
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

DAVID G. HOBSON
The maximum maximum of a martingale
Séminaire de probabilités (Strasbourg), tome 32 (1998), p. 250-263
<http://www.numdam.org/item?id=SPS_1998__32__250_0>

© Springer-Verlag, Berlin Heidelberg New York, 1998, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1998__32__250_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


The Maximum Maximum of a Martingale

David G. Hobson

Department of Mathematical Sciences, University of Bath,
Claverton Down, Bath, BA2 7AY. UK.

Abstract

Let be any martingale with initial law Mo N and ter-

minal law pi and let S = Mt. Then there is an upper
bound, with respect to stochastic ordering of probability measures, on
the law of S.

An explicit description of the upper bound is given, along with a
martingale whose maximum attains the upper bound.

1 Introduction

Let po and /~i be probability measures on R with associated distribution func-
tions - - oo, x~ ) . Now let M = be the space of all martin-

gales with initial law ~o and terminal law For such a martingale
M E M let S = supot 1 Mt and denote the law of S by v. In this short arti-
cle we are interested in the set P ~ P( 0, 1) _ {v; M E of possible laws

v, and in particular we find a least upper bound for P. The fact that M is a
martingale imposes quite restrictive conditions on v.

Clearly M is empty unless the random variables corresponding to the
laws i have the same finite mean, and henceforth we will assume without
loss of generality that this mean is zero. Moreover a simple application of
Jensen’s inequality shows that a further necessary condition for the space to
be non-empty is that

(i) 100 (y - ~ ~x (y - ’dx.

These conditions are also sufficient, see for example Strassen [16, Theorem 2]
or Meyer [10, Chapter XI].

The question described in the opening paragraph is a special case of a
problem first considered in Blackwell and Dubins [4] and Dubins and Gilat [7].
There the authors derive conditions on the possible laws v of the supremum S
of a martingale whose terminal distribution ~cl is given, but whose
initial law ~co is not specified. Let ~ denote stochastic ordering on probability
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measures, (so that p ~ ~r if and only if > b’x, with the obvious
notational convention) and let p* denote the Hardy transform of a probability
measure p. Then it follows from [4] and [7] that

(2) 

Indeed, Kertz and Rösler [9] have shown that the converse to (2) also holds:
for any probability measure p satisfying ~ui -~ p -~ there is a martingale
with terminal distribution ~ci whose maximum has law p. If, moreover, p is
concentrated on [0, oo) then the martingale M can be taken to have initial
law consisting of the unit mass at 0. See also Rogers [14] for a proof of these
results based on excursion theory, and Vallois [17] for a discussion of the case
where M is a continuous martingale. Thus if ~uo - ~o (the unit mass at 0)
then our problem is solved and

Otherwise, as Kertz and Rösler [9, Remark 3.3] observe,

(3) ~ V ~1 ~ v ~ 

In a sense Kertz and Rösler [9, Theorem 3.4] answer our question of inter-
est also. They describe necessary and sufficient conditions for a candidate
probability measure v to be a member of These conditions involve

displaying a pair of bivariate densities with marginals and v) and
may be thought of as a restatement of the problem. In contrast the solution
presented here is both explicit and constructive.

The main results of this article are that the set is bounded

above by a probability measure (in the sense that if v ~ ~ then ~ ~
and that this upper bound is attained. Moreover we provide an explicit

construction of this upper bound: we do so now for the nice special case where
has a continuous distribution. For i = 0,1 define ~i = and

let a(z) be the solution with a(z) > z to the equation

~lo (a(z) ) = ~1 (z) + (a(z) - (z) ~

Pictorially a(z) is the x-eo-ordinate of the point where the tangent to r~l
at z intersects the graph of See Figure 1. Then is defined by

In Section 2 we prove this result and ex-

tend to arbitrary measures /~i.
Clearly one non-constructive definition of is via its distribution

function . 

’

(4) 
’ 

Fo,i [x] _ inf 
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Figure 1: The functions and a(z).

There seems no reason a priori why the measure corresponding to (4) should
be an element of Indeed if the greatest lower bound is defined
via its distribution function 

(5) = sup 
vE~

then need not be an element of P; in particular it is not in general true
that P. See Section 3.4 for a simple example showing non-attainment
of the lower bound.

