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SOME CALCULATIONS FOR PERTURBED BROWNIAN MOTION

R A DONEY

1. INTRODUCTION

If B is a standard Brownian motion starting from zero, and B; = SUPp<s<: Bs, then
the process X defined by

(1) Xt=Bt+1a

Bh

-«

where a < 1 is called an a-perturbed Brownian motion. It is immediate from (1) that
if X; =supo<s<:Xs then

1

1—-a

@ X = B,

so that (1) shows that X is the unique pathwise solution of the functional equation
3) X, = B, + o X,.
This is a special case of the equation

X =Bt+a)_(t+ﬂ£t,

where X, = info<,<; X, ,which has been studied by a number of authors; see ([3], [5],
[4], and [8]). It should also be mentioned that, by the Lévy equivalence, (1).can be
written as

"‘Xt = Wt - (1 e a)_lLt,

where W is a reflected Brownian motion whose local time at zero is L, so X is often
referred to as “reflected Brownian motion perturbed by its local time”. (See e.g.[11].)

From (1) it is clear that X is a non-Markov process which moves like Brownian
motion except when it is at its maximum, and, moreover, X has the Brownian scaling
property. Many other results known for Brownian motion have analogues for per-
turbed Brownian motion, including Lévy’s Arc-sine law, the Ray-Knight theorems,
and the solution to the two-sided exit problem. (See [7] , [2], [10], and [11].)

In this note we give an excursion theory approach, based on the excursions of X
away from its maximum, which leads to simple proofs of some of these results, and to
new ones. In particular, we give new proofs of the Ray-Knight theorems and extend
the results known about the two-sided exit problem by computing the transition
density of the bivariate Markov process (X, X), killed when X exits the interval, at
an exponential time. From these results we are able to deduce some information about
“X conditioned to stay positive”.

The basis for our calculations is the following observation; write P for the mea-
sure of X and n(® for the characteristic measure, under P(*), of the excursions away
from zero of X — X. Note that n = n(® coincides with the characteristic measure of
excursions away from zero of reflected Brownian motion.

Proposition 1.1. The measures n‘® and n are related by
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4 n® = (1 - a)n.
Proof. From (1)and(3) we have
Xi—=Xi=(1-0a)"'B,—{B;+o(l-—a)"'B} = B, — By,
which tells us that n®) is a multiple of n. But (2) tells us that the local times at zero

of X — X and B — B are related by I(X~X) = (1 — )~11(B=B)_ and this identifies the
constant. §

2. RAY-KNIGHT THEOREMS

Let Lfdenote a jointly continuous version of the local time at level z and time ¢ of
X, and write Qf for the law of the square of a Bessel process of dimension § starting
from z.

Theorem 2.1. For fized b > 0 let Z = {Z(z),0 < z < b}, where Z, = L*.Then
the law of Z is the restriction to [0,b] of Q3®, wherea =1 - a.
Proof. Since the result is classical for o = 0, it follows from the Lévy- Khintchine

representation of Q) (see Theorem 3.2, p30 of [11]) that it suffices to show that for
any Borel function f >0

P {exp— / f(z)Z(z)dz} = [P {exp — /f (z)dz}]*.

However, if we write g(.) = f(b—.) , the occupation density theorem gives

/ f@)2(a)is = [ " g(x)ds = | ot~ s,

where Y = X — X and 7 is the inverse of | = I¥). Applying the master formula of
excursion theory gives, with ¢ = ((¢) standing for the lifetime of a generic excursion
g, :

POen- [ f0z@i) = eo—([ d [ 2@ -ep- [ “gft - efuul)

= [PO{exp— / f(z)Z(x)dz})®
by virtue of (4), and the result follows. B

Next, we deduce the second Ray-Knight theorem. We write o for the inverse of L0
and Q¢ for the measure of the square of a Bessel process of dimension §, starting from
z and killed on hitting zero.

Theorem 2.2. For fized t > 0 let U = (U 2 > 0}, where U® = L*(o;). Then
under P(®) the law of U® is Q2 .

Proof. For o > 0 it is clear that, given L*™(0;) = to,{L*"*(0:),z > 0} is inde-
pendent of {L¥(s,),0 < y < Zo}, and is distributed as U®). Thus {US,z > 0} is
Markov, and the result will follow if we can show that, for all Borel subsets A of [0, o)
and any t > 0,2 > 0,

(5) PE{UY e A} = Q¥*{X, € A}.
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Now by Theorem 2,
PO{UY =0} = PLYT,) > t} = Q3*{X. > t},

whereas, writing A, = sup{s : X, = t}, it follows by time reversal(see e.g.Ex.1.23,
p420 of [9]) that

QP {X, =0} = Qi*{To <z} = QF***{\ < z}.
Finally, using the scaling property and the fact that the Q3+** distribution of )
coincides with the Q2* distribution of {X;}~? (see Ex 1.18, p418 of [9]), we see that
(5) holds for A = {0}. Next, on {UP > 0}, we set T = inf{s > T, : X(s) = 0},and
write
(6) U® = L*(T) + {L*(0) - L*(T)}-

Since the excursions of X below z after time T, have the same structure as the excur-
sions below zero of a Brownian motion, it is clear that, given L°(T;) = s, the terms
on the RHS of (6) are independent and, by the Ray-Knight theorems for Brownian
motion, have the distribution of X, under Q% and Q?_; respectively. Using the com-
position law for squares of Bessel processes (Theorem 1.2, p410 of [9]) and appealing
again to Theorem 2 gives

PO

m

t
dy) = [ QX € ds}QE (X, € dy)
0
dy ' 2&
= = Q¢ X, € ds}Q{X, € dt — s}
0
_ W00
= dto {X, € dt}.
Finally, time reversal gives
1 2403 1 2 1~
N a XI dt} = —Q* T 3 = —Q z )
FOXe € dt) = QX € dyTy > 2} = 20X, € dy)
which completes the proof of (5). B

3. THE PROCESS KILLED ON LEAVING [—a, b].

We will write S = S(a,b) = T_, AT, for the first exit time of [—a, b], and Vp+ for an
independent, exponentially distributed random variable with parameter * = 62/2 .

