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Brownian motion, excursions, and matrix factors

Paul McGill1

Laboratoire de Probabilités, Université de Lyon I, 69622 Villeurbanne, F’rance2

The Wiener-Hopf problem in analysis asks how one can factor a matrix function
on the line as ~L = 21+ * 21- where * denotes convolution and are supported on
R~ respectively. Existence is known [7], but a general algorithm seems to be out of
reach: even the 2 x 2 case [5] presents an unexpected degree of complication.
The probabilistic counterpart (in dimension one) involves characterising a Levy
process Y in the form (Y+, Y’ ) where the laws Y~ are supported on R~. . These
factors can be constructed by decomposing the sample path into its excursions from
the maximum: Y+ is then a Levy process while Y- takes its values in the space
of paths. The probabilistic factorisation implies the (unique) factorisation of the
generator ~ _ ~+ * g- - Y~ are not unique - and allows us to describe the
connection K~ -~ ~~ in more detail. It is natural therefore to ask for an extension
to higher dimensions: is there a probabilistic setting in which one can perform a
sample path factorisation of certain matrices?

The difficulty is to know where to start. This note presents an example based
on the idea in [10] and we recall the general problem: given a Markov process
Xt E £ and a fluctuating additive functional V, there is a decomposition of the state
space £ _ £+ ~ £’ determined by V increasing/decreasing on £+~£-. . This leads
to a probabilistic decomposition X - (X+, X- ) and one studies the relationship
(X, V) ~ (X +, X -); in terms of generators

(G, V) ~ ( G++ G-+ G+- G-- )
but see [10] for more explanation. The analogy here is with two-point Markov chains
and excursions with ’interaction’: g++ is the generator of X+ in the interior of £+
while ~_+ describes how X+ returns to £+ after interacting with £-. .
We treat only the simplest case where X = B a real Brownian motion; the bound-
ary set a = f+ n t- then has a local time. As a first step towards calculating g-+
we derive a (vector) convolution equation for the entrance law of (B, V) into the
right half plane. The equation formally resembles the first passage relation for a
real Levy process and is solved by Wiener-Hopf factorisation of a certain matrix 6
where, and quite remarkably, the factors can be seen from a sample path decom-
position. The proof echoes [4] - it uses excursions from maxima of V observed in
1 
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the boundary local time - but the need to simultaneously track B means that the
theory of homogeneous regenerative sets does not apply directly. Instead we employ
Maisonneuve’s theory [6] in multiple timescales, which we then patch together by
viewing the ’boundary chain at the maximum’ in its equilibrium distribution.

The matrix 6 is quite special here: it is the generator of a two-dimensional Markov

process and tri-diagonal to boot. Nevertheless, and even if the other manageable
case, that of finite Markov chains [1C], lies beyond our compass since there is nothing
to play the crucial role of the boundary a, one suspects that the method should apply
more generally.

1. . Problem

We work with real Brownian motion Bt and a fixed Vt L~ is a

bicontinuous version of the B local time and the Hahn decomposition of the Radon
measure m = m+ - m- splits R = £+ (B £- with £+ defined as the closed support
of m+. We will assume throughout that the boundary a = £+ n t- is discrete
- no limit points. Our results are not proved in full generality however; further
restrictions, pertaining mainly to the set of maxima and used to simplify an already
complicated proof, are stated at the beginning of sections 5 and 6.

To define the splitting of B induced by V we consider the increasing process ~ =
sup {Ve : : 0  s _ t} and take Tt = Tt as its right continuous inverse. Then

Xt = Brt E £+, but note that the process can jump since in general the intervals of
constancy of V strictly contain {t : Bt E £- ). A similar description of X - provides
the desired factorisation (B, V) H (X+, X-).
This external approach to defining (X+, X-) is quite useless. One should look in-
stead for an intrinsic (internal) characterisation of each factorl which would amount
to decomposing the generator g as above. As a first step in this direction we obtain
an expression containing II+(x, dy) = Px (BT E dy; T  ~] with T = To = inf{t >
0 : : Vt > 0} the equalisation time. The method is to solve a vector equation of
Wiener-Hopf type which we derive in the next section.