The Skorokhod embedding theorem concerns the embedding of a given
law in Brownian motion by construction of a suitably minimal stopping time.
(Skorokhod embeddings for Brownian motion and other processes remains an
active area of research; see the recent paper by Bertoin and Le Jan [3] for
a new class of suitable stopping rules.) We show that one martingale whose
maximum attains the upper bound is a (time-change of) Brownian motion,
and this explains why the prescient reader will recognise in the arguments
expounded below elements of the Chacon and Walsh [5] and Azema and Yor [2]
proofs of the Skorokhod theorem (and also the Rogers [12] excursion theoretic
version of the Azéma-Yor argument). An incidental remark in Section 3.3
indicates how these alternative derivations of the Skorokhod theorem are in

fact closely related.
Finally some brief words on a motivation for studying this problem. Let

Mt be the price process of a financial asset, and suppose that interest rates are
zero. Then standard arguments from the theory of complete markets show that
when pricing contingent claims or derivative securities it is natural to treat M
as if it were a martingale. The simplest and most liquidly traded contingent
claims are European call options which, at maturity T, have payoff (MT - k)+.
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Suppose now that instead of attempting to model Mt and thence to predict the
prices of call options, we assume that the prices of calls are fairly determined
by the market. From knowledge of call prices for all strikes k it is possible to
infer the law (at least under the measure used for pricing derivatives) of MT.
Bounds on the prices of ’exotic’ derivatives can be obtained by maximising
the expected payoff of the exotic option over the space of martingales with
the given (or rather the inferred) terminal distribution. These bounds depend
on the market prices of call options, but they do not rely on any modelling
assumptions which attempt to describe the underlying price process.

As an example, the lookback option is a security which at maturity
T has value ST, the maximum price attained by the asset over the interval
[o, TJ. Given the set of prices of call options with maturity T we can deduce
the (implied) law of MT under the pricing measure. Since Mo is fixed and Mt
is a martingale under the pricing measure, the problem of characterising the
possible prices of a lookback security is solved once the possible laws of the
maximum ST have been determined. This is the problem under consideration
in Blackwell and Dubins [4], and more generally here. See Hobson [8] for a
more detailed analysis of the lookback option, the derivation of non-parametric
bounds on the lookback price and the description of an associated hedging
strategy.
Acknowledgement It is a pleasure to thank David Marles, Uwe Rösler and
an anonymous referee for helpful and insightful comments on a previous version
of this paper.

2 Main results

In this section we derive conditions relating the distribution of the maximum
v to the initial and terminal distributions po, 1. First we recall some simple
bounds which do not depend on the initial law .

Clearly P[Mi > > x] so that v. Define the non-decreasing
barycentre function bi by 

’

’ bi (x) _ 1
for all x such that JP>[M1  x] > 0, and b1(x) = x otherwise. By Doob’s
submartingale inequality

Fixing c, then at least in the case where has no atoms, there is some d
with > c] = d]. Moreover it is trivial that E[Mi - d; A] 
E[Mi - d; d] for all sets A, so that E[M1 S > c]  JE[M1; M1  d] =

d]. Thus c  , .b1(d) and it follows that v ~ ~*, where ~c*,
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the Hardy transform of has associated distribution function Fi given by
= The proof in the case where ~.1 contains atoms requires

only minor modifications.
The above paragraph, which follows Blackwell and Dubins [4] closely,

contains a proof of (2), and provides many of the essential arguments we will
use in Proposition 2.1 to find an upper bound for P. Our purpose is to consider
the effect of fixing the initial law of the martingale.

For i = 0,1 define the functions by

= ~x(1 - Fi[y])dy = ~x(y - x) i(dy) = E[(Mi = x)+].

The functions are positive, decreasing and convex with > -x. Recall
from the introduction that a necessary and sufficient condition for ~1)
to be non-empty is that for all x. Henceforth we assume that
this condition is satisfied. Furthermore, if = then

IE((Ml - x)+; Mo  x) - ~)+) - Mo > x)
 

= 0,

so that P(Mi > x, Mo  x) = 0. Similarly P(Mi  x, Mo > x) = 0 so that if
associates any mass with a point x E {z : 7?i(~) = then we must have

that the martingale M is constant on the set Mo = x, and ~cl must include a
corresponding atom. By considering such atoms separately, and by dividing
the set I = {x > into its constituent intervals we can reduce to

the case where I takes the form of a single interval I = (i-, i+) C (-oo, oo).
and assume further that ~,o places no mass at the endpoints of I.

