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ON THE UPCROSSING CHAINS OF

STOPPED BROWNIAN MOTION

FRANK B. KNIGHT

INTRODUCTION

We follow the notations of [6], although that paper is not required for the
present work. ~(~) denotes B(t AT(-l)) where B(t) is a Brownian motion on
R, B(0) = 0, and TT(-l) = B(t) = -1} (we assume the paths of Bare
unbounded above and below, so that T’(2014l)  (0).
We set an = 2’", and define a random walk Rn by An(0) = 0, =

B’(Tk) where To = 0 and inductively = inf{t > Tk : B’(t) - B’(Tk) =
= = -1.

Our main objects of concern are the upcrossing chains Nn(k) = #{j  Mn :
= + 1)~) == (~ + 1)~},-2~  Jk, where Mn = 
= -1}. Clearly, Nn(k) = 0 for k  -2", or for k > := 

0 ~ Nn(j) = 0}~ and it is known [4] that, for each ~ ~ 0, Nn(k) is a Markov
chain in k with negative binomial one-step transition function

p(i,j) = 
(i+j-1 j)03B1i+j+1; k~0;i,j~0
(i+j j)03B1i+j+1;-2n ~ k  0; i, j ~ 0.

Thus, in the parameter range k > 0 we have a Galton-Watson branching chain
with geometric offspring (p = ~) while for -2~  ~  0 there is a superimposed
geometric immigration (p = ~). Only the parameter range depends on n (since
our definition of Nn does not include the scaling used for Rn). These Markov
chains are both elementary and much-studied, and they are not the subject
here. What is not as well understood, and will be our principle concern, is the
dependence of ~(.) on ~(> 0). It turns out that Nn is also a Markov chain
with parameter n. Its "upward" (n ~) and "downward" (n t) one-step transition
functions will be investigated (Section 2), and it turns out that they are "almost"
homogeneous in n.

The original motivation for this work was a question of J. Pitman and M. Yor
(unpublished) which we understand as follows. Let L(.c), -1 ~ z, denote the
(continuous) local time of ~ : L(a-) := The problem
is to construct the law of B’(.) conditional on o’(L(’)). Now our approach is to
introduce Nn into the problem, so that it has two stages: first, one constructs
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the law of {Nn(~), 0  n} given L(~); second, one constructs the law of B’(.)
given {Nn(.), 0 ~ n}. Since we have L(x) = lim 2anNn [2nx] uniformly x, P-
a.s. (see [1], [4]), it is not necessary to include L(.) explicitly in the given data
for the second stage. This convergence was recently studied in [6], where other
references are given. There, we obtained the law of L( ~ ) given Nn ( ~ ) for fixed
n. The principle obstacle in stage one is to reverse this to find the law of Nn
given L(~). We emphasize that a simple Bayes rule application does not succeed
in the function space setting. Nor does it seem possible to find the higher order
transition functions of Nn ( ~ ) and pass to a limit as n -~ oo. A very plausible
conjecture, for example, is that cr(L(’)) = lim n > N) up to P-nullsets,

N--~ oo 
-

but we could not prove it.

Nevertheless, we are able by means of a comparison theorem (Theorem 2.5
below) to get solid information about the law of Nn ( ~ ) given L(.). This has

emboldened us to write down, in the following Sections 2 and 3, what we have
found along these lines, in the hope that it may be useful for some more skillful
subsequent treatment elsewhere. Indeed, the subject seems to us attractive, both
because of its relevance to Brownian motion and because of its combinatorial
overtones.

Before entering into the dependence of Nn on n, however, we give in Section
1 a construction of the law of B’ (.) given Nn for a single n. This is easy and no
doubt known, but it gives the first step in the solution of stage 2 of the Pitman-
Yor problem, and we imagine it may take the place of Section 4 for all but the
more diligent readers. Thus the outline of the paper is as follows. In Section
1 we construct the law of B’ given Nn, n fixed. In Section 2 we discuss the

dependence of Nn on n, and study the explicit transition functions. In Section
3 we obtain estimates for the law of Nn given L, and carry out stage 1 of the
Pitman-Yor problem as far as we are able. Then, in Section 4, we carry out

stage 2 of the Pitman-Yor problem, which does not depend on stage 1.
After completion of this paper, we received a first draft of a paper [9] by J.

Warren and M. Yor which gives a "solution" to the problem when B’ is replaced
by a reflected Brownian motion. This paper has virtually nothing in common
with ours, which we regard as a paper on the random walk approximation as
much as on the Pitman-Yor problem per se. Nevertheless, the solution of [9] is
remarkable, both as to completeness and conciseness. From the standpoint of
the present paper, its main implication is that it suffices only to treat the case
L(~) = 1- the general case follows from this by changes of scale and time. It

remains to be seen whether the conditional law of Nn (k) given L - 1 can be

given explicitly.

Section 1. Construction of the law of B’ given .

For the rest of this section, n(> 0) is fixed. For i > -2n, a "random walk

path" starting at i is a sequence (io, il, ... , iMn) where 0  Mn  ~, io =

i, iMn = -2n  ik and ik+1= ik db 1 for 0  k  Mn. We define as the

number of upcrossings k t (k + 1), as a function of paths starting at i, -2n  k,
where N"(-2n) = 0 (thus Nn, == Nn in an obvious sense). For -2n  k, let
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0  j  denote the number of’ upcrossings (k + 1) fi (k + 2)
occurring after the jth upcrossing k t k + 1 but before the ( j + 1)-st, where if
j = 0 the first requirement is absent, and if j = Nn ( k ) the second requirement
is absent (for example, if j = 0 = then Xk (o) = 0 unless k  i - l, but if
k  t 2014 1 then Xk (0) is the total number of upcrossings k t k + 1).
Lemma 1.1. The function Xk(j) determines the path starting at i uniquely.
Indeed, there is an algorithm for its determination.

Remark We assume that at least one path for Xk ( j) exists.

Proof. The algorithm is as follows. If > 0, the first step is to i + 1,
and the X-function for the subsequent path (starting at i + 1) is obtained from
Xk ( j ) as follows:

(a) (~) = (~) -1
(b) 
(c) = Xk(j) for all other (k, j).

On the other hand, = 0, the first step is to i 2014 1, and the X-function
of the subsequent path is obtained simply by changing superscript i to x 2014 1 (if
i = -2n + 1, we leave X’-1 undefined).

It is an elementary task to see that the first step is the only possibility consis-
tent with the given Xk ( j), and that the modified X-function is actually the X-
function uniquely determined by the subsequent path. This being true, our proof
of uniqueness is by induction on the total number of steps Mn . . If Mn = 2n + i,
then there is only one possible path, namely all steps are down, and X) (0) = 0,
k  i. Clearly this is the path determined by repetition of the algorithm. So
we make the induction assumption that, for a certain k > 1 and all i > -2n,
the uniqueness has been proved for Mn  2n + i + k. Then if Mn = 2" + i + k
for a certain path, either > 0, the first step is up and Mn is reduced
by 1, so that the induction assumption applies to the subsequent path (which
is thus uniquely determined) or = 0, the first step is down and Mn is
reduced by 1, so that the equality is maintained for the subsequent path starting
at t 2014 1. Since this step is uniquely determined, we can repeat the procedure
on the subsequent path, leading eventually to a path for which the first step
is up (since there were more than 2n + i steps). At that point the induction
assumption applies to the subsequent path, and the whole path is thus uniquely
determined.
We now determine the law of Rn given In view of Lemma 1.1, it is

enough to determine the joint law of the random vectors (Xk ( j), 0  j 
-2n  k; where we omit the superscript 0 in Xk ( j). We observe that
= Nn(k + 1 ) . It turns out that this is the only restriction imposed on

an X-function Xk ( j) when Nn is given. Following the terminology of W. Feller
[2] we introduce

Definition 1.2. Non-negative, integer-valued random variables X1, ... , Xri are
said to be determined by Bose-Einstein sampling of size (n, N) 0, if all
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distinct (xl, ..., xn) with 03A3n1xj = N are equally likely. Then P{ (Xl, ..., Xn) =
(x1, T (N+n _ 1l_ 1 .
Now we have

Lemma 1.3. Given Nn, the (Xk(j), 0  j  Nn(k)) are independent over
k > -2n. . For -2n  k  0 they have the law of Bose-Einstein sampling of size

(Nn(k) + 1, Nn(k ~-1)), whereas, for 0  k, Xk(0) = 0 and (Xk(j), 1  j 
Nn(k)) is either vacuous (i f Nn (k) = 0) or Bose-Einstein of size (Nn (k) , Nn (k+
1)) (if Nn(k) > ~).

Proof. For fixed k  0, it follows from the transition function of Nn in case
i = 0, namely p(0, j) = that Xk(o) is geometric with p = 2 (apply the
Markov property of Rn at its passage time to (k + I)an). Similarly, by the
Markov property of Rn at its subsequent returns to (k + I)an from kan, given
that they occur, each Xk ( j), j  Nn (k), is geometric (p = 2 ) and they are
independent conditionally on Nn (k). Thus, given Nn (k), P{ n Xk (j) =

OjNn(k)

x j } = and when Nn (k + 1 ) = 03A3jxj is also given, the Xk ( j ), , 0 
j  Nn (k), are Bose-Einstein of size (l1n (k) + 1, Nn (k + 1)), as asserted. For

fixed k > 0 an analogous reasoning applies to (Xk (j) , 1  j  Nn (k)) based on
the passage times of Rn to (k + from 

It remains to see that the vectors (Xk ( j), 0  j  Nn(k)) are mutually
independent given Nn (~), and that ea.ch is conditionally dependent only on

(Nn(k), Nn(k + 1)). This follows by Proposition 1.1, p. 92, of J. B. Walsh

[8]. In brief, for each k we introduce the upcrossing field generated
during the successive upcrossings kan t (k + . We also introduce down-

crossing field Vk+i,k generated during the downcrossings of (k + kan, say
Z1 (t), ... , ZN (t), where N = Nn (k) + 1 for k  0, N = Nn (k) for k > 0. Then

Uk,k+i, > Vk+l,k, and is condi-

tionally independent of Vk+l,k given Nn (k). Hence Nn (k + 1) is independent of
k} given and we have therefore obtained, as above, the

conditional law of (Xk (j) , 0  j  Nn(k)) given  k + 1~ (note that
for 0, ({Nn(k) = z} o  ~  i}) C ({Nn(k) = z} 
so that when Nn(k) is given, 0  j  Nn(k)) is independent of

 k}). On the other hand, > k + 1} C 
and given Nn (k + 1), Vk+2,k+1 is independent which contains not

only + 1} but also , 0  j  Nn (k)) (as a picture will
show). Thus the law of (Xk (j), , 0  j  Nn (k)) given , Nn+1 (k)} is

not only the same as k + 1 } but also the same as given
-2n  j}, as asserted.

