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SOME CALCULATIONS FOR PERTURBED BROWNIAN MOTION

R A DONEY

1. INTRODUCTION

If B is a standard Brownian motion starting from zero, and Bt = Bs, then
the process X defined by 

(1) Xt = Bt + 

where a  1 is called an a-perturbed Brownian motion. It is immediate from (1) that
if Xt =sup0~s~tXs then

(2) Xt = 1 1 - 03B1Bt ,

so that (1) shows that X is the unique pathwise solution of the functional equation

(3) Xt = Bt + aXt.
This is a special case of the equation

Xt = Bt + aXt + 
,

where Xt = Xs ,which has been studied by a number of authors; see ([3], [5],
[4], and [8]). It should also be mentioned that, by the Levy equivalence, ( 1 ) . can be
written as

- Xt = Wt - (1- 
.

where W is a reflected Brownian motion whose local time at zero is L, so X is often
referred to as "reflected Brownian motion perturbed by its local time". (See e.g.[ll].)
From (1) it is clear that X is a non-Markov process which moves like Brownian

motion except when it is at its maximum, and, moreover, X has the Brownian scaling
property. Many other results known for Brownian motion have analogues for per-
turbed Brownian motion, including Levy’s Arc-sine law, the Ray-Knight theorems,
and the solution to the two-sided exit problem. (See [7] , [2], [10], and [11].)

In this note we give an excursion theory approach, based on the excursions of X
away from its maximum, which leads to simple proofs of some of these results, and to
new ones. In particular, we give new proofs of the Ray-Knight theorems and extend
the results known about the two-sided exit problem by computing the transition
density of the bivariate Markov process (X, X), killed when X exits the interval, at
an exponential time. From these results we are able to deduce some information about
"X conditioned to stay positive" .
The basis for our calculations is the following observation; write for the mea-

sure of X and for the characteristic measure, under P~a}, of the excursions away
from zero of X - X. Note that n = coincides with the characteristic measure of
excursions away from zero of reflected Brownian motion.

Proposition 1.1. The measures n(03B1) and n are related by
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(4) n~a) _ (1 - a)n.
Proof. From (I)and(3) we have

which tells us that is a multiple of n. But (2) tells us that the local times at zero
of X - X and B - B are related by leX-X) = (1 - and this identifies the
constant. ,

2. RAY-KNIGHT THEOREMS

Let L:denote a jointly continuous version of the local time at level x and time t of
X, and write Q~ for the law of the square of a Bessel process of dimension 8 starting
from x .

Theorem 2.1. For fixed b > 0 let Z = {Z(x), 0  x  b}, where Zx = 
the law of Z is the restriction to ~0, b] of where a =1- a.

Proof. . Since the result is classical for a = 0, it follows from the Levy- Khintchine
representation of Qg (see Theorem 3.2, p30 of [11]) that it suffices to show that for
any Borel function f ~ 0

P(03B1){exp-b0f(x)Z(x)dx} = [P(0){exp-b0f(x)Z(x)dx}]03B1.

However, if we write g(.) = f(b- .) , the occupation density theorem gives

b0f(x)Z(x)dx = Tb0 g(Xs)ds = 03C4b0 g(ls - Ys)ds,

where Y = X - X and T is the inverse of 1 = l(Y). Applying the master formula of
excursion theory gives, with 03B6 = 03B6(~) standing for the lifetime of a generic excursion
~,

P(03B1){exp-b0f(x)Z(x)dx} = exp -{b0 dt03A9n(03B1)(d~)[1 - exp - 03B60 g(t - ~(u))du]}

= [P(0){exp- b0f(x)Z(x)dx}]03B1
by virtue of (4), and the result follows. ,

Next, we deduce the second Ray-Knight theorem. We write ~r for the inverse of L°
and Q~ for the measure of the square of a Bessel process of dimension 8, starting from
x and killed on hitting zero.

Theorem 2.2. For fixed t > 0 let = x > 0}, where = Then

under the law of is .

Proof. For xo > 0 it is clear that, given = to , x > p} is inde-

pendent of {L~(~t), 0  y  xo}, and is distributed as Thus {U~t), x > 0} is
Markov, and the result will follow if we can show that, for all Borel subsets A of [0, oo)

(5) E A} = E A}.
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Now by Theorem 2,
= 0} = > ~} = > ~}, >

whereas, writing 03BBt = sup{s : Xs = t}, it follows by time reversal(see e.g.Ex.1.23,
p420 of [9]) that

0} = ~} == Q~{~ ~ ~}.
Finally, using the scaling property and the fact that the Q~~ distribution of Ai
coincides with the Q~ distribution of {Xi}’~ (see Ex 1.18, p418 of [9]), we see that
(5) holds for A = {0}. Next, on > 0} , we set T = inf{s > T. : : X(s) = 0},and
write