2. Equation for II+(x,dy)

We will derive an equation containing dy) = Px [Br E dy; T  oo]. Take T as
the B hitting time of the boundary a and let La = denote the boundary
local time. Then, for each j E 8 we derive one scalar equation; our notation is that
jr is the closest boundary point to the right of j, ji its closest point on the left.

Define functions = Ex BT = j] noting that they solve (eg.)
dux = 2zudm ; u(j, j ) = 1, u(jr,j) = 0

1 Think of B timechanged to stay above zero and its characterisation via Skorokhod’s equation.
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if x E (j,jr). So by Itô one can write the martingale in
the form "

e-03BBLste-zVtu(Bt,j) + 03BB t0 e-03BBL~se-zVsdLjs - 1 20394u(j,j) t0 e-03BBL~se-zVsdLjs
-1 20394ux(jr,j) t - 1 20394ux(jl,j) t0 e-03BBL~se-zVsdLjls

the process being uniformly bounded for z purely imaginary and A > 0. If we stop
it at first return to the boundary after time T and take the expectation then

Ex [e-03BBL~e-zVT03B8;BT o 03B8 = j - " 

- 

with j, x) = Ez fo dL~ . In vector form this reads
= Y-(z,x) - (2.1)

where K, called the symbol, is a tri-diagonal matrix indexed by a x 8 and the
superscripts f are meant to suggest analyticity properties - the function z -

is bounded and analytic on the right half plane.
The solution of 2.1 is best explained analytically so we invert the Laplace transform,
this being straightforward for all terms bar one, the symbol K(z) which we must
examine in more detail. For the diagonal terms we denote by ~t = ~(j, t) the
right continuous inverse of the local time L~, whereupon = =

with v~~ the Levy measure of the excursion functional t -r
under the law of Bt conditioned to return to j before hitting

the points jr and jt - right and left excursions are therefore calculated by using
the respective Bessel laws and This implies the existence of a
Schwartz distribution defined on test functions by = f ( f (o) - f (x)~ 
hence = For the off-diagonal terms we have a similar description:

= f (1- e-xx) where is the Levy measure of the
excursion functional jrj L(a, T)m(da) computed under the law of B exiting jr and
conditioned to re-enter 8 at jr, in other words the excursion law of from jr.
This means that we can interpret 2.1 as the Laplace transform of a vector convolution
equation

IIa (x, - E(x, dt) - C~ ~ dt) - dt) (2.2)

where 6 is a distributional matrix such that C~(e-x’).= x(z) (since each 6;; is
the sum of a finite measure and a distribution with compact support 6 * rx is
well-defined [9]). Note how the left side of 2.2 is supported on [0,oo) whereas the
terms on the right - bar the distribution 6 which is ’mixed’ - are all supported
on (-00,0]. We therefore have an equation of Wiener-Hopf type for =

[VT c dt BT = j] ~)’
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3. Solution

The method for solving 2.2 is well-known [2] and depends on factoring the distri-
butional matrix 6 = 6+ * C’ . . Probabilistic proofs of the following results are
postponed to sections 5 and 6 where the interpretation will make it plain as to why
the various convolutions can be defined.

Lemma 3.1 The distribution 6 has Wiener-Hopf factors C~~ where (6+)-1 is a
matrix-valued positive u-finite Radon measure on (0, oo) and 6- is supported on
(-00,0]. . Moreover: 

.

(1) ~ ( ~+)ii ~. °
(2) For K a fixed compact set, rx(K) = 0.
(3) limz~-~ z-1- (e-z.) = 0.

Remark,s: (1) By definition the C~~ are unique modulo a distribution supported at
the origin; 3.1 (3) restricts the choice even further.
(2) Although 6 is tri-diagonal its factors are not and this poses a difficulty when a
is infinite. Strictly speaking, one should specify the solution space for 2.2 as perhaps
an inductive limit space of vector measures on R. But this would take us too far

afield, particularly since our main concern here is with the factorisation method and
not the solution of the equation. So convergence in 3.1, and elsewhere, will always
be interpreted coordinatewise.