Corollary 1.4. Given Nn, every family xk ( j ) with 0  xk ( j ), xk (0) = 0 for
k > 0, and ~ xk ( j ) = Nn(k+l), -2n  k, corresponds to a unique random
~ 

,

walk path starting at 0, and all such families are equally likely.

Proof. Obvious. ,
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Remark. It is also easy to see that any sequence 0  Nn(k), -2n  k, with
Nn(k) = 0 for all k > Ii(n) := inf~ j > 0 : Nn ( j) = 0~  oo, has positive
probability for Nn . Indeed, the probability follows by iteration of the transition
function p(i, j ) . The total probability of all such sequences is one. The number
of such paths is included below in Theorem 4.5.

To complete the construction of B’ conditional on Nn it now remains only
to fill in B’ given Rn (the conditional law of Rn given Nn being identified by
Lemmas 1.1 and 1.3, where u(Nn) C C u(B’)). For this we need one
more lemma, which appears as Lemma 1.1 of [6] and will be used repeatedly in
the sequel. For the reader’s convenience we repeat it here with a different (and
simpler) proof.
Lemma 1.5. For 0  k  Mn, set

Yk(t) = sgnk (B((Tk +t) A B(Tk))~ ~  t, ,

where sgnk is the choice of sign in the definition of Tk+1. . Then conditional on

u(Rn) (which includes , ~a, ..., are independent and identically
distributed with the law of a BESan (t A T(2an)) - an.

Terminology. We call Yk (t) an "n-insert" , , k  Mn and the result "(con-
ditional) independence of n- inserts" .

Proof. Instead of stopping at Mn, , we continue the sequence Tk by using B(t)
instead of B’(t), and in this way define for all k so that it becomes
an unstopped symmetric random walk. Then we obtain a sequence of processes
Yk of which the first Mn are those of the lemma. The strong Markov property
of B at Tk, > together with the symmetry B ~2014~ 2014~, shows that for each k,
given  k}, Yk is conditionally independent of YQ, ..., Yk-1 and
has the same law as Yo. It is plain that the law of Yo is that of B starting at 0,
stopped at an, and conditioned to reach an before -an. Then it is a familiar
fact that this is the asserted law of a BES3 starting at an and translated by
- an (indeed, this is the law of the h-path transform of B killed at with

h(x) = x+an, which has the BES3 generator by a simple calculation). Now the
same law holds if Rn((k + is also given (considering the two possibilities
separately), and then the strong Markov property at shows that we may
as well be given for all j. . Finally, since T (-1 ) (= TMn ) is a stopping
time, the same reasoning shows that ~Rn ( ( j + 1  j ~ is independent
of ~(B’(t), 0  t), so it suffices to be given only {Rn((k A 1  k~,
proving the Lemma. 

~ ~

We summarize these findings as

Theorem 1.6. To construct the law of B’ given Nn since Mn = (2n+2EkNn(k)) E
we may begin with a random sequence Yo, ... of independent

n-inserts, with absorption times ~o, ... , , respectively. Then we deter-
mine Rn from Nn by Bose-Einstein sampling (Lemma 1.3), and, setting Tk =
~o ~ ~ .. + ~k-i(0  k), we define B’((Tk +t) n Tk+1) _ + 
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0  t, 0  k, where sgnk = + 1)an) - This defines
B’(t) , Tk  t  Tk+1, for all k, as required.

Section 2. The Nn-chain, with n as parameter.
The random walks Rn are nested, in such a way that C 

but that is not true for Nn : is not comparable to although, of
We do have a Markov property, as consequence of

Theorem 2.1. Given Nn, for n fixed, conditionally independent of
(Nn+k , 1  k~. In particular, since C Nn is a Markov
chain in n.

Proof. Intuitively, the assertion is reasonably obvious from independence of in-
serts (Lemma 1.5). Indeed, to go from N" to Rn involves only an ordering of
the n-inserts at each level, while to go to Nn+k involves only interpolation of
(n + k)-inserts into the n-inserts without changing level and counting those at
each sub-level, a result which is not affected by the reordering. As to a proof,
it is enough to show conditional independence, for all n > 0, of Rn and Nn+i
given Nn, because then, for every k, Nn, ... , Nn+k} is conditionally inde-
pendent of given U(Nn+k). Then if the law of Nn+i,..., Nn+k given
u(Rn) depends only on (by induction assumption), the same is true for
Nn+1, ..., To write this out, let fj, 1  j  k + l, be bounded Borel
functions. Then we have

E(fj(Nn+j)|Rn)

= E[E(fk+1(Nn+k+1)|Rn,Nn+1,...,Nn+k)03A0fj(Nn+j)|Rn]

= E[E(fk+1(Nn+k+1)|Nn+k)03A0
fj(Nn+j)|Rn]

= E[E(fk+1(Nn+k+1)|Nn+k)03A0fj(Nn+j)|Nn]

E Q(Nn).

The argument is completed by appeal to the monotone class theorem applied to
the linear algebra generated by such products, and then by letting k -~ oo.

Now for n > 0, we observe that if Nn is given, so are the numbers of down-
crossings at each level ( k + 1 ) ~, k (namely, Nn (k) for k > 0, and N n ( k) + 1
for -2n  k  0). The law of Nn+i given may be constructed by inde-
pendently interpolating Rn+i into each of the independent n-inserts, and then
adding the upcrossings over those n-inserts which can contribute to a given level
for Nn+i (for example, the level 2k is only contributed to from upcrossings
k t k + 1 and downcrossings k ~ k - 1 of All that matters is the number



349

of summands of each type, which in turn depends only on when Rn is
given. This suffices for the proof (the enumeration procedure will be explained
in full detail below when we obtain the transition mechanism).
We take the point of view that a "step" Nn -~ is "down" (toward L(.)),

and discuss first the downward transition mechanism. There are two approaches,
leading to different (but of course equivalent) descriptions, and (since we cannot
iterate either one to obtain explicitly the Nn -~ Nn+k transition function) we
shall present them both quite briefly.

The first approach is based on symmetry. Let Y(t) be an n-insert (Lemma
1.5), and let us interpolate a random walk of step size an+i into Y, just as we did
Rn+i into B’. Clearly the total number of steps 0 -~ has the same law
as if we were interpolating into B‘ (t A T(l)) (since the condition = an

is analogous to -an). Thus the law is that of 1 + geo( 2 ), where
for brevity we shall write geo(p) for (a) random variable X with P{X = k? =

0  k with an analogous interpretation for bin (n , p) and neg. bin.(n, p).
Moreover, given this variable the number of passages 0 -~ an+1 has the
law of 1 + 2 }, namely 1 plus a binomial variable with p = 2 , which
determines the number of passages 0 -3 as Again,
this is obvious enough when we interpolate into B’ (t A T*(l)) instead of into Y,
and condition on B’ (T ( 1 ) } = an. . In more detail, we can use the strong Markov
property of B’ (t ~ T ( 1 ) ) to write for k > 0

pO{B’ reaches - an+1 before 03B1n+1|k returns to 0, then to an )
= before then k returns to 0, then to an}
= 2+(k+112-2Po~(k -1} returns to 0, then to an}
_ 

1
" 

2 
°

Thus, conditional on k > 0 returns to 0, the first step of Rn+1 interpolated into
the n-insert Y goes to each with probability p = 2. Then, given this
return to 0, by the strong Markov property given k - 1 > 0, the second exit is
to with p = 2 , independently of the first, and so forth to the kth exit from
0, giving the law 
We observe that the same law applies to an interpolation into -Y since

(geo 2 ) - d except that the extra 1 adds to # (0 -~
- an+1). Secondly, the set of all n-inserts which are in a position to contribute
interpolated steps from jan 2014~ jan ~ for given j are precisely those with
R (Tk ) = ja" . By independence of inserts it follows that we have
Theorem 2.2. For j > 0 (resp. -2n  j  0~ the law of Nn+1 (2 j - 1) +
Nn+1 (2j) conditional on Nn is that of (Nn ( j -1) + Nn ( j) + neg. bin.(Nn(j -
1) + N" ( j), 2 )} (resp. replace Nn(j - 1) by Nn(j - 1) + 1), and conditional on
this neg. bin.(= k, say)

(2.1) (Nn+n(2j -1)~ 
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= 1) + k - 

(where the two variables ore identical). Given Nn, these conditional
pairs of random variables ore mutually independent in j, and thus determine the
conditional law given ~Vn’

Proof. For j > 0, we have only to sum the interpolated steps over all contributing
inserts and appeal to their mutual independence. The sum of independent geo(~)
terms gives the neg. + ~n(~), ~) terms, j > 0, and the sum over
the conditionally independent bin(geo(~), ~) terms then gives the bin(~, ~). For
~  0 there are 1 + Nn(j - 1) steps ( j and the result is the joint
law of (1 + 1), But, for given k(= neg. bin.(l + Nn(j-
1) + Nn(j), 1 2)) the two ones drop out, and no change in (2.1) is needed.
Remark. The transition mechanism described by Theorem 2.2 does not

depend on n except for the fact that the state of Nn is a sequence (Nn(k); "2" 
k). This dependence cannot be avoided by defining N n (k) = 0 for k  20142" since
then 0 is preserved only for k  20142~~, which depends on n.

Another way to present the result of Theorem 2.2 is to exhibit given
Nn as a (conditional) Markov chain in k. Clearly there is only a 2-step depen-
dence on Nn, and it is equivalent to use either increasing or decreasing k. In

terms of increasing k, the result is

Theorem 2.3. For k > 0, given Nn, we have 1) ~ Nn(k - 1) +
+ Nn(k), §)~ and given both Nn and 1), we have

~+i(2~) ~ Nn(k) 1) + Nn(k), ~). . For k  0, analogous
facts hold after replacing Nn(k - 1) by 1 + Nn(k - 1) and 1) by
1+~(2~-1). .

Proof. It is possible to prove this by deriving the corresponding result for an
n-insert, and then adding over contributing inserts as we did for Theorem 2.2,
but it is somewhat long. For brevity, we derive the result directly from Theorem
2.2. For j > 0, we had 1) ~ Nn(j - 1) + where k 4.