We now construct functions a, a and /3 which will play a crucial role
in subsequent analysis. As motivation, suppose temporarily that ~cl has no
atoms. Note that the derivative of r~l is given by r~i (~) = > x~ _

- 1. For z  i- and z > i+ let a(z) = z and otherwise define a(z) to be
the unique solution with a(z) > z to the equation

(6) _ + ~d~z) - 

a(z) is the x-coordinate of the point where the tangent to 7yi at z, taken in the
direction of increasing z, intersects with the function Recall Figure 1.
The function a is non-decreasing, and on I it satisfies

. ~li~z)) = z).

Define to be the distribution function given by

= 
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(The composition Fi o is well defined since assigns no mass to intervals
where a is constant.) Let be the associated probability measure; will
be the upper bound on 

’

For the general case where has atoms we let the above argument
guide our intuition. For u E (0,1) define = infix : F1[x] > u}. The

parameter u will play the role of defining the slope of the relevant tangent.
Define hu via

hu(z) = + z~l -’~~ - ~n~~u~~ - ~~~~~1 - ~~~

Then hu is a convex function; if  0 then hu has a unique root in (x, oo).
On = ~o~(~~u)) set a(u) == /?(~), and on > ~o~/~~u)) let a(u)
be the root in (/3(tt), oo) of hu ; then the function a satisfies

(7) = ~ly~~u~~ - ~aO) - ~~~))~1 - u) .

Informally, a(u) is the x-coordinate of the point where the tangent to 7yi with
gradient -(1 - u) intersects the graph of If Fi has an atom of mass v at
i+ then for all u > 1 - v we have a(u) = meanwhile a(u) > on

(0,1 - v). The function a is continuous and has (left)-derivative

.. da a(u) - (3(u)
’ ’ du + 1 - u’

where 7yo is again a left-derivative. By the convexity of and the definition
of a as the x-coordinate of the point where a line with intersects

it is clear that for u E (0,1) the denominator must be positive. Finally
define the measure via its distribution function

(9) = inf{u: a(u) > x}.

Where defined we have that a(u) = a(/~(u)), and the two definitions of
agree.

Example 2.1 Examples always help to make things clearer...
Let be the uniform measures on {-1,1}, {-2, 0, 2} respectively. In
particular is discrete so that a is not well defined, and this example illus-
trates the general method. Then = max{ -x, 0, (1 - ~r)/2} and 771 (~) _

0, 2(1 - x)/3, (2 - x)/3}. Further

a(u) = + 2/(3(1 - ~))7(i/3~2/3) + (4~ - !)/(! - 2~)7~~i/3).
See Figure 2 for a pictorial representation of the functions a, /3 and 
Note that a is continuous and non-decreasing, and that for u E (0,1), Qf(~) ~
/j(u-f-) V 

’
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Figure 2: a, ,Q and F-10 for the distributions in Example 2.1.

Proposition 2.1 Let M be a martingale with the desired initial and terminal
distributions. Denote by v the law of the maximum process S. Then

dv E ,

so that is an upper bound for 

Proof
We prove that _ a(u) for all u E (o,1), where Fv is the distribution
function associated with the law v. Since F-103BD and a are increasing functions
it is sufhcient to prove that if > c) =1- =1- u, then c  a(u).
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Fix c, then by Doob’s submartingale inequality

> c, Mo  c]  5’ > c, Mo  c].

Similarly, by the martingale property,

E[Mo ;Mo > c] > c, Mo > c].

Adding these two expressions yields after some elementary manipulations

> c] + ~o (c)  1E[Ml ; S > c].

Now suppose > c] = 1 - u, then, since for any set A it is true that

E[Y; AJ  Y > o] ,

IE[Ml ; s > cJ = 1E[Ml - ,Q(u); S > 4 + (1 - 
 E[Mi - A(u)~ Mi >- + (1- 

Using (7) we can summarise these inequalities:

c(1- u) +  + (1- 
= + a(~c)(1- u).

It is easy to see by the convexity of r~4 that ~(1 2014 u) + is increasing on
Since a(u) > it follows that c  a(u).

D

Inspection of the proof of Proposition 2.1 reveals that the upper bound
is attained if both the martingale is continuous, (so that there is equality in
Doob’s inequality), and the sets (S > c) can be identified with sets of the
form (Ml > d). Guided by these observations our goal now is to construct a
martingale M with initial law and terminal law whose maximum has
law We ensure continuity of the martingale M by basing the construction
on a stopping time for a Brownian motion. Moreover the stopping rule is a
function of the current maximum of the Brownian motion and its current
value.

