
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

R.A. DONEY

JONATHAN WARREN

MARC YOR
Perturbed Bessel processes
Séminaire de probabilités (Strasbourg), tome 32 (1998), p. 237-249
<http://www.numdam.org/item?id=SPS_1998__32__237_0>

© Springer-Verlag, Berlin Heidelberg New York, 1998, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1998__32__237_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Perturbed Bessel Processes

R.A.DONEY, J.WARREN, and M.YOR.

There has been some interest in the literature in Brownian Inotion perturbed at its
maximum; that is a process (Xt ; t > 0) satisfying

(0.1) ,

where Mf = XS and (Bt; t > 0) is Brownian motion issuing from zero. The
parameter a must satisfy a  1. For example arc-sine laws and Ray-Knight theorems
have been obtained for this process; see Carmona, Petit and Yor [3], Werner [16], and
Doney [7]. Our initial aim was to identify a process which could be considered as
the process X conditioned to stay positive. This new process behaves like the Bessel
process of dimension three except when at its maximum and we call it a perturbed
three-dimensional Bessel process. We establish Ray-Knight theorems for the local
times of this process, up to a first passage time and up to infinity (see Theorem
2.3), and observe that these descriptions coincide with those of the local times of
two processes that have been considered in Yor [18]. We give an explanation for
this coincidence by showing, in Theorem 2.2, that these processes are linked to the
perturbed three dimensional Bessel process by space-time transformations and time-
reversal.
A process which could be termed a perturbed one-dimensional Bessel process (or

perturbed reflected Brownian motion) has already been studied, originally by Le Gall
and Yor [11] in connection with windings of Brownian motion, and more recently by
Chaumont and Doney [5] as a time change of the positive part of doubly perturbed
Brownian motion. We are therefore motivated to introduce perturbed Bessel processes
of dimension d, for any d > 1. Our fundamental result about these processes is Theo-
rem 1.1, which shows how a perturbed Bessel process of dimension d is related to an
ordinary Bessel process of dimension d via a space-time transformation. From this we
deduce several extensions of results known for ordinary Bessel processes. Thus these
processes have the Brownian scaling property, a power of a perturbed Bessel process
is a time-change of another perturbed Bessel process (see Theorem 4.2), and there are
descriptions of the local times of these processes which show that the Ciesielski-Taylor
identity extends to this situation (see Theorem 5.2). On the other hand, some famil-
iar properties of Bessel processes do not extend to perturbed Bessel processes. Thus
they are not Markov processes, squares of perturbed Bessel processes do not have the
additivity property, and the law of a perturbed 3-dimensional Bessel process up to a
first hitting time is not invariant under time reversal (see Theorem 2.2).
We also show that some of these results extend to the case 0  d  1 (see section

3) and to the case where the perturbation factor is replaced by a function of Mf (see
section 6). Finally, in section 7 we discuss briefly a class of processes which can be
thought of as Bessel processes of dimension d > 2 perturbed at their future minimum.

1. AN h-TRANSFORM OF PERTURBED BROWNIAN MOTION

We begin by observing that if X satisfies (0.1) then

(1.1) MXt = 1 1 - 03B1MBt,
1
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where MB = Bs, and consequently we can construct X from B thus,

(1.2) Xt = Bt + a MB.
From this we can see that the bivariate process (Xt, > 0) is Markov, and the
classical theory of h-transforms of Markov processes tells us how to proceed in order
to condition on Xt being positive for all time. We must look for a function h, strictly
positive on {(x, m) : x > 0} and zero on the set {(x, m) : x = 0}, such that h(Xt, 
is a martingale for the bivariate process killed when X is first zero. Applying Ito’s
formula we find that h is given by

(1.3) h(x, m) = 

for some constant c. Consequently one introduces, for each a > 0,

f - 
1 XtT0 (MXtT0)03B1.P(03B1)a|Ft

where To = inf {u : Xu = 0} and is the law of X started from a. We have

(1.4) Bt = Bt + t0 ds h’x h(Xs, MXs),
where 8 is a IP3,03B1a-Brownian motion, and so we find that under this latter law X has
the following semimartingale decomposition,