Recall the method for solving 2.2. Convolution on the left with (C~+)-1 gives

(C~+~ 1 * IIa = (C~+) 1 * E - C~_ * ra - a {C~+) 1 * r x
and the idea is to eliminate the middle term on the right by projection onto R+,
denoted P+. We must therefore verify that the distribution does not charge the
origin. In the case of ra this is straightforward, since by the definition of a in the
closed support of m+ we have Pa[T > 0] = 0. Moreover, since the singular support
at zero of 6" is necessarily a linear combination of a Dirac mass and its derivatives,
and since 3.1 (3) excludes the latter, the distribution C~’ *ra cannot charge zero. We
therefore have P+ [6" * = 0, and taking A 1 0 and applying 3.1 (2) we deduce

= 6+ ~ P+ (C~+)_1.* E(x, .) (dt)
Remarks: (1) If 8 is a singleton then the relation with the analytic problem is
transparent: 6+ can be interpreted as the generator of Vi observed in the local
time scale at its maximum. The complex variable approach, in the case of symmetric
stable processes, is described in Ray’s paper [8]. 

’ 

.

(2) We omit the details of how one recovers II+(x, dy) from IIo (x, dt) since this in-
volves inverting an integral transform and can lead to delicate uniqueness questions.
(3) In some simple cases 2.1 can be solved explicitly for II+{x, dy) - but appar-
ently not by using the factorisation described here. This is a mystery even for real
processes.
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4. Excursions

We prove 3.1 by decomposing the path at the maxima of Vt observed when Lr
increases, this process being finite almost surely since 8 is a discrete set. Start

by writing y~ for its right continuous inverse and define Yt = Then the
maximum Yt = sup{O  s  t : Y8 } defines a random set M = {t : : Yt = Yt or 
Yt}. We will factor our matrix by using excursions of Y from M , but since the set
is not homogeneous the method of [4] does not apply directly. Instead, we modify
their argument by using excursions from the maximum as. observed from a point on
the boundary.
To make this precise we introduce Mj = {t : B(o?) = j}. By the strong
Markov property of B this is a closed regenerative set in the sense of Maisonneuve
[6] and, being optional in the filtration, it has an adapted local time LM’
whose right continuous inverse we denote Each gap (ot_, ot ) then defines an
excursion with corresponding excursion measure denoted The basic formula of

[6] says that if A is an additive functional of Y then
t

03A3 As o 03B803C3i - t Qj [As] ds
’ ~

is a martingale 1 - here At = is the change in the value of A over the excur-
sion interval (ot_, o~ ). By stochastic integration of the above martingale against a
bounded predictable process h it follows that

03A3 hsAs o 03B803C3js- - t0hsj [As] ds
’" ~

is also a martingale. We remark for later (and frequent) use that if h is caglad then
in particular ht+ will be defined and can be substituted for ht in the integral on the
right.
The excursion measures Q~ can be decomposed still further, according to whether
the excursion from Mj straddles a point in or not. If not, then we have an
excursion interval common to .M and with excursion measure denoted Qj~.
On the other hand, excursions from ,M~ which do straddle points in M have their
excursion measure labelled Qjk where k is the first point of maximum after leaving
Mj: for an excursion governed by Q~k first re-enters M at a point of 
but it does not die there, instead continuing on until it reaches a point of Mj.

The advantage of working with and not M , is that the are homogeneous
regenerative sets [6] ; the downside is that this involves the manipulation of multiple
timescales unique only up to constants, and it would be better if, somehow, we
could patch all these together to obtain L~ = LMj. To do this canonically
let us introduce Nt = Bu8 E 8 and denote by the right-continuous inverse of
LM. The process N~~ is a Markov chain which we call ’the boundary chain at the

1 We emphasise that the original filtration has been timechanged twice - first do and then

.
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maximum’. If M is recurrent, has an invariant measure {1rj : j E a} and we
can normalise its exponential holding times by a~ _ 1rj.
Notation: When convenient, we shall simplify by writing o in place of or .