Rösler [15] provides an alternative construction of a martingale whose
maximum attains the upper bound. This construction is in the spirit of argu-
ments given by Blackwell and Dubins [4] and Kertz and Rösler [9]. In some
respects the Rösler construction is simpler than the methods presented below;
the advantage of the methods we use is that they provide a solution of the
Skorokhod problem.

Suppose that an initial point xo is chosen according to the distribution
For motivation consider first the case where ~cl has a continuous distribu-

tion function and the function a and its inverse are well defined. Let B be a
Brownian motion started at xo and define
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sf = sup Bu
0ut

T = : Bu  

Note that T is almost surely finite for if y > xo and Hy denotes the first hitting
time of the Brownian motion B at level y then T  inf{t > Hy : Bt  

We show that, when averaged over the law of the starting point, Br has
the law Then also

> ~] = > x1,

and the distribution function of SB is given by

(10) = 

It will follow (in Corollary 2.1 below) that defined via (9) is an element

of ~1). Our goal now is to prove the above claim that BT has law in

the setting of a general probability measure .

Proposition 2.2 For a Brownian motion B with initial law define SB =
sUPO$u$t Bu and T = inf{u : F1[Bu]  Then Br ~ 1 and SB ~

Proof

This follows directly from Chacon and Walsh [5] although here we pro-
vide a direct proof, similar in spirit to Azema and Yor [2]. For a connection
between these two approaches, see Section 3.3.

Suppose that has an atom of size v at i+, and thence that has

an atom of at least this size there also. 
’

With and T all as above define the random variable Z via Z =

Then > Z > Fl(BT-) so that (3(Z) - Br and, since a is
continuous, We find the law of Z: it is sufficient to show that Z

has the uniform distribution on [0,1], or more particularly, and to allow for
atoms in ~,o,l, it is sufficient to show that P(Z  u) = u, for 0  u  1 - v.

Then 
 x) = x) = = F’yx>>

and similarly x) = 
. Return to the consideration of the law of Z: for a test function ~

(continuous and compactly supported) set g == ~ o a-1 and define G(x) =
fo g(u)du. Note that G(a(x)) = fo Ito calculus shows that Nt -
G(SB)-(SB-Bt)g(SB) is a continuous local martingale, moreover the stopped
martingale NT is bounded (see [2] for details). Therefore one has

o = No1 - (SB - BT)s(sB) - G(So )1
(11) = E[G(a(Z)) - G(Bo)] - E[(a(Z) - a(Z))9(~(Z))l 
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Let ~r denote the law of Z, and let = 1 - = ~r((x, oo)). Note that
03C0 has support contained in the interval [0,1]. Then

= f o = 

. 

f o 
For the second term a simple transformation of variable yields

E[G(B0)] = 10F0[03B1(u)]03A6(u)d03B1(u)

and (11) becomes

10(F03C0[u] - F0[03B1(u)])03A6(u)d03B1(u) = 10(03B1(u) - 03B2(u))03A6(u)03C0(du).

Since 03A6 is arbitrary, 03C0 must satisfy the identity

(12) (a(u) - _ - 

Substituting from (8) gives that at least for x  1 - v, (whence a(u) > 
for all u E (O,x))

F03C0[x] - x = / 2014 1 ! dtZ = 2014 / du.
and it follows that = x for x  1 - v. O

Corollary 2.1 The measure is an element of 

Proof

It suffices to show that Mt = B(T A (t/(1 - t)) is a true martingale and not
just a local martingale, or equivalently that is uniformly integrable.
This follows by a straightforward extension to Lemma 2.3 in Rogers [14] and
an appeal to Theorem 1 in Azéma, Gundy and Yor [1]. . D

3 Remarks

3.1 The case = 8o and reduction to previous results.

If - do then = x- = (-x) V 0. Suppose that 1 has a continuous
distribution function then since a(x) > 0 the formula (6) becomes

_ ~lu~) -~~li~~)~" 
(x) I 

.
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The function a(x) is easily shown to equal the barycentre function bl(X) and,
for general also, the results of the previous section become the twin state-
ments that is both an element of, and an upper bound for, ~(bo, .