(1.5) Xt = a + t + t0 ds Xs + 03B1(MXt - a).
Of course, when a = 0, this reduces to the equation which defines the ordinary Bessel
process of dimension three, and it is well known that this has an extension to dimension
d > 1. This motivates the following definition of the perturbed Bessel processes of
dimension d > l. We say that a continuous, R+-valued process t > 0) is an
a-perturbed Bessel process of dimension d > 1 starting from a > 0 if it satisfies

(1.6) Rd,03B1(t) = a + Bt + d -1 2 t0 ds Rd,03B1(s) + 03B1(MRt - a),

and an a-perturbed Bessel process of dimension 1 if it sa.tisfies 
,

(1.7) Rl a t = a + Bt + + - a,), ,

where Mf = is a Brownian motion, and if is the semimartin-
gale local time of at zero, it being clear from (1.6) and (1.7) that Rd,a is a

semimartingale for d > 1. .

Theorem 1.1. . Let d > 1 and a  1. . Suppose that Rd,a is defined from a given Bessel

process R of dimension d starting at a > 0 via the time-change

(1.8) Mu = Rd,a ~ / o ,

where Mt = and a* = ~/1 ~ a. Then Rd,a satisfies (1.6) when d > 1 and

(1.7~ when d = 1 with a = = Conversely, given a perturbed Bessel
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process Rd,« starting from a the process R defined via the 

(1.9) = R (t0ds M203B1s) ,

where Mt = a Bessel process of d2rrl,e’!!,s‘!,o’r1, d starting from a =
- _

Proof. . Suppose d > 1 and ( 1.6) holds. Then, from an application of Itô’s formula we
see that

Mt 
~ 

2 0 

°

Now replacing t by a(t), the inverse of A(t) = fo ds/Ms«, we see that R is a Bessel
process starting from al-«. Moreover, we have

(1.10) M(At) = 

so inverting the time-change we see that (1.9) and (1.8) are equivalent. If d > 1

and a > 0 we start with the equation which R satisfies (i.e. (1.6) with a = 0), and
the same argument shows that Rd,a defined by (1.8) satisfies (1.6). For d = 1 the

argument is virtually the same. ~

e It is a consequence of the representation (1.8) that equation (1.6) enjoys the
uniqueness in law property.

e It is now known that in the case d = 1 equation (1.7) enjoys the pathwise
uniqueness property: see [5]. However the corresponding question for (1.6) has
not yet been resolved.

e Note also that if R is a Bessel process of dimension d starting from 0, and we use
Theorem 1.1 with R(.) = RTa+. to construct a family of processes starting
at a > 0 then these processes vary (in the uniform topology) continuously with
a, and hence so do their laws. In particular, for d = 3 we see that

as I 0,

so that one can also think of the law of perturbed Brownian motion
starting from zero conditioned to stay positive.

e An important deduction from (1.6) and (1.7) is that has the Brownian
scaling property. 

e A further deduction is that, just as in the case a = 0, the point 0 is instanta-
neously reflecting for d  2 and polar for d > 2.

. We mention that although Rd,a does not have the Markov property when a ~ 0,
the is strong Markov.

. Henceforth we will write PBES(d, a) for a perturbed Bessel process of dimension
d, and Pd,03B1afor its law if it starts from a > 0. For a = 0 these will be abbreviated
to BES(d) and lE~.

2. SOME RAY-KNIGHT THEOREMS ON LOCAL TIME

We consider the perturbed Bessel processes of dimension d = 3, and write 8 =
2(1 - a). Let denote the (jointly continuous version of the) semimartingale
local time attained before time t by a process X at the level a. As is now standard,
Q03B4a denotes the law of the squared Bessel process of dimension 03B4 starting from a, and
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~a-~b the bridge of this process to a level b at time 1. Yor cleacribes in ~18~, following
Le Gall-Yor ~10~, the construction of two processes for which R,ay-Knight theorems
involving these squared Bessel processes are known. Specifically, given a Brownian
motion B we define

2.1 ) = |Bt| + 2l° B ,
and then define (Dt ; t  Tl ) via the space- time change

( . ) 03A303B4t 1 + 03A303B4t = Dð ( o (ds (1 + 03A303B4s) 4 ) .