5. Existence

This is the main part of the paper. We prove existence of the factorisation under
the assumption that the boundary is discrete, Y spends zero time in M, and the
boundary chain at the maximum is recurrent. From Rogozin’s trichotomy [1] for
Levy processes, any individual is either recurrent or transient almost surely;
by the strong Markov property it follows that the Mj are either all unbounded
or all transient. We prove existence in the former case only - if the maximum is
transient, and -Y satisfies the conditions indicated, then one can use the set of
minima instead.

First we outline the method, starting with the problem of finding factors such

that KK-K+ = I where the tri-diagonal matrix K is defined by the martingale of
section two

e-zVze-03BBLtu(Bt,j) + kjj(z)t0e-03BBLse-zVsdLjs + 03BAjjr(z)t0e-03BBLse-zVsdLjrs

+03BAjjl(z) t0e-03BBLse-zVsdLjs + 03BB t0e-03BBLse-zVsdLjs
For z purely imaginary and 03BB > 0 this is uniformly bounded. Starting at B0 = i ~ ~
and applying martingale stopping as t T then, since Lr j, boundedness of u(x,j)
gives

03BAjjl(z)Ei[
~0e-03BBs-zVsdL jls] + 03BA jj(z)Ei[

~0e-03BBLs-zVsdL js]
+ 03BAjjr(z)Ei[~0e-03BBLs-zVsdLjrs] + 03BBEi[~0e-03BBLs-zVsdLjs] = 03B4ji

We do the factorisation from this. But first let us simplify our notation. Recall that
when factorising real Levy processes one does the calculations with A > 0, taking
03BB ~ 0 at the end. In our case such reasoning leads to

kjjl(z)Ei[~0e-zVsdLjls ] + 03BAjj(z)Ei [~0e-zVsdLjs ]

+03BAjjr(z)Ei[~0e-zVsdLjrs] = 03B4ji

where the expectations are interpreted as weak limits in A. So the claim is that
this doubly infinite family of equations indexed by 8 x a is precisely KK-K+ = I
and that, moreover, one can determine the entries of by decomposing the above
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integrals appropriately. This would give our desired factorisation 6 = 6+ * 6- in
the form

K-(~)=(6-)-~- ; ; K+(z~ _ (~+1-1 e-x.
using invertibility in the sense of distributions.
Of course to make this rigorous one should do the argument with A > 0. The

difficulty there is that keeping track of all the different timescales would present a
notational nightmare and consequently, since A does not figure in the final answer,
we suppress all mention of it in our calculations with the caveat that a > 0 is
essential for justifying the various manipulations.
With this in mind we set out to identify the factor matrices K=~. Recalling the
notation Y = and N = we start from our conjecture in the form

K-ikK+kj = (K-K+)ij = Ej[~0e-zVsdLis] = Ej[~0e-zYs1(Ns=i)ds] (5.1)

and the idea of calculating with excursions from M , the set of maxima of Y. Since
Y spends no time in M we see that o = the right continuous inverse of ,

is a pure jump process. The integral therefore decomposes into its excursions from
Mj

03A3 e
- zY03C3t-03C3t03C3t-

e
-zYu +zY03C3t- 1(Nu=i)du = e

-zY03C3t- [03B60 e
-zYu1(Nu=i)du] o 03B803C3t-

where 03B6j = 03B6 is the excursion lifetime. Now apply the excursion theorem to see that