~), while 0 this last becomes k = neg.bin.(l+
~(~ - 1) + ~(~), ~). Writing "bin" for bin( k, ~) with the random k, we have
for j > 0 P{bin = z} =

(k i)(Nn(j - 1) + Nn(j) + k - 1)2-(2k+Nn(j-1)+Nn(j))

= 2-(2i) i!(Nn(j - 1)+Nn(j)-1)![03A3(Nn(j-1)+Nn(j)+i+l-1 l)
4-~(~)~0’-i)+~0’)+’1 . (~)(~0’-i)+~~))(i)’(ec.)

= 1) + = .},
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as asserted for the marginal distribution, where for j ~ 0 we replace 1)
by (1 2014 1)) throughout. [Of course, the marginal law of Nn+1(2j) follows
by replacing 1) by using (2.1)].

Clearly ~+i(~) is a conditional Markov chain given A~. It remains to derive
the asserted transition function for A~i(2~) given 2014 1) and A~. But
with t and k as before, for j > 0 we have

= + ; - 1))

= P (neg. bin. 1) + ,~) = ~j bin (neg. bin.(ec.) = z)
= P(bin == if neg. bin. = k). P(neg. bin. = = z)

= (k i)2-k(Nn(j-1)+Nn(j)+k-1 k)2-(Nn(j-1)+Nn(j)+k)" ’ 

= 
(~0’ - ~ + + ~ - 1)!

’4’ ’4’ 1) + + z - 1)!(~ - ~’)!

= ~(J-l)+~(j)+~-l~
= P{neg. bin. ~(2~ - 1) + ~) = ~ - ~’},

as required for the second assertion. For A- ~ 0, as before, we need to add 1 to
2014 1) and Nn(2A- - 1) in the argument of the neg. bin.

In view of Theorems 2.2 and 2.3, let us note that while the downward mech-
anism is perhaps more tractable than we had a right to expect, it does not seem
tractable enough to iterate explicitly to 2 or more steps. As indicated in the
Introduction, what we really need is information about iteration to k steps as A
becomes large, and this seems to be out of reach for the downward transitions.
It turns out, thanks to some fortuitous comparisons, that it is not entirely out
of reach for the "upward" transitions Nn ~ Nn-1. Accordingly, we turn our
attention now to these.

Since c-(~ ..., C the conditional law of given 7V~ is im-
plicit in the construction of Rn from Nn in Section 1. Indeed, referring to Lemma
1.1, given 7V~ we see that equals the number 1  J ~ 
which are non-zero. We note that, even for k  0, we do not count since
it only gives the steps of A~ from (2~ --1) to 2(~ + 1) before reaching 2~, which
do not yield steps of from k to k + 1. On the other hand, for 1 ~ j, even if

> 1 there is at most one step of from ~ to A’ -- 1 starting with the
jth of Nn+1 from 2A’ to 2A-+1 and before the (j+1)st (void if j = Nn(2k)). Now
according to Lemma 1.3, for k > 0 when Nn is given, {X2k(j), 1 ~ j ~ Nn(2k)}
are determined by Bose-Einstein statistics of size (7V~(2~), + 1)), and for
~  0, {~2~), 0  ~  are determined by Bose-Einstein statistics of
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size (1 + Nn(2k), Nn(2k + 1)). Thus, for t ~ 0, the number of X2k(j) > 0 is
equal to the number of non-empty boxes in Bose-Einstein statistics with Nn(2k)
boxes and Nn (2k +1) balls. This is a familiar combinatorial problem, and the
answer is easily derivable from Exercise 17ofW. Feller [2,11.11] (see below). On
the other hand, for k  0 we need the law of the number of non-empty boxes

excluding the first 6o.r, in Bose-Einstein statistics with 1 + Nn(2k) boxes and
Nn (2k + 1) balls. This is a mixture of the former. The probability of t balls in
box 1 is

(Nn(2k)+(Nn(2k+l)-i)-1 Nn(2k+1)-i) (Nn(2k)+Nn(2k+1) Nn(2k+1) , 0~i~Nn(2k + 1),
and given ! the problem reduces to the former with Nn(2k + 1) replaced by
Nn(2k + 1) - t. Thus we can prove
Theorem 2.4. For n > 0, given the variables -2"~  k, are
conditionally independent. Moreover

. ~n(:’’)B/~n(M-H)-lB .

(a) Fort ~ 0, P = = }~)~(~)-,{; 1  J  ~ 

Nn(2k + 1), (= 1 if j = Nn(2Jk) A Nn(2k + 1) = 0 or 1). .
~ ~ ~

(b) For -2"-~  t  0, = ’,~,~(,~,)~- 0  j ~ 
. 

~(2t)A~(2t+l) (=1 !/~’=~(2t)A~(2~+l)=0).

Proof. We first show (a) => (b). Indeed, by the remarks before the theorem

(b) is a mixture of (a) in which cancels out leaving (for
t0)

= (Nn (2k)) (03A3 (Nn(2k + 1) - I - 1) )
(Nn(2k)+Nn(2k+1) Nn(2k+1)-1° 

~ ~n(2t+l) ~ .

and the sum reduces to by identity (12.8a) of [2, II. 12, p. 64]. Now to
prove (a), we write for Bose-Einstein statistics with Nn(2k) boxes and 
balls 

’

P {exactly j boxes are not empty} 
.

= P {exactly Nn(2k) - j boxes remain empty)

= given boxes are empty, the other j nonempty)

_ /~n(2t)B (Nn(2k + 1) - 1) (Nn(2k) + Nn(2k + 1) - 1B ’~’~ j A J’-l A ~(2~+1) ’
as required, where we used [2, U, (5.2), p. 38] at the last step.
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Remark. As with the downward transitions, the upward transition mech-
anism is practically free of n, but this time there is no exception. We need
only extend it to -~  k  oo by the convention P = 0|Nn) = 1 if

Nn (2k) n Nn(2k + 1) = 0, and also define PtNn (k) = 0, k  -2n } = 1. This
preserves the necessary zeros of Nn_ 1 (k) for
k  -2n-l and for k > -2n’1 we note that neither (a) nor (b) depends on n
explicitly.

In view of Theorem 2.4 (a), we are led to study the (hypergeometric) transition
kernels

P{ Y = k|X1 = j1, X2 = j2} = (j1 k)(j1 + j2 -1 j2),(2.2) 1~k~j1~j2,
for 1  ji A j2, while P{Y = = jl, X2 = j2} = 1 if 0 = jl A j2. It
turns out that when L is given the joint law of Xl and X2, when Xi = Nn (2k)
and X2 = Nn (2k + 1), is that of (conditionally) independent random variables.
Consequently, we only examine the case when Xi and X2 are independent. In

fact, we shall mainly be interested in the additional assumption that X1 and
X2 also are identically distributed. Then we can prescribe a distribution F =
FX, = FX2 for Xi and X2 , and study the iteration of the transition mechanism
with Fy = FYl = FY2 in place of F (Yi and Y2 being taken independent) and so
on to the higher iterates (this applies also for k  0, where there is an analogous
iteration which one derives from Theorem 2.4 (b)). To be sure, Nn(2k) and
Nn(2k + 1) are not identically distributed given L except in special cases, but
we aim for a comparison theorem with the identically distributed case. Anyway,
this extra assumption is not needed for the basic comparison (Theorem 2.5). We
introduce the familiar ordering of distribution functions:

Notation 2.5. For integer-valued random variables 0 and X2 > 0, we
write Xi « X2 if, for all k > 0, > 

Now we will derive

(Comparison) Theorem 2.5. If FY1 is determined from (independent) X1,1
and Xi,2 by (2.2), and similarly from (independent) X2,1 1 and X2,2, then if
Xl,l « X2,1 and X1,2 « X2,2, it follows that Yi « Y2. 
Note. The probability space and joint distribution of is irrelevant and

unspecified.

Proof. The proof is rather long, but simple in outline. Viewing (2.2) as a trans-
formation of pairs of point-probability distributions (~jl , ~jz ) -~ Fy, we first ob-
serve that it suffices that this be monotone increasing in both variables ( jl , j2)
in the sense of the order of Notation 2.5. Indeed, the relation Xi « X2 means
that FX, may be obtained from FXz by transfer of probability mass from larger
to smaller values. In brief, we can first obtain FX1 (0) by successive transfer
from {k > 0 : : + 1) - > Fxl(k + 1) - to 0, adding
the surplus mass to starting with the smallest possible k. Then with

= having been obtained for the resultant distribution Fx2, we
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proceed analogously to obtain by transfers from {k > 1}; and
so forth to FXl (k + 1) - (k) for all k > 0. Obviously such transfers of mass
reduce the distribution FX2 in the sense of Notation 2.5 without destroying the
relation Xi « X2 for the new distributions Fx 2. . To see that such an operation
also reduces Fy (whether performed for FX1,1 « or for FX2,1 « 
it obviously suffices to show that (2.2) is monotone increasing in each variable
when Y = k is replaced by Y > k. Evidently (see Theorem 2.4 (a)) there is no
difficulty if ji A j2 = 0 or if ji A j2 == 1. To examine the other cases, it is useful
intuitively to regard (2.2) as a special case of the hypergeometric distribution, in
which Y is the number of objects of "type one" chosen at random from ji + j2 -1
objects in j2 choices when there are initially ji of type 1 and j2 - 1 of type 2
(to see this, note that (k_i) _ ~~z_k); this interpretation also makes clear why

We now examine the dependence on the variable j2 (with ji fixed) by looking
at the difference of (2.2) at j2 and at j2 + 1, for 1  k  ji n j~. We obtain by
routine cancellations

(j1 k) (j2-1 k-1)/(j1+j2-1 j2) -(j1 k) (j2 k-1) /(j1+j2 j2+1)

:= D1(j1,j2, k) = C1(j1,j2,k)(j1j2 - (j1 + j2)k + j1),

where Cl ( jl, j2, k) is a non-negative common factor whose complicated exact ex-
pression need not concern us further. The lesson derived from this is that it suf-
fices, in order to prove monotonicity in j~, to observe that k) >
0. Indeed, since the sums ~k-1 are manifestly unimodal in j (i.e.,
increasing to a positive maximum and decreasing thereafter), we need only show
that the last is non-negative, which follows since for j = jl A j2 the sum of the
first terms is 1 and that of the second is  1.

A similar argument applies to the dependence on jl. We obtain, for 1  k 
j1 ^ j2 ,

(j1 k)(j2-1 k-1) /(j1+j2-1 j2 ) -

(j1+ 1 k) (j2- 1 k-1) / (j1+j2 j2)
~= = (jl + j2)k)

where C2 is non-negative. Again the partial sums in k are unimodal, and to
show that they are all non-negative it suffices to observe that the sum from 1 to
ji A j2 is obviously non-negative.