Note that if (2.1 ) holds and J03A3t = inf s~t ES, then J03A3t = h lt’ ( 13 ) . It is then easy to see

that (2.1) is equivalent to the existence of a Brownian motion B such that

(2.3) . 03A303B4t = Bt + (1 + .

The result is

Theorem 2.1. (Le Gall- Yor) The following descriptions o f the local times o f 03A303B4 and
Da hold.

(l~(E~); a > 0) has law ~~,
and

(ll (D~); 0  a  1) has law 

We are going to establish a similar result for the PBES(3, ca) processes but first we
need the following.

Theorem 2.2. Suppose that R3,a is a PBES(3, 03B1) process starting from zero. Then

the process 03A303B4 defined by the space-time transform

( 2.4 ) R 

1 

t 
= 03A303B4 (~t du (R3,03B1(u))4), for all t > 0,(2.4) 3>a( ) 
=}:ð 

t ( 3, ( )) 
’ fo’I’ nll t > 0,

satisfies equation (2.1) with b = 2(1- a), and the local of these processes are
connected by;

= al ~a(~s) for all a, > ().

Moreover the process X3,a defined from R3,a via the space-tirrr,e change

2.5 R3 t 
= X ( t 

~s 

) .(2.5) 1 + R3 a t 
3,a 10 (1 + R3,03B1(s))4)

.

is a process, starting from zero, run until it, first hits oree, and it is related
to the process Dd defined from 03A303B4 by equation (2.2) bg time-reversal, i.e.

(2.6) Dt =1- X3,a (Ti - t) for all 0  t,  Tl = TX3,a .

Finally it holds that

lTl (X3,a ) = for all 0  rr,  1.
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Proof. . Given a process R = R3,a which is a solution of ( 1. fi) with d = 3, we use ( 1.9)
to define a BES(3) process R. Since the case a = 0 of (2.4), when both R3,a and Ea
become BES(3) processes, is a special case of representation results in [9] and [4], so
also is the process R defined by

1 
.

R(t) 
= 

(R(u))~’ 
.

From this it follows, using (1.9) again, that

{MRt}03B1 R(t) = (~t{MRu}203B1du (R(u))4)
,

so that if E6 is defined by (2.4) we have

03A303B4(~t du (R(u))4 ).{MRt}03B1 
=  (~t{MRn}203B1du (R(u))4)

.

Using the relation between MR and J03A3t = inf{03A303B4u : u ~ t} which follows from (2.4),
we obtain the first in the following equivalent pair of representations

(2.7) ( t ~ _ ~b ~~~ J, 

where jt = t~, and a* = a/(1- a). The second follows by inverting the
time change. Further, recalling that 2 - a = 1 + b/2, an application of Ito’s formula
shows that (2.7) is equivalent to the existence of a Brownian motion J3 such that
(2.3) holds, and we have seen this is equivalent to (2.1). If we a,pply Ito’s formula
to Rt/(l + Rt), and then make the time change, we see easily that the first assertion
of the theorem about X3,a is correct. To see that the relation (2.6) holds, we write
Xt = 1 - X3,a(Tl - t) for t,  Ti and note that Ti = ~y (1+r~.,~)4, so that

1 
.

1+Rr. "u t (1+R~)4 
°

From (2.4) we see that

~t (1 (1 
ds 

(1+03A303B4s)4,
where At (R j4 . It follows that

X o ds (1 + 03A303B4s)4},
and comparing this to (2.2), we conclude that X3,a and D~ are related by time-reversal,
as claimed. The results about the local times follow easily. t

Theorem 2.3. The laws of the local times of R3,a when i,t from zero, at times
Ti = inf{t : : R3,a (t) ~ 1} and infinity, are respectively Q03B40~0 and Q03B40.

Proof. . These assertions follow from the statements about local times in Theorem 2.2,
using the familiar properties of time inversion (for squared Bessel processes) and time
reversal (for bridges of squared Bessel processes). t
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We remark that in [18] there is presented the following additive decomposition,

(2.8) ~o = R~.