~ /~ 0 8a~_ - ) /~ 0 0 0 J

is a martingale~. Taking the expectation therefore gives2

Ej [~0e-zYs1(Ns=i)ds] = Ej[~0e-zY(03C3js)ds] Qj [03B60e-zYz1(Nu=i)du]
which we propose to write as Ek 03BA-ik/03BA+kj by exploiting a suitable decomposition of
Q~ - for convenience we take x=~ _ ~~j but x j = l~r~ ~.
The diagonal entries of K+ have the most transparent definition: since is a

subordinator, with Laplace exponent (say), we can take Kt = For the
other entries, recall that in the previous section we decomposed the excursion mea-
sures as Qi = 03A3j~~ij ; the measure Qii is supported on excursions from Mi
which do not straddle any points in M and, since Yu  0 throughout, it follows that

is the Laplace transform of a measure supported on (-oo, 0~.
The temptation then is to place these terms along the diagonal of K-. But this is
wrong. We show later that Kfi is more complicated and contains additional terms

1 Thanks to our phantom A.
2 The price we pay for homogeneity is that Q~ is not necessarily supported on (-00,0].
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coming from a path decomposition of the This observation - that 5.1 entails

complicated cross-cancellations amongst the various excursion terms - prompted
us to devise a notation for keeping track of the relevant components of the path.
Our argument is best understood in the

2 x 2 case

Fix i throughout. We start by decomposing using ex-
cursions from in the timescale 0’; = These split naturally into two kinds: a
Qi excursion either straddles a point of Mj or it doesn’t. By the definition of 
the excursion theorem gives

(K-K+)ii = Qii[03B60 e-zYs 1(Ns=i)ds]/03BA+ii + Qij[03B60 e-
zYs 1(Ns=i)ds] /03BA+ii

which we want in the form 03BA-ii/03BA+ii + 03BA-ij/03BA+ji. The idea is to use path decomposition
inside e-%Yu l(Nu=k)du] by noting that an excursion from which straddles
a point in has three distinct components, each non-trivial:

a) The initial excursion until we arrive in Mj.
b) Excursions from Mj such that, even if N visits i, Y cannot achieve a maximum
there.

c) The final excursion from back to 
We write all this as Qk [a + b + c] and remark immediately that Qk [a] is the LT of
a measure supported on (-oo, 0~, the same being true for

= ~ ~/  + 

It is therefore legitimate to define the entries of K- by

K-ij = 03BA-ij = Qj~Mi ; K-ii = 03BA-ii = Qi~Mi

thereby reducing the problem to defining the off-diagonal entries of K+ in a manner
consistent with

= ~i~~l~s [b + 

We start by writing + c] in a more convenient form. First modify our notation
so that T = TM represents the first time Y enters M and recall that is the

’boundary chain at the maximum’ whose exponential holding times have parameters
~ai : i E 8}. The passages = are then Poisson processes of rate

A; so that in obvious notation = Applying the excursion
theorem from Mj (sic) now gives

[b] = ~ 
= 03BBi03BB-1jEij[e-zYT] Ejj [e-zY03C303BE ]Qjj [03B60e-zYu1(Nu=k)du]
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= is the holding time at j. The final part of the Q’~
excursion is dealt with similarly: we use the strong Markov property to expand

Qijk [c] = 03BBiEij[e-zYT] Ejj [e-zY03C303BE] Eji[T0e-zYu1(Nu=k)du]
= re-xYT Ejj [a]

The shorthandl

eij = 03BBi03BB-1jEij[e-zYT]Ejj[e-zY03C303BE] ; Eijk = Eij[ T0e-zYu1(Nu=k)du]
now lets us write ijk[b + c] = eijQj~Mk which, in light of the desired decomposition
of forces

K9 = = 

We now see that we have a proof of 5.1 and so the proof of factorisation for the 2 x 2
case is complete.
The next step is to look at the

3 x 3 case

Here the main difference is that a Q~~ excursion may visit for k ~ i, j. Taking
,,, 

our cue from the above, we define x s = = and denoting
Qijk = ij[ 03B60e-zYt1(Nt=k)dt], we propose

K-ij = 03BA-ij = Q
j~Mi = Q jji + Q jki [a] = Q jji + 03BBj 03A3pjkE jki

The problem is now to determine the off-diagonal entries in K+. For this we will
decompose Q~ [b + c] = Qk [a] by tracking the boundary chain whose
transition matrix and holding times we denote respectively by 
Also, taking i, j, j’ all distinct, we introduce the notation = 1- 

with eij defined as before. Now to calculate. By definition a Q’~ excursion first
visits and the journey gives rise to a factor ~~. The contribution
from its initial sojourn in ,M~, which lasts for time ~j, is