Corollary 2.5. The comparison of Theorem 2.5 remains valid if, in place of
(2.2), we replace Nn(2k) by Xl and Nn(2k + 1) by X2 in the conditional distri-
bution of Theorem 2.4 (b).

Proof. As observed before Theorem 2.4, part (b) is a mixture, over i, of part (a)
with Nn (2k + 1 ) replaced by Nn (2k + 1 ) - i, where i is the number of balls in box
1 for Bose-Einstein statistics of size (1 + Nn(2k), Nn(2k + 1)). We need only
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realize that if the distribution of Nn (2k) is increased in the sense of Notation 2.5,
that of i is decreased, hence that of N" (2k + 1) -i is again increased. Obviously it
also increases along with the distribution of Nn (2k + 1 ), so our assertion follows
from that of Theorem 2.5.

Theorem 2.5 of course carries over to iterations of the transition mechanism

(2.2): in particular if and X1,2 (resp. and X2,2) are i.i.d. with «

X2,1, then Yi « Y2 generate i.i.d. pairs to which the same operation applies,
preserving the order.
A key to applying this is to identify distributions for which the operation

and its iterates can be more or less explicitly calculated to serve as a basis
for comparisons. If we take the obvious Fx it turns out that Fy is too

complicated to iterate again (even once?). However, as sometimes happens in
such situations, the Poisson distributions provide a better candidate for iteration. .

Lemma 2.6. If Xl and X2 in (2.2) are i.i.d. with the Poisson distribution,
parameter a > 0, then

P{Y = k } = e-03BB(2 - e-03BB); k = 02e-03BB03BB2k/(2k)!; k ~ 1.

In particular, if X 1 and X2 are i, i, d. with law

0; k = 0
P{X1 = k} = { e-03BB 1-e-03BB 03BBk /k!; k > 1, then

P Y k = L (cosha -1) -1 a 2k /(2k)!; 1  k.

In other words, given X1 > 0 and X2 > 0, 2Y has a cosh(03BB)-distribution condi-
tioned to be non-zero.

Proof. The second assertion follows from the first by observing that the condition
X 1 > 0 and X 2 > 0 is equivalent to Y > 0. As to the first, we need only calculate
for k > 0

P{Y = k} - e-203BB03BBi+j i!j!(i k)(j-1 k-1)/(i+j-1 j)

= e-203BB 03BBn (n-1)! (i- 1 k-1)(n-i-1 k-1)
=e-203BBk-103BB2k 03BBn-2k (n-1)! 

(2k + (n - 2k) - 1 n-1k)
= e-203BBk-103BB2k (2k-1)! e03BB = 2e-03BB03BB2k/(2k)!.
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We now turn to a. comparison of the law of 2Y from Lemma 2.6 with a Poisson
law. Let us set

Notation 2.7. For any integer-valued random variable X > 0, let OX
denote (any) random variable with the law derived from (2.2) when Xi and X2
are independent with the law of X. Further, let Px denote any random variable
with the Poisson law, parameter A > 0.

Noting that from Lemma. 2.6 we have

r 
0j 1  k odd

P{2(97~ = ~} = ~ e‘~’(2 - e‘~‘); k = 0, we prove2e-03BB03BBk k! ; 0  k even

Theorem 2.8. For a > 6, set c = (.1-1)‘1. . Then for n > 1, (2)nP03BB « 
where

~n = ~ (1 + ~(1 + 
Remark. This result can probably be improved, however it represents a

compromise. Due to the nonlinearity of (2.2) it does not seem possible to extract
the factors 2 from Theorem 2.8 to get an estimate of Consequently,
Theorem 2.8 is not used in the sequel, and an uninterested reader can skip to
Theorem 2.9.

Proof. We first note that X where P{X = 0} = e‘~’ - e‘~~’, , P~X =

I} = e‘~’, and for 1  k, P~X = 2k} = P{X = 2k + 1} = e‘~’ ~~k 3k ,. We wish
k

to minimize  such that X We set Tk = P{X = k} -  k! , so we

want 0 for 0  k. To > 0 means e-03BB - e-203BB - e-  ~ 0, and T1 ~ 0
means e-03BB - e-  > 0. Now if Tl > 0 holds, then To > - 2e-2  - e- ,

so it suffices that ~ - N’e‘~‘ > 1. Here the left side is increasing for N, > 1,
and exceeds 1 for Jl = À(1 + ~n i ). Indeed, logarithmic differentiation shows this
last is increasing for A > 1 with limit 2 at A = 1, and indeed 2 - 4e‘2 > 1.

Hence to ensure that To > 0 it suffices to require Tl > 0. We need to show

that this will also imply that ~~=o Tj > 0 for every n. Trea.ting the even and
odd terms separately, we first show that both ~~=1 T~j and ~~=q are

unimodal, in the sense that the signs sgnT2j are decreasing in j (once -l, then
remaining -1), and likewise sgnT2j+l. . Indeed, for T~~ > 0 it is equivalent
that > e‘u 2k (2k)!), or -03BB + and for

1  A   this holds if and only if 2k  (  - 03BB)(ln  03BB)-1, 1  k. Similarly,
for 0  k T2k+1 > 0 is equivalent to (e-03BBÀ ) > ln e- 2k+1 (2k+1)! ) , which

reduces to -A + (2k)fna > -  + (2k + fn(2k + 1). Replacing 2k + 1 by
x, we find

d dx 
[(  - 03BB) - x(ln  - ln03BB) - ln03BB + lnx] = -ln( /03BB) + 

1 x
,

decreasing in x, so the inequality holds only in an initial interval. Setting 0 =

(~. - A) - .~zn) - fnA + we get a. unique root of x = ((N, - A) +
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~n a ) (~n a )-1. Now = from the Theorem at n = I, then at x = a

the right side becomes + 1 03BB-1ln03BB) which exceeds a. Thus the root
x exceeds A, and since inf > 0 we see that it exceeds .1) (~n ~ )-1 as well.
On the other hand, at x = p = A + the right side is (p - a) (~n ~ )’ 1 + 1,
which equals ( a a 1 ~n~) /~n ( 1 + an ~ i ) + 1. Setting = f, this is + 1 

( 1 a ,~ ) + 1 = A fl + y~) + 1. Now for i  2 this is at most a ( 1 + 3 ) + 1,
and 1 this is less than p. A check shows that for A > 6 the condition on

e is met, so that the root x is less than /~. Since the range of the right side in
A  x  ~c is 1, we see that the root exceeds (~c - a)(~na )-1 by less than 1.
Now we have shown that the first 2k > 0 for which T2k  0 is the first even

integer exceeding (~a - a)(~n ~ )-1, while the first 2k + 1 for which T2k+1  0

exceeds this by less than 1. Thus, whether the first integer exceeding -

03BB)(ln  03BB)-1 is even or odd, if 2ko is the first even integer exceeding it, then

T2ko+1  0. In all cases, the index of the first even negative term differs from
the index of the first odd negative term by 1. This implies, since To > 0 and
Ti > 0, and Tj = 0, that 0 for all n, which will complete the
proof for n = 1.

It remains to examine the requirement Ti > 0, i.e. e-~’ - > 0, and
to iterate it over n. With A fixed we estimate the root of -A = by
using Newton’s method starting with ~o = A > 1. Then = A + 

over-estimates the root, since /~) = 1 ~’‘ is decreasing, so Theorem 2.8
is proved for n = 1. For n = 2 we replace A by ~cl and repeat the procedure to
get, setting c = (A -1 ) -1,

= À(1 + c lnÀ)(1 + + )
 À(1 + + + = a(1 + + c + 

using the estimate  x for x > 0. In the same way, we get for induction
step

+ c =

n-l n-1

= A ]~[ (1 + c(l + + + ~ + c(l + 
0 0

n-1 n-1

 A ~[ (1 + c(1 + + c ~na + c‘ ~(1 + 
0 0

n

= AJY(1 + c(1 + as required.
o

While we do not have a reasonable bound on the law of even 

we do obtain good upper bounds on the first two moments EnX and 
for general X. These will lead in Section 3 to bounds on the two moments of the
law of (Nn ~ L). With more work, the following for n > 1 may also be sharpened
to some extent, but it seems quite satisfactory as stated.
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Theorem 2.9. For any random variable X > 0 (integer-valued), we have
(a) E(OX)  )(EX + I);  2-nEX + 1 for I  n.
(b) 0  2E(OX) - E(O(2X))  ), and
(c ) E(OX)2  1 4EX2 + ) (EX + I ) ; X ) 2  4- n EX2 + 5 . 2- 1 (n+2) EX +
[ ; I  n .
Proof ’

(a) As noted in the proof of Theorem 2.5, given Xi = I > I and X2 = j >
I , OX has a hypergeometric distribution with mean j( §) . Thus if X has
distribution p; = P(X = I) , 0  I, we have

£ i 

~ 1 4 pipj ( (I i + + j j) 2 ) ( I + j - I + j ) I’ ,J _ It} t}

i + j - 1 ~
~ ~ ~ ~~~ ~ ~ ~ ~ ~’~~ ~ ~ ~ i + j - 1 ~
 1 2EX + ( + ( £ £ pipj/i + I - i

I , j > I

 § (EX + I ) >
proving the first assertion. Now by iteration, setting eo = EX,
en+1 = 1 2(en + I ) , we obtain easily en = + ( ) + ( + ... + 2-n)  2-ne0 + 1 ,
as required.

(b) Evidently we can assume again, without loss of generality, that I  X,
so that, given (I, j) , OX has a hypergeometric distribution with mean ij i+j-1.
Then we need only note for I  I A j

~ ~ ~~~~~~ ~ ~ ~~ 2(~~i~ 1
= 2ij ( $ - 1 i+j-1 2)
= 

ij1 (i+j-1)(i+j-1 2)
_ 

i j
-

(i + j)2 - § (i j/) + )
 (i+j)2 4((i+j)2 - 3 2(i+j)) + 1 2)

2
~ 
3
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(the last expression is monotone decreasing in > 1 by routine differentiation,
so obviously stronger inequalities hold for ! +j > depending on but 1 4 is
a tower bound obtained by letting t + ~ 2014~ oo).