Theorem 3.1. It holds that, for a > 0,b > 0,

inh a6 ¢
7 ()G < Ve b} = (o
) PIS < Vo X(S) = b} (sinh(a+b)9 ’
fOT0<y<b7
@® P@{S < Vg3 X(S) = —a, X(S) € dy} = af(sinh af)*

{sinh(a + y)g}a+1 Y
and for —a < 2 < y,0 < y < 00,

&*(sinh af)* sinh(a + 2)8
{sinh(a + y)o}a+!

(9) POT_, > Vor; X(Vr) € dz, X(Vr) € dy} = dydz.
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Proof. Write A(6%,¢) for {e : {(¢) > Vir} U{e : {(e) < Vi»,E(¢) > ¢}, and recall that

(10) n(A(6*,c)) = 6 cothch.

Then P(*){S < Vp; X(S) = b} = P@{$ > b}, where ¢ = inf{s : e, € A(6",a + s)}.
Thus

AN

P@{s Vo; X(S) = b} = exp{— / bn(")(A(e‘,a + 5))ds)}
0

b
= exp{—-&/ 6 coth(a + s)8ds},
0
from (4) and (10), and (7) follows. Also
PO{S < Vp; X(S) = —a,} = PO{T_, < Ty AV}

b
/ PE{p > yIn{e : Tuy, < ((€) A Ver by
0

/" sinhad % a6 p
o |sinh(a+y)8J sinh(a+y)d v

where we have used another standard result for Brownian motion, and this is equiva-
lent to (8). Similarly

POS > Vp; X(Vir) € d2}

b
- / PO > yhn e s ((e) > Vir,2(Ver) < 0y, (Vir) € 3y ~ de}dy

z

and since, for 0 < u < v
nf{e : ((€) > Ve, &(Vor) < v,e(Vp) € du}
n{e: T, < C(e) A Vo }PO{X (Vi) € du, Ty AT, > Ve }
0 fsinhufsinh(v — u)fdu) _ 6°sinh(v — u)f
sinhuf [ sinh v "~ sinhof

du,

(9) is also immediate. 1
From this some known results in [2] and [8] follow immediately.
Corollary 3.2. For a-perturbed Brownian motion we have

a
a+b

(11) P X exits [—a,b] at b} = ( )&,
E@ {0 T} = =500,

and
@ (gtTay _ [ __GB(simhat)®
B{e™ ) / {sinh(a 1 )0)o Y-

We can also deduce some facts about X conditioned “to stay positive”;
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Corollary 3.3. It holds that
v \*
. . (a) f _—6°T} e [ -
(12) lifgllchlgE {e | X exits [—a, k] at k} (_sinhb0> ,
and

1i{g’1ciTmP<°>{X(%.) € dz| Xexits [—a, k] at k}

%)
@ Tdydz.

_ plta. . oo
(13) = 0 zsmhzﬂ./z 7 [sinh y@}aTT

Proof. Note that for k > b ,

POT, < Vp | Xexits [—a, k] at k}
P8 < Vg, X(S) = b} PO X exits [—(a +b),k —b] at k — b}}
P@{X exits [—a,b] at b}
sinhald ., a+b ., a .,
{sinh(a + b)9} {a + k} {a + k} ’
which does not depend on k. So (12) follows by letting a | 0.
Similarly, we see that for z <y < k

P {X(Vpe) € dz, X (Vi) € dy | exits [—a, k] at k}
= PCT_ ;5 Vi, X(Vor) € dz, X (Vo) € dy} PO{X exits [~(a+2z),y—z]aty— 2z}
N {P(C'){X exits [—(a+y),k —y] at k — y}}
P@){X exits [—a, k| at k}
_ &b (sinh af)® sinh(a + z)adydz z+a (a+y>a (a+ k)a
{sinh(a + y)@}o+! ‘y+a \a=k) ° ’
and this leads to (13).

a

REMARK Using (13), it is not difficult to show that there is a probability measure
R® say, which is the weak limit of P(®(. | X exits [-a,k]) as k T co and a | 0 ,
and it would be interesting to describe X under R® . Of course R(® corresponds
to the BES(3) process, and one way to realize that is as |B;| + L, ,where L is the
local time at zero of | B|. This suggests the process £¢) = |B| + 2L , which has been
studied in [11],chapter 4, as a candidate to have the R(®) measure, for some suitable
6 . Furthermore, when § = 2(1 — a), one can check that, under P, the time-
reversed process {1 — X1,_;,0 < t < T}} has the same measure as {Efé),O <t< ,\ﬁ‘”},
where A = sup{s : £ = 1}. (I owe this observation, which extends a well-known
connection between Brownian motion and BES(3), to Loic Chaumont.) However it
follows from results in [1] that if 7 is the hitting time process of &%, then

_er®, &b b dy
Bte™ ™) = Ganways /0 (sinh )"

Since this disagrees with (12),we conclude that £©) does not have R(® as its measure.
This question is discussed further in [6].
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