Q{j = 

with a factor prefixing what remains - either termination at ,M= which
gives pij03BBjeijpjiEjik, or else a passage to Mj’ which adds on

pij03BBjeij[ Pjj’E jj’k + 
pjj’Qij’k[b+c] 03BBipij’ Eij’[e-zYT]]

1 Rem: caps for negative, positive in lower case.
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The result is

Qijk [b + c] = pije ij [Qj~Mk + pjj’ e jj’ eij’ pij’ eij’ Qij’k [b +c] ]
Noting that i is fixed here, switching j ++ j’ yields a 2 x 2 system of equations of
the form 

. 

03C1j = Qj~ Mk + pjj’ejj’03C1j’

which we can solve for p~ = + to obtain

+ ~~ - ‘‘~ nj."",A,( k ’~ ;j L

The diagonal term Ei( f °° therefore decomposes like

03A3Qij [ 03B60 e-zYt 1(Nt=i)dt] /03BA+ii = Qi~Mi/03BA+ii + 03A3Qiji[b + c]/03BA+ii

= + ~~i I~ji
j~i j

which means we ought to take

K+ji = 1/03BA+ji = pijeij + pij’pj’jeij’ej’j fijk+ii (i ~ j)

This completes the proof of the 3 x 3 case.

Discrete Boundary

The boundary chain at the maximum is recurrent and so it has an invariant measure
i E 8} ; as explained in §4 we normalise the holding times by ai = The

proof here follows the plan for the 3 x 3 case: the diagonal terms of K+ are defined
as above, likewise the entries of K", and we look at the decomposition of Qf[b + c]
to help discover the rest of K+. If we define 03C1j = Qk [b + then arguing as
before gives a system of equations

pj = + ~ p~

which we write in vector form as p = Q + fl3p (i is a taboo point). The solution is
therefore p = for z > 0 the series converges since (with notation from

[3]) the entries of the sum matrix are dominated by ~~° o ~j ~k 1 = 
where i1rij is a multiple of the invariant measure. This gives us

ijk [b + c] = pijeij
[ 03A3inQ]

j
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which must square with

Ei[~0e-zYt1(Nt=i)dt] = Qi~Mi/03BA+ii + iki[b + c]/03BA+jj

= Qi~Mi/03BA+ii + 03A3pikeik [03A3inQ ]k/03BA+ii = 03A3K-ijK+ji = 03A3Qj~MiK+jik n=0 k j j

Comparing coefficients of Qj~Mi we find

K+ji = 1 03BA+ii 03A3pikeik03A3 inkj (j ~ i)

Since our decomposition satisfies 5.1, the proof of factorisation in the general discrete
case is now complete.
The proof of 3.1 (1) follows, since for z ~ 0 we have K+ji/K+ii ~ 03A3k pikpkj03BB-1k03BBji03C0ik =

~,k pikpkj  1 using the normalisation aj = ~r? and the formula = of [3]
11.24. An immediate consequence is that the are positive a-finite measures -
they are dominated by which is the LT of a a-finite Radon measure on the
line (the potential of the Levy process Y~; ). We have therefore proved the existence
part of 3.1.

Remarks: (1) If a is a singleton then the above probabilistic argument can be
deduced from [4] but note that they deal with the process killed at an independent
exponential time; this corresponds to factoring a + K, a task more difficult than
factoring the symbol K alone.
(2) We obtain an analytic interpretation for our factorisation by noting that K is
the LT of the generator of the Markov process 
(3) The set M is not homogeneous since the excursions of Y = V03C3~ are only con-
ditionally independent given the boundary process N~~ . Nevertheless, one can use
the exit system of M [6] to see (cf. after 5.1) that