(c) As to the square, it is well-known that the variance of a hypergeometric
distribution is less than that of the corresponding binomial where, in
our case (given Xi = z, ~2 == ~), we have n = ~, p == ,.’_i. . Thus 

~’) I .~’)  j~r (l - 7~1)’ ° Thus l .,j)  I

i,j))2 + E(OX ! t,j) - (ji2 (i+j-1)2, and taking expectations gives

~~, E~) .~E~. (~r) ,~~
~)~E~,,,~,.,,.

where we used the observation that d dx (xy x+y) = y2 (x+y)2 > 0 for 0  .c,!/. Now

(U)’ (2ij)2

~~~(,+,_!)(,+,) =4~~~(,+, _!)(,+,)
~EE~~~(~)
~~EE~~
~ 1 4EX2 + 1 8(EX + 1),

where we used the inequality from the proof of (a) at the last step. Combining
with EOX now gives the first assertion of (c).

As to the second, we will prove by induction that E((9"X)~  4""E~
2n+3 n

+5( ~ 2"~) EX + ~ E 4’~. For 7~ = 1 it follows by the first assertion, so
~=n+2 ~=1

we assume it for ~. Then

E(Cr+~)~  ~E(~X)~ + ~E((~X + 1)
~ 4-(n+1)EX2 + [5 4( 2-k) + 5 82-n] EX

+ 5 84-k + 5 8
= 4- (n+1)EX2 + 5 4( 2-k) EX + 5 2( 4-k),
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and the proof is completed by summing the series.

Remark. For brevity, and because it is not needed for Theorem 3.6 below,
we do not attempt any analog of Theorem 2.9 using the operation of Theorem
2.4 (b) in place of (2.2).

Section 3. The law of (Nn ~ L), n fixed.
We start by admitting that we do not have any closed expression for the above

law. One approach would be to examine lim (Nn ] Nm) in law; however, as
stated in the Introduction, we could not prove that = lim k > m),

m-~oo .

and besides, an explicit expression for the (m-n)th iterate of the transition mech-
anism is lacking. The approach via Bayes Formula also seems doomed to failure,
although the ingredients are known from [6]. A more rewarding method is to
find, first of all, the law of Nn given { L ( k an ) , -2n  k } . This is done explicitly
below. Then we can use the fact that (Nn L) = lim (Nn ~ L(kam), -2m  k)
(in law) together with the results of Section 2, to obtain information about

(Nn ~ L). .

Theorem 3.1. Choose 0  xk; -2n  k  K, and set 0 = xk for k > K, for
some 03BA ~ 0. Then for -2n  j  K

(3.1) P(Nn(j) = nj | L(k03B1n) = xk, -2n  k) =

(xjxj+1 403B12n)nj (nj!)-2I-10 (xjxj+1 03B12n) ; j  0. 0 ~ nj

(xjxj+1 403B12n)nj-1 2 (nj!(nj - 1)!)-1I-11 (xjxj+1 03B12n) ; j ~ 0, 0  nj

where I4 and Ii are the modified Bessel functions (so that either sum over nj
equals 1~.
Remark 1. the conditional probability is 1 for nj = 0. The exact

meaning of the conditioning is that, for K := inf{k > 0 : L((k+ l)an) = 0} (note
that {Nn(k) = 0} - {Nn(j) = 0 for j > k} = {L((k + l)an) = 0}) the expres-
sion gives a regular conditional distribution of Nn(j) given -2n  k}.
Moreover, as seen easily from the proof below, the variables Nn ( j ) are condition-
ally independent given -2"  k}, hence by multiplication this also
gives the regular conditional joint distributions.

Remark 2. Following J. Pitman and M. Yor [7] we call the first case the

(discrete) Bessel I0-distribution with parameter z = and the second

case the I1-distribution with the same =. This appearance of these Bessel dis-
tributions has a long history, the case of fi going back at least to F. Knight
[5, p. 180] and the case of Io to Pitman and Yor [loc sit., p. 449] where the
other Bessel distributions are also discussed. But the present derivation, which
includes also the joint distributions, seems to be new.
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Proof. By Lemma 1 .5, if Nn ( . ) is given, L(kan ) equals a sum over inserts which
"start" at k03B1n (I.e. start at some Tj with B(7§) = kan), and these are all
independent. On the other hand, a well-known fact about the local time of
B at 0 and time T(±03B1n) is that it has the exponential law with A = 03B1-1n (it
suffices to check the case n = 0 and apply Brownian scaling). This is clearly the
same for the local time at 0 of an n-interest. Thus we see that, given Nn ( .) , the
L(k03B1n) are mutually independent with marginal law having the gamma densities
F(Nn (k - I) + Nn(k); a#~) for k > 0 and F(Nn (k - I) + Nn(k) + I; a# ~ ) for
- 2n  k  0 (note that for k  0 there is a first trip from k03B1n to (k - 1)03B1n not
counted in Nn(k - I)) .
We now work out the joint distribution

(3.2) P(Nn(k) = nk, I  k  K [ Nn(0) = n0, L(k03B1n) = xk, I  k

for nk > 0, 0  k  K fixed. Applying Bayes’ rule, this is proportional (for
n0 fixed, n03BA = 0) to P(L(k03B1n) = xk, I  k  K [ Nn(k) = nk, 0  k 
K) . P(Nn(k) = nk, I  k  K ] Nn(0) = n0, K) with a factor of proportionality
such that the sum over nk > 0, 1  k  K, equals I , and by the Markov property
of Nn(k) this would not be changed if {Nn(k), k  0) were given instead of only
Nn(0). Referring to the transition function of Nn(k) from the Introduction, and
setting n03BA = 0, the last product equals

xnk-1+nk-1e-03B1-1nxk 03B1nk-1+nk-1n0393(nk-1+nk) (nk-1 + nk - 1 nk)
03B1nk-1+nk

(3.3) 
= (xk 203B1n)nk-1+nk-1 ((nk-1 - 1)!nk!)-1e-03B1-1nxk

- ( x1 203B1n" fi xkxk +1
( ( j ) j j ) 

- I - a -1n xk).= (x1 203B1n) (n0 - i)1 I xkxk+1 403B12n2nk-1 ((nk - 1)!nk!)-1e -03B1-1nxk) .

Thus, in SO far as the dependence on (n1, ..., n03BA-1) is concerned, we recognize
for each k the (nk - 1)th term in the series expansion of I1 (Q) . Hence
by normalization the whole expression (3.2) must reduce to

03A003BA-1k=1@ ((nk - l) Ink !)-1

03A003BA-1k=1 I1 ( xkxk+1 03B12n)
.

We note the curious fact that there is no dependence on the given no. Moreover,
Since Nn(k) " nk > 0 implies k  K, We Can fix I and sum Over all 03BA and

nk : Ii  k  K to obtain, for I  nk , I  k  Ii ,

P(Nn(k) = nk , I  k  Ii [ Nn (0) , L(kan ) = zk , i  k  Ii + 1 )

(3.4) # [(nk - 1)!nk !I1 (xkxk+1 03B12n)]-1,
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where K } is also given since xK+1 > 0.
With this as model, let us now work out

(3.5) P(Nn (k) = nk , -2n  k  ~ ~ L(kan) = xk, -2n  k  K)
where nk > 0 for k  0; nk > 0 for 0  k  K, and xk > 0 for 2n  k  K (and
we set = 0 = n_2n, = 0 = n~). Applying Bayes’ Rule we get a result
proportional to (as the r~k vary with K fixed) the product of (3.4) with

P(L(kan) = xk, , -2n  k  0 = nk ~ , -2n  k  0)

= xnk-1+nk-1e-03B1-1nxk 03B1nk-1+nkn F(nk- I + nk ) (nk-1 + nk nk)03B1nk-1+nk-1
_ ( xk 203B1n nk-i+nk )-1 e-03B1-1n z

_ 11 - 
1 

xkxk+1 403B12n2nk (nk! )-2 .

. . 

Combining the first factor on the right with the factor from the right

side of (3.3) we recognize the general term in the expansion of Ii x0x1 03B12n), for
n0 > 0, while the terms of the subsequent product are those of I0 )xkxk+1 03B12n) ,

where we permit nk = 0. On the other hand, if n0 = 0 then K = 0 and (3.3) is
vacuous. In that case we have only the terms from I0 (xkxk+1 03B12n) ; -2n  k 

0. This completes the proof of Theorem 3.1. . Moreover, since our conditional
probability given {L(kan) = xk, -2n  k} factors into a product of terms in
nj, we see that the events { Nn ( j ) = are all conditionally independent given
{L(kan); -2n  k}. Indeed, since the conditional law of Nn (k) depends only
on L(kan) and L((k + 1)an), we can state

Corollary 3.1. For -2n  ki  ~ ~ ~  km, 1  j  m} are condi-
tionally independent given {L(kjan), L(kj + 1)an; 1  j  m} and have the
marginal distributions of Theorem ~. ~.

Remark 1. The distribution of K is not contained in Theorem 3.1. However,
it is easy to find:

P{~  h} = P{maxB’(t)  (h + 1)an}
_ (Ii + 1)an (1 + (~~ + 1) on) - 1 , 0  Ii.

Remark 2. The independence assertion of Corollary 3.1 can be seen as a
consequence of the conditional independence, given {L(kja’n), , L((kj + 1)on)},
of the processes in (kjan, + obtained by excising the excursions of B’
outside the interval (not proved here).

For application of Theorem 2.9 to these distributions, we need to work out the
first two moments of the second marginal in (3.1) (namely, of the Ii-distribution).
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Lemma 3.2. Let X have the I1-distribution with parameter 03B2 := (xjxj+1 403B12n).
Then

EX = ~Io(2~)/Ii(2~), and

,Q>0.

Remark. we pass over the case when X has an Io-distribution.

Proof. We have .

oo

EX = ~ ~3n- 2 ((n -1)!)’2(Ii(2~))-i
n=1

00

= V ~’ ~ ~n (n!) 2(li (2 V r)) i
n=0

=’VNIo(21/N)I~i(2~)~ and

EX2 = [03B2n-1 2((n -1)!(n - 2)!)-1 + 03B2I0(203B2)] (I1(203B2)-1
= 03B2 + (203B2))-1, as required

To apply the Comparison Theorem 2.5, we need 
’

Lemma 3.3. Both the Ii distribution and the Io distribution are increasing
functions of the parameter 13 := x4-~ , , in the sense of Notation ~.5.
Proof. For the I1-distribution, we must show that (I1 (203B2))-103A3~k+1 03B2n- 1 2 (n!(n-
1)!)-1 is increasing in 03B2 > 0 for k > 1. Denoting the sum by :=

- A(Q), and diflerentiating the whole expression with respect to ~3,
we have da A B+ ~ = (A(~i)B’(~3) - B(,0)A’(~)) j(A + which has the
same sign as

B’IB - A‘/A =

- i 
- 

2l~’n 
- 1)!) _ ~i (n - 

1l!)
> ( 2 ( 2 )) ~ > 0,

as required. The proof for the Io distribution is precisely the same.

We may now state .

Theorem 3.5. There exists a choice of conditional law L(Nn(.), 0  
with the following properties:

(a) Apart from a P-null set in 03C3(L), (Nn(.) | L) is an chain in n
with the same transition mechanism as (in other words, £(. ~ ~ L)
is, P-a.s., an entrance law for Nn).
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(b) (Local Independence ). Apart from a P-null set, for every -1  xl  x2,
and V(k, n) with (kan, (k + l)an) C (zi x2), Nn(k) under ,C is jointly
independent of all Nm( j) with ( jam ( j + 1)am) outside x2~, , and its
