y,N]T|~p  Cp~N~BMO~Y~Hp.

The proof of the lemma is given in [Y], Corollaire 1.1, p.116.

Proof of Theorem 3.1.

(i)=~ (ii)
Since by Dp condition B ~ M = 0 implies B ~ A = 0, the process ~ in (SC) exists by
the predictable Radon-Nikodym theorem ([DS1]). Let 0  u  T and B E :Fu.
We define a predictable set Dn = {~a~  n,  n, t > E B}. By (SC)
and the Dp inequality we get

E( = E( IDna’d(A))p  CpE(J =

= G’pElB(J  §
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by Schwarz inequality. Since the last expression is finite, the above estimation
yields

= E(J M])P  

and taking the limit n --r oo

E( / u T  .

Since B E was arbitrary, we get
- CZ

i.e A . M is in BMO.

(ii)~ (i)
By Lemma 3.1 for Y = 03B8.M, N = 03BB.M we have

II |03B8dA|~p = I I Bad[M]I ~p = II |d[Y, N]|~p ~ C~03B8 . M~Hp ,

i.e the Rp inequality.

(i),(ii)=~ (iii) First, we will prove that for 9 E 8P

~ X~’ ) P  C~ ~B . y)

Denote Y = 8 M, L = 0 . X. We have (Y~ = ~L~. By Ito’s formula
LZ = 2L . L + (L~, so for p > 2 we have the estimation

_ ~L2 - 2L .L~p 2~ ~L*2~p 2 + 2~L.Y~p 2 + 2~L . (03B8.A)~p 2 .

The first term is equal to The second one can be estimated using
Burkholder-Davis-Gundy inequality by

C(E[L.Y]p 4)2 p = C(E(L2 .[Y])p 4)2 p ~ CE(L*)p 2[Y]p 4))2 p ~

~C((EL*p)1 2(E[Y]p 2)1 2)2 p = C(EL*p)1 p(E[L]p 2)1 p .

The third term can be estimated using Lemma 3.1 (with a = ~) by

IILOB’A)IIz  , 

,

which can be estimated as the second term. Putting these estimations together
we get a second degree inequality

 >

from which we get (1) for p > 2.
The case p  2 can be derived from the case p = 2 using
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Lemma 3.2 (Lenglart’s domination) If A and B are positive continuous
adapted processes, A is increasing and for any bounded stopping time S

EBS  CEAS ,

then for any 0  k  1

EB~  CkEA .

The proof of this lemma can be found in [RY], Proposition 4.7 in chapter IV.

In order to prove (1) for p  2 it is enough to take A = (~ . ~ X )*2, B = ~8 ~ X~.
The assumption of Lemma 3.2 is satisfied by (1) for p = 2 and the stopped
process XS. .
Combining (1) and Dp inequality we get (iii).

(iii)~ (i) We know, that there exists a constant C such that for all 03B8 ~ 0398p

Fix D > 0 and take an arbitrary . Since A is a continuous finite variation

process, there exist a predictable process f, taking values in ~1, -1}, such that

(2)
t

(Lemma 3.8 in [DMSSS]). Thus

Ilellop = .X)~R, ~ C~~03B8 . M~Rp + C~~03B8 . A~Rp _

 + + Cs

by Burkholder-Davis-Gundy inequality and (2), where C does not depend on D.
Taking the limit 6 -~ 0 we get inequality Dp. .
(iii)~ (iv) i is a continuous linear, one-to-one mapping between two Banach
spaces. By Banach’s closed graph theorem its image is closed if and only if this
mapping is an isomorphism, completing the proof of Theorem 3.1.D

4 The closedness of % in LP(P)
In this section we investigate the closedness of ~T in LP (P) for a fixed continuous
semimartingale X. Our main theorem is analogous to Theorem 4.1 of [DMSSS]
for the case p ~ 2.

Theorem 4.1 Let X denote a continuous semimartingale, let 1  p  oo and

q conjugate to p. Then the following are equivalent

(1) There is a martingale measure Q in and is closed in LP(P).
(2) There is a martingale measure Q in that satisfies the Rq(P) condi-
tion.
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(3) The q-optimal martingale measure is in and satisfies Rq(P).
(,~~ 3C such that for all B E OP we have

IIB’ IIfB’ _ 

(5) 3C such that for all B E Op and all a > 0 we have

~P~~B . X >T > ~11/P  CII(8 . 