(We keep the notation Ra from [18], hoping that it does not lead to any confusion
with the various Bessel processes Ra involved in our discussion. ) The identification
of the law of Ra, except for the case 6 = 2, is not entirely satisfactory, involving a
reweighting of the local times of the three dimensional Bessel process. We can now
clarify this result by noting that if R3,a starts from 1 and we define Ra as the law of
(h(R3,a); a > 0), then (2.8) follows from the ’strong Markov’ property of Rd,a at Ti.
Theorems 2.1 and 2.3 can be reformulated as statements about the unperturbed

3-dimensional Bessel process. These alternative presentations involve the local times
of semimartingales whose martingale parts are not Brownian motions, and we stress
that, if Y is such a semimartingale, then is an occupation density with respect
to d (Y) s .

Theorem 2.4. Let R be a BES(3) process starting from Mt = supst s, t =
infs~t s, and define Y(1)t = and Y(2)t = . 

_

Then for i = 1, 2

(2.9) (l~ (Y~i~ ); a > 0) has law ~~ ,
and

(2.10) (l~((1 + Y~2~) 1); 0  a  1) has law ~o~o
Furthermore, for i =1, (2.10) is equivalent to

(2.11) (lTl (Y~1~); O  a  1) has law 

Proo f From Theorem 1.1 we have the representation Yr~ 1 ~ = R(rt), where R is a
PBES(3,a) and rt = fo It follows that = and since TR =

statements (2.9) and (2.11) for i = 1 follow from Theorem 2.3. Also, by
Theorem 2.2, we can write 1 - = R* is a PBES(3, a) and
8t = follows that l~(1- Y~l~) = and (2.10) for i = 1 also

follows from Theorem 2.3. For i = 2 we start with the representation Y{2~ = 
of (2.7), where = fo ds, and appeal to Theorem 2.1. But note that there is
no analogue of (2.11), because 1T1 (Y~2~ ) - LTl (E~), and this is not Qg distributed..

3. PERTURBED BESSEL PR,OCESSES OF DIMENSION 0  d  1

The problem of extending the definition of the perturbed Bessel processes to di-
mension 0  d  1 can, as in the unperturbed case, he solved by defining first the
perturbed squared Bessel processes. Note first that if is a PBES(d, a) with d > 1,
starting from a > 0, then one deduces easily from (1.6) and (1.7) that Y = 
satisfies

’ 

(3.1) Yt = a2 2 + 2 + (d.t) + 

Of course, this equation makes sense for any d > 0, and in fact has a solution which
is unique in law. This is a consequence of the following analogue of our basic repre-
sentation result, Theorem 1.1.
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Theorem 3.1. Let d > 0 and a  1. . Suppose that Y is f rom a given squared
Bessel process Y of dimension d starting at az > 0 tria the time-change

(3.2) * Y~, ~ = Y 1~ dv Ma ~ * ,

where u = RS and a* = Then Y satisfies (3.1) with a = {a}111-a . .
Conversely if Y solves (~.1~ then the process Y defined the t~i,me-change

( 3.3 ) = Y ds ) ,
where Mt = Y(s), is a squared Bessel process of d starting from
2 2~1_a) 

_ _

Proof. . This follows the same lines as the proof of Theorem 1.1. Note that there is an
analogue of (1.10), so that (3.2) and (3.3) are actually equivalent
We now define, for 0  d  1 and a  1, the a-perturbed Bessel process of

dimension d starting at a > 0 as the square root of an a-perturbed squared Bessel
process of dimension d starting at a2. Just as in the case cx = 0, for 0  d  1 the
perturbed Bessel process is not a semimartingale, although it is clear from (3.1 ) that
its square is. However our next result shows that its expression as a Dirichlet process
is exactly the a-perturbed version of the corresponding expression for BES(d), which
is discussed in ~1~ and Chap. X of ~19~ . .

Theorem 3.2. If 0  d  1 and R is a PBES(d, a) process ,sta~rting from a > 0, then
it satisfies the equation 

’

(3.4) Rt =a+Bt + (
d - 1 2 

)Kt + 03B1(MRt - a), t, - > ().