£ ) ~ o 

03A3e-03BB03C3Ms--zY(03C3Ms-)03B60

e-03BBu-zYu 1(Nu=i)du o 03B803C3Ms-

- t0e-03BB03C3Ms-zY(03C3Ms)M [03B60e-03BBu-zYu1(Nu=i)du;N03C3Ms- ] ds

is a uniformly integrable martingale; then takes the form

E [~0e-03BB03C3Mt-zY(03C3Mt) QM [03B6M0e-03BBu-zYu1(Nu=i)du;N03C3Mt-]dt]

and our factorisation is obtained by conditionally decomposing the expectation ac-
cording to the values of NO’M..
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6. Estimates

We turn now to the last step in justifying the solution of 2.1, which is the proof of
3.1 (2)-(3) - we dealt with 3.1 (1) at the end of §5. Our running assumption is
that the maximum is recurrent and so has an invariant measure {~r; : i E a}.
For the proof of the last part of 3.1 (3) we will assume that 8 is finite.

In the previous section we obtained factors of the symbol matrix in the form
=1 where the off-diagonal elements of x~(z) _ (C~~) are

(C~ )i . (e ) = , (C~ ) .s (e ) _ + ~ s~kJ
it k n=o

From [9] we know that convolution is well-defined for
a) bounded measures,
b) distributions supported on the same half-line,
c) two distributions if one of them has compact support.

But to justify all the steps in the solution of 2.2 we also need the following: for

~ _ {~ci} a vector measure supported on (-oo, 0~, such that ~~  oo, the

formula ~s (C~+)~=1 * ~c= defines a Radon measure (we used ~ = E, ra). To show
this it suffices, by 3.1 (1), to prove that for any compact K containing zero

03A3(+) -1ii 
* i(K) = 03A3 0-~ i(dy)Ei[~01(Yt~K-y)dLMit]  ~

However, by the strong Markov property at first entry into K - y and translation
invariance, we can replace K - y by I~. Using  now gives the bound

~~=(R )E~ _ ~~~(R-)Eue 
i ~ i 0

with = ~~ as initial probability. The expectation is finite
since the Markov process (Y~~, is transient, and the result is proved.
The same reasoning gives a proof of 3.1 (2), where for fixed compact set K we need
limlo a * ra(h’) = 0. Taking a  1 we bound by

~ra(R )E= ~ 
i 0 i 0

with = and, since the expectation is bounded, it suffices
to show lim03BB~0 a 03A3iri03BB(R-). Recalling = we get

~a( ) ~ = AE ( /~ t = E [I - e~~~’ ]o I 
0 0

This converges to zero by dominated convergence and T  oo a.s.
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Turning now to the proof of 3.1 (3), we will write (C~-)-1 = ~ - ~ where ii =
is diagonal. The proof exploits the expansion 6" = ~-1 

we show: 
-

d) x-1D-1(e-z.) = 0 pointwise.
e) converges in the supremum norm when Rz  0.

Let us start with d) where it suffices to see that limz~-~zQiii = oo for each i E 8.
Consider the Levy process Y obtained by deleting from Y = Vae all excursions from

which enter By a duality argument (meaning here decomposition at
the minimum) appears as the Laplace exponent of the positive factor Y+, and
the result follows. 

’

For the proof of e) it suffices to see that the entries of ~-1 ~ are uniformly strictly
less than one. But these have the form Q~ ~’M ~Q~’~~ where the only contribution
comes when N visits ~; we write T; for the time of first passage. By the strong
Markov property Qj~Mi decomposes as

j~Mi 
[

e-zYTiEi
[

~0e-zu1(u=i,u~-YTi)du] ;Ti  03B6

]

with (Y, N) ~ (, ) independent. Evaluating the expectation by using the excur-
sion theorem for semi-regenerative sets (cf. remark at the end of §5) we have

E i 0 e-x~(°u) ] 
which gives the ratio Qj~Mi/Qi~Mi in the form

Qj~Mi[ e
-zYTi Ei [~0e-z(03C3iu)1((03C3iu)~YTi )du] ;Ti  03B6]

As z this converges to zero and so we obtain a proof of 3.1(3) when 8 is finite.
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