(6) 3C > 0 such that for every stopping time S, every A E and every 0 E OP
with 0 = we have ~~lA - (8 > 

In order to prove the theorem we shall need some auxiliary results.

Lemma 4.1 The density of the q-optimal martingale measure is aligned
to (1 - f~, i.e.

Z(e) _ f)~1 - 

where y = (E(sgn(1- f )~1- > 0 holds. f is the solution of the minimum
problem

min ~~1-9~~p, ’
9EGT

p is conjugate to q, and the closure is understood here and in the sequel with
respect to the norm of LP(P).

Proof. The fact that is aligned to 1- f for some f E ~T is standard in the
theory of minimum norm problems; c.f. [Lb] Theorem 5.8.1. . What remains to
be proved is that f is the solution of ming~GpT ~1-g~p. The following inequality
holds for all g E GT

but equality holds only, if 1 - g is aligned to Z~q~. By the equality

1=~Z(e) 1-f)=’Y~~1-f~~~lf~°)
we finally get 03B3 > 0. []

The next lemma gives a special feature of the q-optimal density.

Lemma 4.2 If the q-optimal measure E exists and the cadlag
martingale L defined as

dQ(q)
Lt - 

satisfies Rq(P), then L satisfies (SJ.
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Proof. Define for each fT e C$ the Q(q)-martingale ft := (fT [ sit ). Let
( fJJl ) be a sequence in C$ converging to fT with respect to the LP (P)-norm, then
the sequence ( fT ) converges uniformly in t with respect to the norm of 
and hence in probability to ( ft ). As each ( fT) is a continuous martingale, the
Q(q)-martingale ( ft) is continuous whenever fT e C$. From Lemma 4.I we
know that Lq-1T = a(I- f) holds for some cr > 0 and an f e C$ . Wt defined by

Wt = = YYt - Q(q) T .rt- 
t

is therefore continuous. By assumption L satisfies

i   ~y

and we conclude that Lq-1t  Wt  holds. Since W is continuous, L
satisfies the condition (S). D

The proof of the next lemma can be found in [DS2] (Lemma 3.4) with the
only difference that we have to use once Hölder’s inequality instead of Cauchy-
Schwarz.

Lemma 4.3 If U = (Ut)otT is a non-negalive Lq(P)-martingale (I  q 
oo ), if Uo > 0, if ihe stopping time r = inf{t|Ut = 0) is predictable and an-
nounced by a sequence of stopping times (n)n~1, then

uq

~’(# "Tn ) ~ +°°Tn

on the -measurable set {U = 0).
Our next lemma shows roughly that we can give an upper bound for the Lq-norm
of a martingale measure for X, if we have a lower bound for the LP -distance
between I and .

Lemma 4.4 If there is a constant C > 0 such that for every slopping time S,
every A e 0s and every U e SCP

~1A - U~Lp ~CP[A]1/P,

then for each stopping lime S there is an element g e Lj (P) such that E(g[0s ) =
1, [7s)  C-q and E(gU) = 0 for each U e SCP.
Proof. From Lemma 4.I applied for the space SCP instead of we get a

= f) [ I - f|p q with f e SCP and 03B3 > 0. Since (q) , l A f) = 0,
(2~>, iA) = (2~>, iA(i - f)) = (isgn(i - f)l i - i~i - f» =

03B3 A [ I - = i A [ I - f|pdP > 03B3CpP(A)
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holds, and because A was arbitrary in we get the estimate

E((q)|Fs = 03B3E(|1- f|p|FS) ~ 03B3Cp.

Defining now g = yields. Defining now 9 - ps) s

E(~9~ q ~~s) _ _ - E(|g|q|FS) = 
q 
= =

1 1

(E(11- f|p|FS))q-1 
- cq.

By construction E(gU) = 0 holds for all U E 
The positivity of g is shown exactly as in Theorem 3.1 of if we bear

in mind Lemma 4.1, which tells us that f in the formula for is the element
of ~~, with minimal LP-distance from 1. ~

We also need the following characterization of closedness of ~T in LP(P).
Lemma 4.5 If there is an equiualent local martingale measure Q for X with
dertsity in L q (P), then GpT is closed in LP (P) if and only if there is a constant
C > 0 such that

b’8 E 0~, .

Proof. Using Doob’s Lq inequality instead of the L2-version and exploiting the
duality of Lq and LP, we can prove the lemma in the same way as Proposition
3.5 of [DMSSS]. o

Finally we need the subsequent technical lemma.

