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Abstract. - We extend the so-called topology of semimartingales to continuous
semimartingales with values in a manifold and with lifetime, and prove that if the
manifold is endowed with a connection V then this topology and the topology of
compact convergence in probability coincide on the set of continuous V-martingales.
For the topology of manifold-valued semimartingales, we give results on differentia-
tion with respect to a parameter for second order, Stratonovich and Itô stochastic
differential equations and identify the equation solved by the derivative processes.
In particular, we prove that both Stratonovich and Itô equations differentiate
like equations involving smooth paths (for the Itô equation the tangent bundles
must be endowed with the complete lifts of the connections on the manifolds).
As applications, we prove that differentiation and antidevelopment of CI families
of semimartingales commute, and that a semimartingale with values in a tangent
bundle is a martingale for the complete lift of a connection if and only if it is the
derivative of a family of martingales in the manifold.

1. Introduction

Let (0, P) denote a filtered probability space, M a smooth connected
manifold endowed with a connection V. Then the tangent bundle TM inherits a
connection V’ (usually denoted by ve), the complete lift of V (see [Y-I] for détails).
Let X be a continuous semimartingale with values in M. The antidevelopment of X
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in TXoM is the semimartingale Z solving the Stratonovich equation

p(8Z) = Zo = 0, (1.1)
where U is a horizontal lift of X taking values in the frame bundle on M and p is the
canonical projection in T M of a vertical vector of T T M. The map A will denote the
antidevelopment with respect to V and A’ the antidevelopment with respect to V’ .

The initial motivation of this paper was to answer the following question: For
some open interval I in R, consider a family of continuous

martingales X(a) in M, each with lifetime ~(a), differentiable in a for the topology
of compact convergence in probability. Is then also (J~(a), ~t(~(a))) differentiable in
a, and if the answer is positive, do we have the relation s ( 8aA( X (a) )) = A’ (8aX (a) )
(where ~a denotes differentiation with respect to a and s is the map TTM ~ TTM
defined by s(âQâtx(t, a)) = âtaax(t, a), if (t, a) H x(t, a) is smooth and takes its

values in M)?
A positive answer will be given to this question, and this result will be obtained as

a particular case of general theorems on stability of stochastic differential equations.
In this paper equations of the general type

DZ(a) = f (X (a), Z(a)) DX (a) (1.2)
between two manifolds M and N are studied, where VX(a) denotes the (formal)
differential of order 2 of X (a), and f is a Schwartz morphism between the second
order bundles TM and TN. The topology of semimartingales, defined in [El] for R-
valued processes, will be adapted to manifold-valued semimartingales with lifetime.
In particular, it will be shown that the map (X, f, Zo) (X, Z) is continuous, where
Z is the maximal solution starting from Zo to DZ = f(X, Z)DX, with appropriate
topologies on both sides.
When applied to a certain family of semimartingales and an appropriate Schwartz

morphism, this result will tell us that if X (a) is C~ in the topology of
semimartingales, and further if f is C~ with locally Lipschitz derivative, Z(a) the
maximal solution to (1.2) with (Zo(a))aEl C1 in probability, then (X (a), Z(a))
is C~ in the topology of semimartingales and the derivative 8aZ(a) is the maximal
solution to

DâaZ(a) = f’ (âaX(a), âdZ(a)) DâaX (a) (1.3)
where f’ is a Schwartz morphism between the second order bundles rTM and rTN.

As a corollary, we obtain results on differentiability of solutions to Stratonovich
and Itô equations. It will be shown that they can be differentiated in the same way
as solutions to ordinary differential equations (for the Itô case, the Itô differentials of
the derivative process have to be defined with the complete lifts of the connections).

If M is endowed with a connection V, then it will be shown that, as in the flat
case, the topology of semimartingales and the topology of uniform convergence in
probability on compact sets coincide on the set of martingales. Using these results it
will be possible to prove commutativity of antidevelopment and differentiation.