conditional law depends only on {L(x); x1 ~ x  x2}. In words: the

Nn (k) which count upcrossings of disjoint intervals are mutually inde-
pendent given L, and their laws depends only on L inside the intervals
counted.

(c) (Local monotonicity). Apart from ws, i = 1 or 2, in a P-null set, for
every -1  x1  x2, L(x, w1)  L(x, w2) for x1 ~ x  x2 implies that

L(.,u;i)) « L(.,~2)) for V(k, n) with kan and

(k + 1)an  .C2~ where (Nn(k) ~ L(., w)) is any choice of Nn(.) having
the conditional law ,C at w.

Proof. Since L(x) is a known diffusion process (we may assume continuous
paths and generated filtrations continuous in x, so that "fringe effects" do
not play a role: o(L(y), y  x) = n o(L(y), y  x + E)) we have o(L) =~ 

oo

~~ o(L(kan), -2n  k), the right term being monotone in n. For each n,
let ,Cn (w) be a regular conditional probability for (N n, , Nn_ 1, ... , No) given
(L(kan), -2n  k). Since o(L) C , 0  m), it follows easily by Theo-
rem 2.1 that, with probability one, £,n(w) makes (Nn Nn_ 1, ... , No) a Markov
chain with the same transition mechanism as (Nn, P) (Theorem 2.4) and initial
distribution of Nn that of Corollary 3.1. . Indeed, we may and do take this as
definition of 

Now we define the limit in distribution

(3.6) L(Nn(.), , 0  n L(w)) - 

if, for every finite subset (Nn1 (k1), ..., Nnj(kj)), the joint law for LN con-
verges (hence the limit is uniquely extendible to a probability on a product
of discrete spaces by Kolmogorov’s Extention Theorem), and L(Nn (~), , 0  n [
L(w)) = ONn(.~~,~) elsewhere, where w’ E n is fixed but arbitrary. By a sim-
ple consideration of martingale convergence the first case has probability 1 in

o(L(x), -1  x), and defines a regular conditional probability of o(Nn, 0  n)
given o(L(x), -1  x). To see that (a) is true, we need only observe that the
transition mechanism is obviously continuous under convergence in law of the
marginal distributions. As N --~ oo with n fixed, the Markov chain law ,CN ap-
plied to (Nn, Nn_1, ..., No) yields a Markov chain limit law when we condition
on ; n  k  N) (which converges to k)). Since n is arbitrary,
(a) follows.

Turning to (b), we have first to observe that it suffices to prove that, for every
n, -2n  k} are mutually independent for ,C (with probability 1) and
that their conditional laws (as w varies) depend only on L inside the intervals
covered (we refer to (kan (k + 1)an) as the interval "covered by" Nn(k)). In-

deed, any finite collections ~Nn~,; (k~ ), 1  j  1  i  I , such that the
covered intervals are disjoint over i has a. law built up by applying the transition
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mechanism to disjoint subsets of -2n  k} where n = maxn~~;. Given
s,~ 

’

that these disjoint subsets are mutually independent for £, it follows that so
are the as a varies. This will prove the independence assertion, and
the dependence assertion also follows (indeed, it is clear by independence that,
if the law of each Nn(k) depends only on L in the covered interval, then any
finite subset covering a subset of (xl, x2~ has joint law depending only on L in

Now to prove the conditional independence of the Nn (k) for fixed n we start
with for which the independence is part of Corollary 3.1. More generally, for
M > n, since ~C~ makes {NM(k), -2+M  k} independent, and given these the
,CM-law of {N" (k), -2"  k } is built up by applying the transition mechanism
M - N times to the disjoint subsets of {NM (k)} which cover subintervals of
the intervals covered by {l~ n (k) }, we see that ,CM makes these last independent.
Similarly, since the of NM (k) depends only on L at the endpoints of the
covered interval (by Corollary 3.1 again), the of Nn (k) depends only on
L at the NM ( j)-endpoints contained in the interval covered by Nn (k), hence on L
in the covered interval. Then as M --~ oo, the of the {Nn (k), -2n  k}
converges to the ~C-law (with probability 1) preserving both the independence
and the individual limits of dependence on L to the covered intervals. This
finishes (b).

As to (c), it follows by Lemma 3.3 that if L(x, wi)  L(x, w2), zi ~ z  :C2,
and if Nn (k) covers a subinterval of (x1, x2), then the Ln-laws of Nn (k) (given by
Corollary 3.1) are ordered in the same direction (in the sense of «). Therefore
since by Theorem 2.5 and Corollary 2.5 the transition mechanism preserves this
ordering, and the .eM-law of Nn (k) is developed from that of -2M  j}
by applying the transition mechanism to those NM ( j ) covering subintervals of
(xl, x2), the ordering is also preserved by M > n. Letting M -3 00,
and noting again that the order « is conserved under convergence in law, we
see that (apart from Wi or W2 in the set where (3.6) fails) the ordering is also
preserved by ~C. This finishes (c).
We come now to our upper bounds for the first two moments of Nn (k) under

,C from Theorem 3.5..

Theorem 3.6. Apart from the P-null set where (3.6~ of Theorem 3.5 (Proof)
fails, for all n > 0 and -2"  k, if L* := max L(x), then under ,C we" 

have

(a) E(Nn(k) I L)  + 1, and
(b) L) ~ 4n 1(L*)2 + 5 ’ 2" 3L* -~ 6.

Proof. We may and do define both conditional expectations using ~C. Now for
M > n, since L( jaM)  L* for kan  ja~  (k + 1)am, by Lemma. 3.3
the two conditional expectations computed under ,CM instead of ,C (see proof of
Theorem 3.5) will not be decreased if we replace L by L* in the interval. Suppose,
first, that 0  k. Then the L( jaM ) under LM have the I1-distributions with
parameter ,Q = If we replace L by L* becomes and
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the distribution is increased in the sense of the order «. By Lemma 3.2, the

corresponding moments become respectively aM )/h ( aM ), and this plus
(L*)2 403B12M. Now applying (a) and (c) of Theorem 2.9, respectively, to the (M - m)th
iterate of the transition mechanism d (which preserves «) it follows that under
~M ~ ,

E(Nn(k) _ 2+n _ iL*Io L* lh L* + 1 and

 4+n _ 1(L*)2 +4 _ (M _ n) L* _ Io L*
+ 5.2-(M-n)-2L* 203B1MI0 I1(L* 03B1M) + 5 6
= 4+n-1(L*)2 + [2-M-1(4n) + 5.2n-3]L*I0 I1(L* 03B1M) + 5 6

Then as M --~ oo, except on the P-null set we have ~C~~ -~ ,C, and convergence
in law implies that the moments for ~C are bounded by the liminf of those for ,C~~
(approximate x or x2 from below by bounded continuous functions). Meanwhile,
we have lim Io(x)/h (x) )
= 1 [10, p. 343]. Combining these observations gives the asserted bounds when
0  k. 

’

It remains to discuss the case -2n  k  0. This reduces to the former

case. We have only to decompose L(x) = Li(.c) + L2(x), kan  x, where

Li(.c) := L(x,T(kan)) is the local time before reaching kan, and L2(x) is the
local time in T(kan)  t  T(-1). By the strong Markov property, L1 and L2
are independent processes (we need not use their characterization as diffusions)
and L(kan ) = L2 (kan ) . we claim that the case k  0 reduces to k > 0 with L2
in place of L. Indeed, just as we can treat k > 0 in terms of the process after
reaching kan (which does not change L in (kan, (k+ 1)an)), we can do the same
for k  0, but then we have to reduce L by L1. . The salient facts here are

(a) the process before reaching kan has no effect on Nn (k) (apart from the
case T(kan) = o~ when 0  k) and

(b) B’(T(kan)+t)-B’(T(kon)) looks like B’ with T(-1) replaced by T(-1+
kan), and this reduces to B’ by Brownian scaling. Using these facts, for
k  0 the inequalities of Theorem 3.6 are seen to hold with L2 in place
of L. But then they also hold given L~), and with L* in place of

max L2 (x) (since L1 is independent of Nn (k), and L* is larger

than max L2 ) . Since L* depends only on L, we may as well only assume
L, and the case k  0 follows as stated.

Remark 1. In order to accurately evaluate the sharpness of these inequali-
ties, one could develop reverse inequalities in Theorem 2.9 (a), (c), but it looks
complicated. Meanwhile, at least for n reasonably large (where the proof of
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these inequalities is tightest) there is reason to believe that they are quite sharp.
Indeed, as n becomes large, 2anNn(k) -~ L and L* - L, in such a way that
after multiplying (a) by 2an and replacing E(Nn (k) ~ L) by Nn (k), it converges
to the tautology L  L and similarly for (b), using -~ L2. Moreover,
without multiplying by 2an, if we replace L* by L on the right and take ex-
pectations, using the identities ENn (k) = 2n, = 22n+1 + k2n+1 + 2n,
and EL(x) = 2, = 8(z + 1) for 0  z = kan (by standard calcula-
tions), then for 0  z = kan (a) becomes 2n  2n + 1, while (b) becomes
22"+1 + k2n+1 + 2n  22n+1 + k2n+1 + 5 ~ 2n’2 + 6 . This verifies that (a) and (b)
hold "on the average", and at the same time shows that they are quite sharp on
the average, particularly if n and k are large with x = kan fixed.

Remark 2. It may be of interest to calculate the law of OX explicitly when
X has the I1-distribution (for OX see Notation 2.8 - when X = P03BB this was
done in Lemma 2.6). The result, after simplification, is

P{OX = k} = (~ ’ (k!(k -1)!)-lhk_1(2 2~)IIi (2~)~
Thus modified Bessel functions of all odd orders appear, and it looks to us

hopeless to simplify the law of much less that of for general n.

Remark 3. In terms of I L), the unverified conjecture of the Intro-
duction that cr(L(-)) = lim N) is equivalent to asserting that, for
every m, lim _ L), P-a.s., where the convergence is to be
in law. It seems that a proof would require additional results along the general
