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A REMARK ON SLUTSKY’S THEOREM

FREDDY DELBAEN

Departement fur Mathematik, ETH Zurich

1. Introduction and Notation.

In Theorem 1 of the .paper by [BEKSY] a generalisation of a theorem of Slutsky
is used. In this note I will present a necessary and sufficient condition that
assures that whenever Xn is a sequence of random variables that converges in

probability to some random variable X, then for each Borel function f we also
have that tends to f (X ) in probability. The abstract way of formulating
the result has the advantage that it shows how to decompose the problem. The
key result is the Dunford-Pettis characterisation of relatively weakly compact
subsets of the space L1. Because of this immediate relationship I believe that
the result is known. However I could not find a reference.

In the sequel (S~, A, is a fixed probability space and (E, £) is a measurable

space. The sequence denotes a sequence of measurable functions of S~

into E. Also X denotes a measurable function of Q into E. The distributions

(image measures) of Xn, resp. X are denoted by resp. 
The symbol a subset of the space of measurable functions from E into R,
denotes the set which consists of those functions g such that g(Xn) tends to
g(~Y) in probability. It is clear that 1l satifies some stability properties. First of
all it is clear that ~l is a vector space stable for multiplication, i.e. an algebra.
Also if ~: lR -~ lR is continuous and f E ?~, then ~( f ) E 7~. It follows that
for each m > 0 and f E the truncation f m of f is also in 3~, f m is defined
as fm(x) = f(x) if ~  m, fm(x) = m if f(x) > m and fm(x) = -m if
f (x)  -m. Conversely if all the truncations f m are in ~l, then also f E ~l. It

is also obvious that 1£ is closed for uniform convergence.
Let IVI (E, E), M for short, be the space of all signed measures defined on the
space (E, E). A subset K of M(E, £) is said to be relatively weakly compact
if it is relatively weakly compact for the weak topology (i.e. M*)) on M.
The Dunford-Pettis theorem states that K is relatively weakly compact if and
only if there is a probability measure A E M such that every element v e K is
absolutely continuous with respect to A and such that the set { d~ ( v E of

Radon-Nikodym derivatives, is uniformly integrable in L1 (a). For information
on weak compactness and related topics I refer to [G], last chapter.
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Theorem 1. Let us assume that the set of distributions of Xn is rela-
tively weakly compact. If ( f k )k > 1 is a sequence o f functions in ~l that converges
pointwise to a function f then also f E ~L, i.e. ~ is stable for taking pointwise
convergent limits.

Proof. Let K = 1} U ~p}. Clearly K is relatively weakly compact.
Because of the stability properties we may and do assume that the sequence

f k is uniformly bounded, e.g. for each k, we have 1. Since the measures
in K have uniformly integrable RN derivatives, we immediately obtain that
supvEK ,~E fk ~ dv tends to zero. For given E > 0 we now take ko big enough
to assure that sup03BD~KE| fk0| d03BD  t. Now we take no so that for n > no,

f ko (X) |dP  e. For n > no we then have In f (X ) 
3c. This reasoning shows that f (Xn ) tends to f(X) ) in and hence in

probability. D

By a standard argument on monotone classes we can now deduce the next the-
orem, which I give without proof.
Theorem 2. If the set of distributions of Xn is relatively weakly com-

pact and if H ~ g, then H contains all ’measurable functions with respect to the
sigma algebra B, generated by g.

In the paper by [BEKSY], the functions Xn take values in a separable metric
space Sand Xn tend to X in probability. Since in their case, all the Xn have
the same distribution, it immediately follows that for every Borel function h on
5, we have that h o Xn tend to h o X in probability. More precisely we have the

following.
Theorem 3. Let S be a metric space and suppose that the sequence of S-valued
random variables Xn converges to X in probability. In order that for each Borel
measurable function f, , the sequence converges to f(X) in probability, it

is necessary and sufficient that the sequence of distributions is relatively
weakly compact.

Proof. . The sufficency is dealt with in Theorem 1 and 2 above. The necessity
of the weak compactness condition is rather trivial. Suppose that the sequence
of distributions, , is not weakly compact. Then there is a bounded

measurable function such that f g d n does not converge to f g It follows

that cannot converge to g(X) in probability. D

If in the previous theorem we replace convergence in probability by convergence
almost surely, then the statement is wrong. To see this we will give a counterex-

ample. We start with the circle ~C = R/Z equipped with the usual normalised
Lebesgue measure m. Let 0 be an open subset of T such that m(0)  1/2 and
such that 0 is dense in T. I will construct a sequence defined on some prob-
ability space, such that Xn converges to a random variable X almost surely. All
the variables will be distributed uniformly on i.e. Pn = m for all n. However

it will turn out that the almost sure covergence of to 10 (X ) is false.
The construction goes as follows. For each 8 > 0 and x E T, we put g{ 8, x) =

1 203B4 m(D where Ix03B4 is the symmetric interval around x with length 203B4. Since
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0 is dense we obtain that ~(~ z) > 0 for all :c 6 T and all J > 0. It is now easy
to find integers such that for almost every .c e T we have that

03A3kl g(x,1 l+1) = ~.
To construct the variables Xn , we need a sequence of independent variables

, uniformly distributed on [-1,1]. The variable X is taken to be in-

dependent of the sequence Vn and to have a distribution equal to m. Let us

put Ko = 0 and + . For each n, ~  ~ ~ we define
Xn = X + . The distributions of the Xn are easily seen to be equal to m.
Since for almost every a? 6 T we have that

03A3P[Xn ~ O | X = x] = 03A3klg(x, 1 l+1) = oo,
it follows from independence and the Borel Cantelli lemma that for almost every
~ ~ X’~(C~), , 6 0 infinitely often. The construction of the counterex-
ample is therefore complete.
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