ACKNOWLEDGEMENT. - We would like to thank Michel Émery for his comments
and suggestions to improve this paper.
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2. Topologies of semimartingales and of uniform convergence in
probability on compact sets

2.1. . l~d -valued processes

In this section we define topologies of uniform convergence in probability and of
semimartingales for processes with lifetime. We investigate their main properties.

Let P) be a filtered probability space satisfying the usual condi-
tions. If ~ is a predictable stopping time, we denote by D~ (l ~d; ~) the set of continuous
adapted Rd-valued processes with lifetime 03BE, and by (IRd;03BE) the set of]Rd-valued
continuous semimartingales with lifetime g. These sets are described as follows: an
element of De (]Rd; ~’) (resp. ~)) is the image under an isomorphic time change
A: [0, ~~ ~ ~~ > 0} x ~0, oo) of an Rd-valued continuous adapted process (resp. semi-
martingale) defined on the probability space ~{~ > 0}, (~-i) ~~, P( . ~ ~~ > 0) .
They can be endowed with a complete metric space structure, as in the case 03BE = ~,
which gives respectively the topology of compact convergence in probability and the
topology of semimartingales (see [El]). Let J’ denote the set of predictable stopping
times and let

Ôc - U ~ 
= U .

03BE~ 03BE~

The sum X + Y, différence X - Y, product (X, Y) of two processes with lifetime
is a process with lifetime the infimum of the lifetimes of the two processes. The
lifetime of a process X will be denoted by ~X .

If T is a predictable stopping time, we can define the operations of stopping at
T and killing at T on the sets and let X be an element of D~ 
or ~(l~d). Then the process XT stopped at time T is the continuous process with
lifetime + ~X which coincides with X on [0, T I1 ~X ~ and is
constant on [T, oo[ n {T  ~X}; the process XT- killed at time T is the continuous
process which has lifetime T and coincides with X on [0, T I1 ~X ~. is any

predictable stopping time, then by T  ~ we will mean T  ~ on ~~ > 0} and T = 0
on {~ = 0}.

Let us define a topology on the sets If X E with

lifetime çx, T a predictable stopping time such that T  çx and ~ > 0, one defines
neighbourhoods of X with the sets

= Y E sup  EL L J J
(with the convention that sup0 = 0 and ~Zt~ = +~ if t ~ 03BEz) and

~) = Y E l~ {~Y > ~X + Xt exists}  E }
(the second condition will insure that the topology is separated).

Analogously, one defines neighbourhoods of X E by setting

V(X, T, ê) = {Y E E[l A v(Y - X)r]  ~}
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where if Z = Zo + M + A is the canonical decomposition of Z E ~(l~d),

d t

~o /
(with the convention that v(Z)t = +00 if t > çz) and

W(X, ~) = Y E 1~ {~Y > ~x + ~~ n Xt exists}  ~ .

PROPOSITION AND DEFINITION 2.1. - The basis of neighbourhoods

Vcp(X,T, ~) ~ Wcp(X, ~’), X ~ c(IRd) } ~,~’ > 0 , T predictable

(resp, V(X, T, ~) ~ W(X, ~’), X ~ (IRd)) stopping time such that T  03BEX,

defines a separated topology on (resp. such that every point has a
countable basis of neighbourhoods. This topology will be called the topology of compact
convergence in probability (resp. the topology of semimartingales) .

REMARKS. - 1) If for the topology in (resp. converges

to X, then çxn converges in probability to çx and çxn converges to çx in

probability on the set Xt exists}.
2) Let ç E ~. The topology of the complete metric space ~), dcp) (resp.

(~(l~d, ~’), dsm)) defined in is exactly the topology induced by (resp.
~{~d)) on ~) (resp. ~))~ .

Proof o f Proposition 2.1. - We are going to prove this for To see that

every point has a countable basis of neighbourhoods, one shows that is is sufficient to
consider an increasing sequence of predictable stopping times (Tm)mEN converging
to çx and such that Tm  ~x for all m.