3.2 Excursion-theoretic arguments

The defining equation for ~r given in (12) can be derived using excursion ar-
guments. Readers who would like an introduction to excursion theory are
referred to Rogers [13]. For simplicity consider the case where has no

atoms and as before let B be a Brownian motion with maximum process
SB such that the initial point Bo is chosen according to the law Define

T = inf {u : 
Consider splitting the Brownian path into excursions below its max-

imum. Imagine plotting the excursions from the maximum sf = s, in xy
space, in such a way that the x-component is always Bt, and the y-component
is chosen to keep the two-dimensional process on the tangent to which joins

with (a-1(s),r~l(a-1(s))). As the maximum s increases, so the line
along which excursions are plotted changes. See Figure 3. T is then the first
time that one of these excursions first meets the curve (x, ~1 (x)).

By construction  y] = P[Bo  a(y)] -  a(y), SB > a(y)~.
Now for the event (Br E dy) to occur it must be true that both (Bo  a(y))
and (Sf > a(y)), and then, before the maximum rises to a(y+dy), there must
be an excursion down from the maximum of relative depth at least a(y) - y.
Using Lévy’s identity in law of the pairs (SB, SB - B) and (LB, and the

fact that the local time rate of excursions of height in modulus at least x is
x-1, it follows that

. 

dy] = P[Bo - a(y), ST - a(y)]a(dy) a(y) - 
y 

°

Figure 3: Some of the excursions below 5’~ = s plotted along the tangents to
7/1 at a-1 (s)
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Define 1/J(y) = y] - We wish to show that - 0. Now

+ = E 

= (F0[a(y)] 

- F1[y] - 03C8(y))a(dy) a(y) - y - 1(dy)

= -

03C8(y) F0[a(y)] - F1[y] 1(dy),

where this last line follows from the identity

a(dy) - pi (dy) .

~)-2/ 
- 

Fo[a(y)] - 
°

It must follow that ~(~/) = 0.

3.3 The Skorokhod Embedding Theorem

The proof of the Skorokhod embedding theorem given in Chacon and Walsh [5]
can be expressed pictorially in a similar manner to Sections 2 and 3.2. One
version of their algorithm, (see in particular Dubins [6]), involves a sequence
of the following steps: firstly choose a value x and draw the tangent to yyi at x;
and secondly run a Brownian motion until it leaves some interval defined via
this tangent (and the history of the construction to date). Our construction is
a special case in which the values x chosen at each step are as small as possible.
By the remarks in Section 3.1, when ~,o - do the function a(x) is equivalent
to the barycentre function b1(x) and the argument of Section 2 reduces to the
Azéma-Yor proof. Thus the Azema and Yor [2] and Rogers [14] proofs of the
Skorokhod embedding theorem are seen to be special cases of the proof due
to Chacon and Walsh [5].

3.4 The minimum maximum of a martingale .

A maximal (respectively minimal) element of a set of measures S is a measure
for which there does not exist v E S with v ~- p (respectively v « p).

The results of Section 2 show that 1 is the unique maximal element of

N~1). However it is not in general true that P has a unique minimal
element.

It is clear that if M is any martingale with the desired initial and ter-
minal laws, and if M is the martingale consisting of a single jump such that
Mt = Mo for 0  t  1 and Ml, then the law of the maximum of
M stochastically dominates that of M. Thus the study of minimal elements
reduces to a study of discrete parameter martingales at the timepoints 0 and
1.
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Suppose the probability measures and /~i are the Uniform measures

, 

on {-1,1} and {-2, o, 2} respectively. The joint laws of all (single jump)’ 

martingales with these initial and terminal distributions are parameterised by
8, (0  8  1/12), in the following table:

Table 1: The joint law of MB

If SB denotes the supremum of the martingale MB parameterised by 8
then > x] = V Mf > x]. In particular 0] = (3/4) - 0 and

> 0] = (1/2) + 8. It is impossible to minimise both these expressions
simultaneously. For this simple example there is a non-degenerate family of
minimal elements of and the greatest lower bound of ~(~o, is
not attained. Further /~o V is not an element of ~1).

3.5 The minimum maximum of a continuous martingale
If the martingales M are further constrained to be continuous, then as Perkins
[11] has shown, if the initial law is trivial, then there is a unique minimal
element to the set of possible laws of the maximum.

Specifically, let have zero mean and let MC --_ be the

space of all continuous martingales which are null at 0, and have
terminal law . Let ~c(~o, be the set of laws of the associated

maxima. Then Pc has a unique minimal element, which can be represented
as a Skorokhod embedding of a Brownian motion. See [11] for further details
of this construction. -
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