Here B is a Brownian motion and the dri f t term K is b;y

(3.5) Kt = p.n. / o - = / o ao ad-2{~t(a) - 
where the occupation density a satisfies, for any Borel 03C6 > 0,

(3.6) t003C6(Rs)ds = ~0 ad-103C6(a)03BBt(a)da.
Proof. Applying the Itô-Tanaka formula to 03C6~(Y), where £ > () and 03C6~(y) = y^~ and
Y = R2 solves (3.1), gives
(3.7)

= ant; + + t01{Ys~~}dBs + 03B1 2 t0 1(Ys~~}Ys-1 2dMYs + d - 1 2 t01{Ys~~}Y-1 2s
ds + 4 l e-z Y . )

From (3.6) we see that

(3.8) = 2a 2 ~t 
and hence we have
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Hence

/~ ’~ ~ ~ ~ ( ~ ) ~’~ 2d-2 2 
~ 

~ ~ ) t1~12 ~~ ~ ~~ ~~ ~ ’~’~~~~~ ~’~

(3.10) = 

ad-2{03BBt(a) - 03BBt(~)da.

Now it is not difficult to see, as in the proof of Theorem 4.2 below, that the the process
defined by Wt = = is a semimartingale whose local time satisfies

~003C6(a)lat(W)da = (2 - d)2 t0 R2-2ds03C6(R2-ds)ds.

Comparing this to (3.6) yields the identity As a consequence of

Kolmogorov’s criterion we deduce that for any, E (0, ; ) we have ~t (a) - at (0) ~ 
for some positive constant c. This implies both that the final expression in

(3.5) is finite, and that (3.4) results by letting ~ ~ 0 in (3.7). t

Remark 3.1. We can now see that Theorem 1.1, and r,t,s extends im-

mediately to the case 0  d  1. .

4. MORE TIME CHANGES

In Theorem 1.1 we saw that for any fixed d > 0 we can represent a perturbed Bessel

process of dimension d with any perturbation parameter n  1 in terms of another

Bessel process of dimension d . . It is therefore not surprising that there is a similar
link between perturbed Bessel processes of dimension d with different perturbation
parameters.

Theorem 4.1. Suppose that R is an a-perturbed Bessel process of dimension d >

0, Mt = sups~t Rs, and ,Q  l. Then there exists a Bessel process R of
dimension d, with ~y = i=a , such that

R(t) 
= R r, ds .

Mf 
~ o ’

Proof. Just use Theorem 1.1 twice, first to define a, BES(3) process R from R, and
then to define a process R from 

Perhaps more importantly, the fact that a power of a Bessel process is a time-change
of a Bessel process of a different dimension (see e.g. Proposition 1.11, chap. XI of

[15]) has an analogue for perturbed processes; note that the perturbation parameter
is unchanged.

Theorem 4.2. Suppose that R is a PBES(d, a) process d > 0, and ,Q is such

that dp := 2 + d~2 > 0. " Then there exists a PBES(d,s,cx) Trroc:ess R# such that
c

f R(t)}p = R# .
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Proof. If fl = I there is nothing to prove. If fl > I it is straightforward to apply Itô’s
formula to Y°, where Y = R2, to deduce from (3. I) that Y# = {R#}2 satisfies (3. I)
with d replaced by d# , and the result follows. If fl  I we note that d = 2 + fl(d# - 2) ,
and repeat the previous argument with fl replaced by 1 / (3 a.nd d a.nd d# interchanged. ,
Remark 4.I. The important cases of this result are when d = I and d = 3, since
it allows us to express any PBES(d, a) process in teT"ins gf a PBES(1, a) process if
0  d  2, and in terms of a PBES(3, a) process if 2  1  oo.

We also mention that just as a Bessel process of dimension d is given by Lamperti’s
representation as a time change of the exponential of Brownian motion with drift, so
can a perturbed Bessel process be expressed in terms of a. Brownian motion
with drift.

Theorem 4.3. Define the index v = (d/2) - 1 , and let (B)(03BD,03B1)t, t > 0) be equal in
law to the solution of

Xt = Bt + vt + 03B1MXt , t > 0,
where B is a Brownian motion. Then, for d > 0 and a  I v« have the representation

exp (B(03BD,03B1)t) = Rd,03B1 ( / ds exp(2B(03BD,03B1)s)) ,

where Rd,03B1 is a PBES(d, a) process.

Proof. Apply Itô’s formula to to see tha,t >i. time-change of this satisfies
(3. I) . ,

Recalling that Pd,03B1a stands for the law of a PBES(d, a starting from a, we now give
an absolute continuity relationship between Pd,03B1a and which extends a result for

BES(d) processes given as Exercise 1.22, Chap. XI of [15] .