lines of Theorem 3.6.

4. Construction of the law of B’ given (Nn; ; 0  n).
Here we assume that (Nn(.), 0  n) has one of the entrance laws £(N (

L) with properties (a)-(c) of Theorem 3.5 and also (a)-(b) of Theorem 3.6
(i.e. we exclude the P-nullset where (3.6) fails), and we seek to define the law
of B’ consistent with this £(N ~ L), to obtain ,C(B’ ~ L). Let us then also

impose one further condition, namely that lim 2anNn[2nx] = L(x) uniformly
in x, Since this holds P-a.s., it also holds for P-almost
all w G H, so the condition holds except on a P-nullset. Then if we define the
law ,C(B’ ~ ~V.) for P-almost all laws ,C(N ~ L), we can write

(4.1) ,C(B’ L) = = E(~(B’ I 

where E is to be calculated using ( L). This gives the solution to our
problem.

In fact, we define ~C(B’ ( N,) for all paths of N, having the consistency prop-
erties that for all 0  n,

(a) Nn (k) > 0 for 0  k  Ii (n) := 0 : : Nn ( j) = 0},
(b) Nn+I(2k) A Nn+1 (2k -f -,1 ) > Nn (k ) for - 2n  k.
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This conditional law is entirely free of the given L. We do this by defining
£(Rn, 0  n [ N.), which solves our problem since P{ lim Rn(t) = B’(t) uni-

formly in 0  t  T( -1) |N(.)} = 1, P-a.s. The first step is to define L(R0 | N)
which, in accordance with Theorem 2.1 at n = 0 is simply £(Ro [ No) . But this
has already been done in Section 1 (taking again n = 0). For induction, suppose
we have defined TV.) (since we have Rn) = this gives
£(Rk, 0  k  n ~ N,), and by Theorem 2.1 it depends only on (No,..., Nn)).
The induction step reduces to defining the law ] Rn, Nn+1 ) (since
u(No, ...., Nn) C Once this conditional law is defined for general (and
hence by induction for every) n our problem is reduced to a last appeal to
the Kohmogorov-Bochner extension theorem for the consistent families of laws
~(Rn t N, ) . Here the canonical space of each Rn is countable, and there is

no serious problem in topologizing the projective limit space so as to apply the
extension theorem. This was done in [3] for the unconditional case, and deserves
no further mention here. So it remains only to define and

here we may take n = 1 for convenience.

The picture to keep in mind is the reduction of B’ to its 1-inserts (Lemma
1.5), which are independent when Ri is given. The effect of being given also
N2 is to enumerate how many 2-inserts there are with given starting values ka2
and given sign ~1 (i.e. up or down). The problem is simply to interpolate into
the 1-inserts (whose starting and ending values are dictated by Ri) the internal
R2-steps, subject to the total multiplicities N2.

To derive the law of this interpolation (which in non-explicit terms is just the
law that all possible R2-paths are equally likely) we need to examine the law of
the (n + I)-upcrossings embedded into an n-insert. This is the same for every
n, so taking n = 1, we introduce
Notation 4.1. Let V denote the number of upcrossings of (-a2, 0) of a 1-insert,
and let U + 1 be the number of upcrossings of (0, a~) for the same 1-insert.

Lemma 4.2. The pair (V, U) has a symmetric joint distribution. In terms of
the notations geo(p) and neg. bin.(n, p) of Section 2, the marginal law of V and
U is and given {V = k}, the conditional law of U is neg. bin.(k + 1, ~), ,
as is that of V given {U = k}.

Proof. This is mostly a consequence of Theorem 2.3 when k = 0, n = 1, and

Ni(0) = 0, N1(-I) = 0. This gives N2(-1) d neg. bin.(1, 3 ) = geo( 3 ), and,
given N2(-1), NZ(0) ~ neg. bin.(1 + N2(-1), ~). Since in this case N2(-1) and
N2(0) are entirely contained in a single insert starting at 0 and ending at -1,
we have the identification (V, U) d (N2 (0), N2(-1)), where we noted that since
this insert has sign -1 the roles of V and U are interchanged. It remains only
to note that the sign of the first 1-insert described by B’ is determined at the
last exit of B’ from 0 before reaching {~1}, independently of the crossings from
0 to {~ 2 } before that time. If we discount the single crossing to {f ~ } after this
last exit (as we did in defining U), the remaining crossings are determined by
symmetric Beromoulli trials, hence the law of (V, U) is also symmetric (from an
analytic viewpoint, this was already treated before Theorem 2.2).
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Remark. It follows easily, although not needed below, that P{V = i, U =

j’}=5(T)~~j. .
We return to our problem of the interpolation of the 2- inserts into the 1-

inserts when (Rl, N2) is given. Actually we need only determine the joint law of
the total numbers of 2-inserts of sign +1 in each 1-insert. Indeed, for a 1-insert
of sign +1 starting at k/2 there are no 2-inserts k21 ~, the number of

2-inserts 2~ ~. 2 is 1 less than the number 2 t the number 2 ~, 2 41
equals the number 2 4 1 t j and there are none 2 41 ~, Similar reasoning
applies to a 1-insert of sign -1. Now if Ri is given but not N2, the numbers of
2-inserts of sign +1 at each level in each 1-insert are determined independently
(by independence of 1-inserts; Lemma 1.5) with the law of (V, U) from Lemma
4.2 (if the 1-insert has sign +1, we must add 1 to U). When N2 is also given,
for each k we are given the total number of 2-inserts from 2 - 4 t , , and the
total number from 2 ~ k 2 + 4 . Now 2-inserts 2 - 4 ~ k 2 can only occur during
1-inserts 2 t k~, or during 1-inserts 2 ~, except that exactly one occurs
during each 1-insert k-1 2 ~ k 2, and the same holds for 2-inserts 2 ~ k 2 + l without
exception. Conversely, these two types of 1-insert have all their embedded 2-
inserts of sign 1 partitioned among these two types, except for one extra 2-insert
from 2 + ~ t k-~ in each 1-insert ~ ~ ~~. It follows that the conditional law
of the numbers of embedded 2-inserts of sign 1 in the 1-inserts, given (Rl, N2),
is determined independently for each k, by the conditional law of the embedded
2-inserts of sign 1 in the one inserts starting at ~. . This is slightly different for
k > 0 and for -2  k  0. We introduce a notation for the random frequencies
whose conditional law is to be determined. Let 1+U; (k), 1  i  Nl (k), denote
the numbers of upcrossings k 2 t 2 + 4 in the successive 1-inserts of sign 1 starting
at k 2 (the order being that determined by R1), and let 1  i  N1(k),
denote the analogous numbers of upcrossings k 2 - 1 4 t k 2. Similarly, for k > 0,
let 1  i  Nn(k -1), denote the numbers of upcrossings of k 2 ~ k 2 + 1 4
in the successive 1-inserts of sign -1 starting at k 2 (and for -2  k  0, the
same notation with 1  i  Nn (k -1) + 1), and similarly let denote the
numbers of upcrossings k 2 - 1 4 ~ k 2 (since the 1-inserts have.sign -1, 7* counts
those farthest in the direction of advance). Then for 0  k  we have

easily

Ni(k) Ni(k-1)

(4.2) ~ Us (~") + ~ = N2(2k) - Nl(k)s I
==! i=1

Nl(k) ) N1(k-1) )

(4.3) ~ Y+(k) + ~ Us (k) = N2(2k -1) - Nl(k -1),
im =i

where we subtracted Nl (k) on both sides of the first equation for reasons of
symmetry. For -2  k  0, the analogous equations hold except that 
in the two upper limits is replaced by Nl (k -1) + 1.
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We observe that if Ri is given but N2 is not given, then by independence
of inserts and Lemma 4.2, the left sides of (4.2) and (4.3) have the same law,
namely a neg.bin.(N1(k) + N1(k - 1), §) if k > 0, or a neg. bin.(N1(k) + N1(k -
1) + 1, 3) if -2  k  0. But suppose the collection S := {U+i(k), 1 ~ i 

N1(k); V - (k), , 1  i  N1(k -1)} for k > 0 is also given (replace N1(k - 1) by
+ 1 if k  0). Then by Lemma 4.2 the left side of (4.3) has the law

neg.bin.(N2(2k) - N1(k) + N1(k) + N1(k -1), 4 ) = neg. bin.(N2(2k) + N1(k -
1), 4), depending only on the single parameter N2(2k) from N2. Therefore,
given N2(2k) (as well as Rl), the collection S is independent of N2(2k -1). So
if (Rl, N2) is given, the law of S is the same as if only (Ri N2(2k)) were given,
i.e. the sum N2(2k) - Nl(k) is the only restraint on the otherwise independent
terms (4.2). It follows that the joint law of S is determined by Bose-Einstein
sampling of size (Nl (k) + N1 (k -1), N2(2k) - Nl (k)) if 0  k  K(I), or of
size (N1(k) + N1(k -1 ) + 1, , N2(2k) - N1(k)) if -2  k  0 (see Definition 1.2
for the probabilities). Of course, by symmetry an analogous fact holds for the
collection on the left of (4.3). It remains only to discuss the joint law of the
two collections. Suppose, to this effect, that the collection S is given. Since the
pairs (V+(k), Ui+(k)) and (V-(k), UJ (k)) are jointly independent over i and j
when S is not given, it follows from Lemma 4.2 that when S is given (but not
N2(2k -1)) the variables V+(k) and are mutually independent over i

and j (they all pertain to different 1-inserts), and the conditional law of 
is neg. bin.(U~(k) + 1, 4) while that of is neg. + 1, ~). Let us
introduce a corresponding 

’ ’

Definition 4.3. Integer-valued random variables .X, ~ 0, 1 ~ i  n, have the
law of a Bose-Einstein partition of size (xl, ... , xn; N) if the joint law is obtained
by defining (Yl , ... , YK ) by Bose-Einstein sampling of size (K, N), where K =

xi, and then combining to get Xi = Y ; ; X 2 = Ys , ... , Xn =

03A3x1+...+xn i=x1+...+xn-1+1 Yi.

Lemma 4.4. In a Bose-Einstein partition of size (x1, ... , xn; N) we have (set-
ting again K = xi)

(K N 
- 

1) 11 (X’ 1 
- 

’ ;
n

= N.
i

Proof. The first factor on the right is the probability of a sample point in Bose-
Einstein sampling of size (K, N). For the same reason, the factors in the product