Lemma 4.6 If L is a uniformly integrable positive martingale, that satisfies the
Rq inequality, then L = E(N), where N is in bmoq.

Proof.
Since L is a positive martingale, L is locally bounded, and hence its stochastic
logarithm N = ~ .L is a well-defined local martingale. Fix s > 0 and as in

[DMSSS] define the sequence of stopping times Tn by

T o =s ~ T n -=inf { t>T_ n y L a  _ ~T.

~Ve have

1 = E( LTn LTn-1 |FTn-1) = E( LTn LTn-1I{TnT}| FTn-1) + E( LTn LTn-1I{Tn=T}|FTn-1) ~

~ 1 2P(Tn T|FTn-1) +C( 1-P(Tn T|FTn-1))1 p,
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by Holder’s and Rq inequalities. The obtained inequality implies, that there
exists a 7  1 such that P(Tn  ’Y. By induction it implies that
P(Tn  T)  7". From the conditional Burkholder-Davis-Gundy inequality
and the definition of Tn we get

E(|NTn-NTn-1|q|FTn-1)~CE(([N]Tn-[N]Tn-1)q 2|FTn-1) =

= CE([TnTn-1

1 Lt- 
dLt]q 2|FTn-1) = 

t- 
.[L])q 2|FTn-1) ~

~2qCE((1 L2Tn-1[L]Tn)q 2|FTn-1) ~ CE(LqTn LqTn-1|FTn-1) ~ C

by the Rq inequality. Finally we have

E(INT - ~ -

n

" _

~ C

  T)  .

Since 7 does not depend on s, the above inequality completes the proof of the
lemma.

Remark.

If X, Y are strongly orthogonal (i.e [X,Y] is a local martingale) then [X, Y] = 0
(indeed, [X,Y] is a continuous local martingale of finite variation).

Corollary.
If X + Y = N E bmoq where X continuous and X, Y strongly orthogonal, then
X E bmoq (so from continuity in BMO).

After these preparatory results we prove now the main result of this section
Proof of Theorem 4.1 First we prove the equivalence of (2)-(6). Obviously (3)
implies (2). By Theorem 2.16 of [DMSSS] and Lemma 4.2, (3) implies (4) and
(2) implies (5). The strong inequality (4) certainly implies the weak inequality
(5). The proof of the equivalence of (5) and (6) works with the same reflection
argument as for the case p = 2 in Theorem 2.18 of [DMSSS].

We prove now that (6) together with (5) implies (3).
By Lemma 4.1 and the proof of Lemma 4.4 (positivity of the q-optimal measure)
we have

dQ(q)(dQ(q) dP)q-1 = 03B1(1- f),
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where f E ~T, f  1 and a > 0 holds. Therefore we can find a sequence
yn ~ Gp obeying 3-n and Y; ~ f in LP(P). The weak
inequality (5) yields

V" P( sup ~Yt - > 2-n)  +00,

and we can conclude that Yt" converges uniformly in t a.s to a continuous process
denoted by f t ( f T = f ) . We define now = a( 1- It) and write
Lt for the density process of the q-optimal measure. Because

LtYt = EP(LTYT|Ft)

holds for all Y E Gp, , LT, Lt E Lq(P) and Y~, tends to f with respect to the
norm of LP (P), we infer that

Lt|t|q-1sgn(t) = EP(LT|T|q-1sgn(T)|Ft) = EP[|LT|q|Ft)

holds. Defining the stopping time r = inf{t ( LtZt = 0 }, we have

0 = T |LT|q
yielding LT = 0 on {T  T} and hence LT = 0 on {r  T}. Using the continu-

ity of Z, Lemma 4.3 and Lemma 4.4, we can finish the proof in completely the
same way as the proof of Theorem 2.18 in [DMSSS], if we replace 2 by q at the
appropriate places.
Since we have now proved the equivalence of (2)-(6), it is still to be shown that
(1) is equivalent to (2)-(6). Assuming (1) yields by the continuity of the map i
(see Definition 2.7) and Lemma 4.5 the validity of (4).
Conversely assuming (2)-(6) there is an equivalent martingale measure Q satis-
fying Rq(P). The density process of Q denoted by Lt is necessarily of the form
L = ~(-A ’ M + U), where U is a local martingale strongly orthogonal to M

(see [AS]). ). Lemma 4.6 and its corollary show that -A . M + U as well as
- x . M are in bmoq . By Theorem 3.1, our hypothesis (4) and the Lemma 4.5
we conclude that ~T is closed. D
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