Theorem 4.4. For d > 2 and a > 0 it holds that

~~~ ~ ~ = ~~~ ( ~ l’~ §~ ) t . 0 ,:

Proof. This is a consequence of Girsanov’s theorem, a.nd the fact that, under
log(Rt /Mt) is a local martingale. Alternatively it could deduced from the result
for a = 0, using the relationship ( 1 .9) . i

It is well-known that Spitzer’s theorem on the asymptotics of planar Brownian
windings (see, e.g. , Thm. 4. I , Chap. X in [15] ) may be deduced from some asymptotics
for the BES(2) process. We now extend these results to PBES processes.
Theorem 4.5. I. Assume R2,03B1(0) > 0. Then

4 (logt)2 t0 ds R22,03B1(s) (law) 03C303B1 ~ inf{t : B0,03B1t = 1} as t ~ ~,

and, moreover, 03C303B1 is equal in law to a = inf{t : Bt = 1 ) .
2. Assume d > 2 > 0. Then

I % (1 R21) = 1 - 03B1 d - 2 as t ~ ° °
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Proof. The first result follows easily from the Lamperti relationship obtained in The-
orem 4.3 above. (This deduction for the case a = 0 is presented in Exercise 4.11,
Chap. X in [15].)
The second result may be deduced from Birkhoff’s’ theorem on path-space. (Again,

for the case a = 0, see Exercise 3.20, Chap. X in[15] . ) 1

5. AN EXTENSION OF THE CIESIELSKI-TAYLOR THEOREM.

The classical version of the Ciesielski-Taylor theorem is the case d = 3, a = 0, of
the identity

(5.1) 1} =(law) 

which we will show below to be valid for any d > 2, c~  1. For the case a = 0 this

has been established by several authors; see e.g. [2], [8] and [17]. The method used
in [17] was to write both sides of (5.1) as integrals with respect to the local times

and laT1 {Rd-2,0} respectively, and then exploit = 0 case of Theorem 4.2

to express these local times in terms of squares of Bessel processes. The same method

can be applied to the case o; ~ 0, once we know that (5.1) lolds with d = 3. This

can be seen from the description of given in Theorem 2.3, together with
the Ray-Knight theorems for perturbed Brownian motion (see [3], [16],or [7]), and
the observation that a time change of the positive part of an a-perturbed Brownian
motion is an a-perturbed Bessel process of dimension 1. ( See [5]).

Alternatively we can express the integrals with respect to the local times in terms
of integrals with respect to the intensity measure of the excursions away from

0 of the strong Markov process MRd,a - Rd,a. . Then the validity of ( 5.1 ) for a ~ 0
and d > 2 follows from its validity when a = 0, the Levy-Khintchine representations
of Qg and (see [18]), and the following result.

Lemma 5.1. For any a  1, d > 0 it holds that

(1 - "

Combining this with Theorem 4.1 of [18] gives the following result, in which {qa (a), a >

0} [respectively {qa(a), 0  a,  denotes a process with the law Qg [ 
again b = 2(1 - a ) . .

Theorem 5.2. 1. The Ciesielski-Taylor identity (5.1) is for any a  l, d > 2.

2. For d > 2 we have

h Rd’« ’ a , 0) (3-d 0),

and

(laT1(Rd,03B1),0 ~ a ~ i) =(law) (a3-d d - 203B4(ad-2), 0 ~ a,  1 .
3. For d = 2 we have (l03B1T1 (R2,«), O  a  1) 1/a), 0  a  1) . .
,~. For 0  d  2 we have

R d,03B1 ) 0  a  1) =(law) ( 1 qs(1- a2-d), ()  ra,  1 .
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6. VAR.IABLE PERTURBATIONS

A process (E~,~ ~ 0) has been considered by Le-Gall and Yor, and others; see [19],
section 18.3, and the references therein, and [6]. It is a simple generalization of the
process E~ denned via equation (2.1), where the constant (~ lias been replaced by a
strictly increasing C~ function A : R~ 2014~ R~, satisfying A(0) == 0 and A(oo) = oo.
More precisely the process E~ satisfies

(6.1) E~=~+A-’(2~)),
for t ~ 0, where is the inverse of the function A. By taking = 03B4t we recover