(6) °

Since the excursions of X below ~ after time Tp have the same structure as the excur-
sions below zero of a Brownian motion, it is clear that, given = s, the terms

on the RHS of (6) are independent and, by the Ray-Knight theorems for Brownian
motion, have the distribution of Xz under Q~ and respectively. Using the com-
position law for squares of Bessel processes (Theorem 1.2, p410 of [9]) and appealing
again to Theorem 2 gives

P(03B1){U(t)x ~ dy} = t0Q203B10{Xx ~ ds}Q2t-s{Xx ~ dy)

= dy dt t0 Q203B10{Xx ~ ds}Qy{Xx ~ dt - s}

_ 

Finally, time reversal gives

~} 

which completes the proof of (5). t

3. THE PROCESS KILLED ON LEAVING [-a, 6].
We will write S = S(a, b) = T-a A 7~ for the first exit time of [-a, 6], and ~* for an

independent, exponentially distributed random variable with parameter 0* = ~/2 . .
Theorem 3.1. It holds that, for a > 0, b > 0,

(7) ~v...~,=(~~)’, ’
for 0  ~  b,

(8) ?... , ~.X(.) - -~(.) ..~ - 
and for -a ~~/,0~/ oo,

(.) V...X~..) ..~(V..) . ~) 
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Write for {c : ~) > ~} U {~ : ((c) ~ ~,~) > c}, and recall that

(10) 

Then P~){? ~ = 6} = > 6}, where (~ = ~ e 
Thus

P~{9 ~ ~;X(?)=6}=exp{-/~(~(~~+~))~}
= exp{-o; / y~ 

from (4) and (10), and (7) follows. Also

~;X(~)=-~}=P~{r~T,A~}
= b0 P(03B1){03C6 > y}n(03B1){~ : Ta+y  03B6(~)  V03B8*}dy

= b0{sinh a03B8 sinh(a + y)03B8}03B1 03B103B8 sinh(a+y)03B8dy,
where we have used another standard result for Brownian motion, and this is equiva-
lent to (8). Similarly

> 

= bz+ P(03B1){03C6 > y}n(03B1){~ : 03B6(~) . ~03B8*,~(~03B8*) ~ a + y,~(~03B8*) ~ y - dz}dy
and since, for 0  u  v

: ~)>~,c(~)~~c(~)e~}
= n{~ : Tu  03B6(~)  V03B8*}P(0)u{X(V03B8*) ~ du,T0  T03C5 > V03B8*}
_ 

6~~ 
du,

(9) is also immediate, t

From this some known results in [2] and [8] follow immediately.

Corollary 3.2. For a-perturbed Brownian motion we have

(11) [-a, 6] ~ 6} = (~)~

E~{e-~~} = 
and

E(03B1){e-03B8*T-03B1} = ~0 03B103B8(sinh a03B8)03B1 {sinh(a + y)03B8}03B1+1 dy.

We can also deduce some facts about X conditioned "to stay positive" ;
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Corollary 3.3. It holds that

(12) E(03B1){e-03B8*Tb | Xexits [-a,k] at k} = (b03B8 sinhb03B8) ,

and

lim lim {X (ve. ) E dz |X exits [-a, k] at k}

(13) - z9. y" ) 
°

Proo f . Note that for k > b , ,

Xexits [-a, k] at k}
_ 

XeS) = exits [-(a + b),1~ - b] at k - b}}~ 

exits [-a, b] at b}

~ 
Sinh a9 a a + b a a 

j.= 

which does not depend on k. So (12) follows by letting a 1 0.
Similarly, we see that for z  y  k

{X (ve. ) E dz, X (UB. ) E dy [ exits [-a, k] at l~}
= E dz, X (ve*) E exits ~-(a + z), y - z] at y - z}

exits [-(a + y), k - y] at k - y}P(03B1){X exits [-a, k] at k}

= 03B103B82(sinh a03B8)03B1sinh(a + z)03B8 {sinh(a + y)03B8}03B1+1 dy dz.
z + a y + a. (a + y a = k)03B1. (a + k a),

and this leads to ( 13) . 1

REMARK Using (13), it is not difficult to show that there is a probability measure
say, which is the weak limit of P(03B1)(. |( X exits [-a, k]) as k ~ ~ and a ~ 0 ,

and it would be interesting to describe X under . Of course corresponds
to the BES(3) process, and one way to realize that is as |Bt| + Lt ,where L is the
local time at zero of This suggests the process E~a~ _ ~ B ~ + a L , which has been
studied in [11],chapter 4, as a candidate to have the measure, for some suitable
03B4. Furthermore, when 6 = 2(1 - a), one can check that, under P(03B1), the time-
reversed process 0  t  Tl } has the same measure as {03A3(03B4)t, 0  t  03BB(03B4)1},
where = sup{s : =1}. (I owe this observation, which extends a well-known
connection between Brownian motion and BES(3), to Loic Chaumont.) However it
follows from results in [1] that if T ~b~ is the hitting time process of Ea, then

. 

E e } __ 03B103B8 (sinh b03B8) b0 dy (sinh y03B8) 03B1.
Since this disagrees with (12),we conclude that does not have as its measure.
This question is discussed further in [6].
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