are the numbers of sample points in Bose-Einstein sampling of size Jkj), which
is the same as the number of occupancy xj-tuples of Xj cells by Jkj balls. The
event (~1 ~X~ = occurs if and only if each consecutive set of x’ cells receives
k~ balls. Clearly the total number of such occupancies is just the product, as
asserted.
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Now the gist of the discussion preceding Definition 4.3 for k > 0 is
(a) the conditional joint law of S given (Rl, N2) is Bose-Einstein of size

(NI(k) + Nl (k -1), N2 (2k) - and

(b) given S as well as (Rl, NZ), the summands on the left of (4.3) have law
determined as that of independent, neg. and neg. 

1, 4 ) random variables whose total sum is given by N2(2k - 1) - N1(k -1).
It is easy to see by writing neg. bin.(n, p) as a sum of n independent geo(p) terms
in each of these negative binomials that the effect is to determine the conditional
law of ~V+(k), by Bose-Einstein partitioning of size (Us (k) + 1 (1 
i  + 1 (1  j  Nl(k -1)); N = 1V2(2k -1) - Nl(k -1)
if 0  k  K(I) and for -2  k  0 one need only replace 7Vi(A - 1) by
Nl (k -1) + 1 in the range of j. Of course, a parallel argument applies for every
n > 0 to the conditional law of the numbers of (n + 1)-inserts interpolated into
the n-inserts when (Rn , is given. To determine, now, the conditional law
of Rn+1, it remains only to condition also on these numbers of (n + 1)-inserts
(as we noted before, the numbers of sign -1 are determined by those of sign
1). Then by the independence of n-inserts given Rn, the ordering of the two
types of random (n + 1)-inserts (namely, those from kan to kan + an+1, , and
those from kan - an+i to kan) is made independently in each n-insert, given
the totals of each type, and moreover this ordering determines the Rn+1-path
uniquely. Indeed for an n-insert of sign 1, each step kan to kan + an+i except
the last (hence, a total of U~ (k) if n =1) is followed by a step from kan + an+1
back to kan while each from kan - an- i to kan is preceded by one from kan to
kan - an+i (a total of V+(k) if n = 1), and an analogous argument applies to
n-inserts of sign -1. This obviously determines the Rn+1-path uniquely. Finally,
it is clear from the symmetry of that these orderings are all equally likely,
given the totals (for example, given (U~ (k), V- (k)) if n = 1 and the 1-insert
in question is the ith of sign +1 starting from ~). For given totals (U, V), the
number of such orderings is .

To write the conditional probability of a choice of ~U~(k), and

~Y+(k), 1  i  Nl(k) and 1  j  Nl(k -1) for 0  k  K(I)
Ni(k - 1) + 1 if -2  k  0), given (Rl, N2), we need only

multiply the Bose-Einstein probabilities of the former by the Bose-Einstein par-
tition probabilities of the later, and then divide by the corresponding product
of the order counts (vw) . When we carry this out, it is seen that the or-
der counts precisely cancel the products in the numerator of the Bose-Einstein
partition probabilities (i.e. the Lemma 4.4) leaving only, for
0  k  K(1), the expression .

(4.4) [(N2(2k) + N1(k - 1) - 1) (N2(2k) + N2(2k - 1) - 1)]-1
N2(2k) - N1(k) N2(2k - 1) - N1(k - 1)

= [(N2(2k) + N1(k - 1) - 1)) N2(2k) + N2(2k - 1) - 1)]-1N2(2k) - N1(k)  N2(2k) + N1(k - 1) - 1[~ N2(2k) - Nl(k) N2(2k) + Nl(k -1) -1
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= ~(N2(2k) + N2(2k -1) -1)!~ 1.
(Nl (k) + Nl (k -1) -1)!(N2(2k) - Nl (k))!(N2(2k - 1) - Nl (k -1))! .

An analogous calculation -2  k  0 gives the result

(4.5) ~(N2(2k) + N2(2k -1))!~ 1.

(NI(k) + NI(k -1))!(NZ(2k) - -1) - NI(k -1))! . °

Thus, the probability of a sample point of R2 given (Rl, N2) is the product
of (4.4) over k > 0 times (4.5) for -2  k  0. To be sure, precisely the same
result holds for any Rn+i given (Rn, Nn+1 ), replacing the subscripts and letting
the product for k  0 range from -2"  k  0. This may not appear especially
simple, until one takes into account the amount of cancellation which has already
occurred. Nevertheless, we shall state

Theorem 4.5. For every n ~ 0, the conditional probability of a sample path of
Rn+i given (either 0, if the point is inconsistent with 
or) the product of (4.4) (with subscripts (1, 2) replaced by (n, ~a + 1)~ over 0 
k  J{(n), and of (4.5) (with the same replacement) over -2n~  k  0.

Remark. One fact which does not seem quite obvious, but follows from this

expression, is that for given (Rn, Nn+1), all possible paths of Rn+l are equally
likely, their total number being the reciprocal of this product. Of course, if we
change the given Rn, we get an entirely disjoint but equinumerous set of possible

Indeed, since the conditional result depends only on (Nn, 
when we change Rn keeping Nn fixed the cardinality of the set of possible 
paths does not change.
We want to consider, finally, the law of Rn+1 given (No, ..., N,~+1). We obtain

these probabilities by multiplying the conditional laws, viz ,C{R1 ~ t
R0, N1) . L(R2 | R1, N2) ... L(Rn+1 | Rn, Nn+1).
Now by Lemma 1.3 £(Ro is determined by equally likely cases with the

probability of a case being

(4.6) p0 = [(N0(k) + N0(k + 1) - 1)]-1 .

N0(k + 1)

Next, by Theorem 4.5 |R0, N1) has equally likely cases with probability

[(7Vi(0) + Ni(-1)!~ iNo(4)!(Ni(4) -14’0((7))!(Nl(-1) - No(-l))!
K(0)

(4.7) . ~ ~(~Tl (2k) + Nl (2k -1) -1)!~ 1 (No(k) + No{k -1) -1)!{Nl (2k)
k=l

- No(k))i(Nl (2k -1) - No(k -I))!
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The product of (4.6) and (4.7~ gives the probability of a case for ] No , Ny
as

x~o~

Pi = [(N1(0) + N1(-1))!] -1N0(0)![ (N1(2k) - N0(k))!(N1(2k - 1)k_0
- No (k - 1))!(No(k) - 1)!No(k + 1)! I .J
x(o~

’ ~ ~(1Vi(2k) + Nl(2k - 1) - 1)!~ 
1 

(where (-1)! := 1)
k=1

(4.8) 
~ 

x~o~
_ ~(Ni(~) + Nl(-1))!~ 

1 

Ij (No(k) - k=0 
K(0)

jl (NI (2~) - (2~ - 1) - 1))!

K(0) _1

~ L ~ (Ny2~) + 1~ - 1~IJk-1 
Now to write L(R2 | N0, N1, N2) we have to multiply (4.8) by the product

of (4.4~ over 0  k  li (1) and of (4.5) over -2  k  0. We get for the
probabilities

(4.9)
1

Pa = ~ 1 j (No(k) - [Ny-1) lj (NO2~ - 1) + Ni (2~ - 1) - 1)! I k_0 k-1

(K(0) K(0)
~ L Ij (Ni(2k) - - 1) - ~’o(~ - ~ (Na(2k)

k_0 k--1

- N1k)) !(N2(2k - 1) - N1(k - 1))!]
. (N2(2k) + N2(2k - 1))! (N2(2k) + N2(2k - 1) - 1)!J 1 .~k_-1 k=1 

To detect the general rule, it is necessary only to write the next case G(R3 ~
No, Ni, Nz, Ns) by the same method. Omitting the details, we obtain

Theorem 4.6. For every n > 0, ~ N~.~, L) = G(R,~ ~ No, ... , is
determined by equally likely cases over the set of consistent Rn-paths. The prob-
abilities are given by (,~.6) for r~ - 0, by (l,.8) for n = 1, 6y (b.9) for n = 2, and
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for n > 2 they have the form .

/n-l I B /.-1 I B
pn = To Ti (.1 ) ) T2 ( j) ) ~ wherePn = To / / T;l, where

_1

To := ~ (No(k) -1.)!(No(k))!~ Tl(j) ~_ ~ + 1) + N~ (2k))!.
k=1 -2;-1

K(j-1)

~ f Nj (2k -1) + Nj (2(k - I)) -1)~~
k=1

K(j)

T2(j) ~= jj (N~+1 (2k) - Nj (k))!(Nj+1 (2k -1) - N.~ (k -1))!~ ~’n ~_
- 2;+1

o K(n-1)

~ (Nn(2k) + Nn(2k -1) -1)! .
- 2~-1+1 k=1

We observe here that, except for T2( j), each factor depends only on Nj for a
simpler, while T2 ( j ) depends only on (Nj, , Nj +1 ) . The terms Tl ( j ) and T,~ are
quite similar, but Tl ( j) combines pairs (2k 2k+ 1) while Tn combines pairs (2k-
1, 2k). The terms T2( j) represent the product of the extra ( j + 1)-upcrossings
beyond those necessitated by the j-upcrossings of the a j-intervals containing
them. Note, finally, that it is the reciprocal of Tn that figures in pn .
Final Remark. We have considered B stopped at T (-1 ), but of course B
stopped at any c ~ 0 can be covered by scale changes if we replace an by 
It takes only a little more thought to see that B stopped at : L(t, 0) > c},
c > 0, is also covered. Actually, for this we need only adapt the arguments
for k > 0 to construct B’ on ~0, oo) reflected at 0 (the excursions into (-oo, o)
are spliced out). To see this note that, by excursion theory from 0, B’ on

[0, oo) may be constructed by replacing T(-1 ) by inf ~t : L (t, 0) = e } where e is

exponential, independent of B (since L(T(-1) , 0) (~) e). Now given e = c, the
law of ~L(x), x > 0} is the same as its law for c in the other case, and the same
is true of the reflected B’.

Furthermore, the dependence of Nn on L(x) is local, in such a way that

,C(Nn (k), 0  k [ L} depends only on  ~}. Thus stage one of our
construction carries over. Stage 2, to construct ,C(Rn, 0  n also carries

over if Rn is replaced by its analog on (splicing out the negative excur-
sions). For n = 0, we need only determine the variables Xk ( j ) for 0  k and
1 _ j  No(k). The same argument gives a Bose-Einstein law when No is given,
and these determine Ro in each positive excursion by the (classical) branching
process argument. The induction step, to define the law [ Rn, Nn+1),
relied on the independence of inserts, which is equally valid in the reflected case.
The only change needed beyond ignoring k  0 is that, for k = 0, we again have
a simple Bose-Einstein distribution of the Nn+l (0) upcrossings among the Nn (0)
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n-inserts, since only the crossings 0 t an can contribute. For k > 0, however,
the argument of Section 4 remains applicable. Thus we again have equally likely
cases, and the precise expressions are analogous to those of Theorem 4.6 but
somewhat simpler.
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