was shown in [11] that the local time process (/~(E~); ~ ~ 0) has law, denoted
by Q03940, which is that of a process t ~ 0) satisfying

(6.2) Zt = 2 / Zsd03B2s + 0394(t), t ~ 0,

for some Brownian motion /3.
We now consider an analogous generalization of the perturbed Bessel process of

dimension three. Suppose A is as above, and additionally A~ is bounded away from
zero and infinity (this condition could be weakened). The process (R3,h(t);t ~ 0)
obtained from E~ by the space-time inversion

~-~ ~T~ = ~ (/" ~ ~ ~ ~ > ~(6.3) = Ut t (~3,/.wr/ 
’ for aU t > 0,

satisfies

(6.4) R3,h(t) = 03B2t + t0 ds R3,h(s) + h(Mt),
where /? is a Brownian motion and Mt = R3,h(s). The C1 function h : R+ ~ R
satisfies

(6.5) = 0, 2(1 - /~)) = 0  ~  oo,

which generalizes the relation between o; and ~. The proof of this assertion follows a
now familiar course. The process E~ can be obtained from n three-dimensional Bessel
process R by a space-time change

(6.6) 03A30394t 03C3(Jt) = R(t0 ds (03C3(Js))2),
where Jt = infu~t 03A30394u and the function rr satisfies

(6.7) = 1 - 03C3’(y) 03C3(y)y, 0  ?/  oo.

Likewise the process satisfies (6.4) if and only if it is obtained from some three-
dimensional Bessel process  via

(6.8) R3,h(t) k(Mt) " " 
U. ’

where the function ~ satisfies

(6.9) ~(~) = ~L, 0  ~  oo.(6.9) h (x) = x, 0  x  00.
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Next, we observe that the space-time inversion (6.3) which connects R3,h and E~
corresponds exactly to 

~ ~)~H .

Moreover the relation (6.5) is now a simple consequence of combining (6.7) and (6.9).
The local time process (~(~); a ~ 0) is equal in law to = 0) where

Z satisfies (6.2). However it can be shown, although we do not pursue this here, that
the law of Z is only of the form Q~ when A(~/) = = 

7. PERTURBATIONS AT THE FUTURE MINIMUM.

Inspection of (2.3), rewritten as

(7.1) E~=~+(2-~,
shows that a E~ process can be thought of as a version of a BES(3) process, perturbed
at its future minimum. In order to obtain analogous generalis at ions of BES(d), d > 2,
we remark first that if R is a BES(d) process, starting from zero, and d > 2, then R
satisfies

Rt = Bt + 2JRt + 1 2 (3 - d) / ds Rs.
(See, e.g. [19], Chap. XII, p46, [13], [14], and [12].) This motivates the following
definition. We say that E is a Bessel process of dimension d > 2, 03B1-perturbed at its

future minimum, and write E is a JBES(d, o;), if it satisfies .

(7.2) + (2 - + ~(3 - r~) ~ ~.
It is easy to see that uniqueness of law of solutions of (7.2) liolds, by establishing

that the equivalent pair of relations given in (2.7) extend to the situation where R
is a BES(d) process and E is a process. This is the "JBES version" of

Theorem 1.1, and in fact many of our results have extensions to this situation. We

conclude by giving some of these, without proofs.
First, the mapping given in (2.4) which maps a into a JBES(3, o;) also

maps a into a JBES( d, 0152) for any d > 2. Consequently, using Theorem

5.2, one can deduce the law of > 0}. Moreover the mapping that extends

(2.5) by mapping a PBES(d, a) R into a PBES(d, a) X killed on liitting 1 is given by

(7.3) X(t0 {t {1 + 
However it can not be true, for ~3, that the process we get by applying this same

transformation to E, the process which is the image under (2.4) of R, is
related to X by time-reversal, as this is not true when a = 0.

Finally the extension of Theorem 4.2 is the assertion that, if d > 2 and /~ 
= l/(d-2),

then a process E and a process E~ are related by

(7.4) = E~ ~{E(.)}’~-~ . .
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