Let us show that the topology is separated. If X ~ Y, then two situations can
occur. Either there exists e > 0 and a predictable stopping time T with T  çy
and Efl A sup > 2e in which case T, e) n T, ~) = 0, or

L OtT -’

= with  ~x) > 0 and there exists e > 0 and a predictable stopping
time T satisfying T  03BEX such that + 26-  T, lim Yt exists > 2~; in this
case, one verifies that Vcp (X, T, c) n Wcp (Y, E) = 0. []

REMARK. - Convergence for the topology of semimartingales implies compact
convergence in probability.

For 1  p  oo and ~ E ifi, let ~) denote the Banach space of processes
X E such that  ~, where Xt = on

0  ~  ~ and sup0 = 0. Let = 
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DEFINITION 2.2. - We say that a sequence in converges to
X E locally in ( resp. i f the following two conditions are
satisfied :

(i) There exists an increasing sequence of stopping times converging to ~X
such that for any m, Tm  ~X, , belongs to (resp. 
for n sufficiently large and converges in Tm) (resp. Tm)) to 

(ii) The lifetimes ~Xn converge in probability to the lifetime ~X on the set

Xt exists}.

For 1  p  oo and 03BE E let ,03BE) be the space of processes X E 03BE)
such that =  ~. Let = 03BE).

DEFINITION 2.3. - We say that a sequence in converges to
X E locally in (resp. if the following two conditions are
satisfied:

(i) There exists an increasing sequence of stopping times converging to ~X
such that f or any m, Tm  ~X, , belongs to Tm) (resp. Tm))
for n sufficiently large and converges in Tm) (resp. Tm)) to XTm-.

(ii) The lifetimes ~Xn converge in probability to the lifetime ~X on the set

Xt exists}.

Note that local convergences are not derived from topologies. Their relation
to topologies is described in the following proposition which is the analogue for
processes with lifetime of [El] Proposition 1 and Theorem 2.

PROPOSITION 2.4. - Let p E ~1, oo~ and let E c ( resp. E C .

Let F be the sequential closure o f E f or local convergence in D~ ( resp. ~ (l~d ) ), ,
let G be the closure of E for the topology of compact convergence in probability (resp.
for the topology of semimartingales) , and let Kp be the sequential closure of E for
local convergence in Sp (resp. Hp (1~d ) ) .
ThenF=G=Kp.

REMARK. - Proposition 2.4 can be rewritten as follows: let be a

sequence of elements of (resp. Then the following three conditions
are equivalent:

(i) for every subsequence there exists a subsubsequence which

converges to X ° locally in (resp. 
(ii) converges to X° in the topology of compact convergence in proba-

bility (resp. in the topology of semimartingales),
(iii) for every subsequence there exists a subsubsequence which

converges to X° locally in (resp. .

Proof of Proposition 2.4. -1) Second equality: We will give the proof for compact
convergence in probability. The proof for semimartingale convergence is similar.

To prove K1 C G, it is sufficient to verify that if X’~ converges to X locally
in then Xn converges to X for the topology of compact convergence in
probability, and this is almost evident.
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We are left to prove that G C Koo, 1.e. that for every sequence X~ converging to
X for the topology of compact convergence in probability, there exists a subsequence
which converges to X locally in One easily shows that condition (ii) of
local convergence is satisfied, without extracting a subsequence. By extracting a
subsequence to obtain an a.s. convergence of çx and by stopping at a time
smaller than çx but close to çx in probability, one may assume that all the terms
of the sequence belong to , oo) . One can also assume that X = 0. It is

then sufficient to show that we can find a stopping time T as big as we want for
the topology of convergence in probability and a subsequence such that

converges to 0 in S°° , oo) (a sequence of stopping time increasing to 00
and a diagonal subsequence give then the result). But for every M E N*, 
converges in probability to 0. By extracting a subsequence one can assume that the
convergence is almost sure. The end of the proof is similar to the proof of Egoroff’s
theorem: let ~ > 0, Tnm = M 039B inf{t > 0, 1/m}, Sm = n(m)
such that P(Sn(m)m  M - 1)  ~ 2m, and R = infm~N* Sn(m)m. Then R is as close
to 0o as we want and converges a.s. uniformly to 0.

2) The proof of the first equality is identical as the one for infinite times. []

As a corollary, using the demonstration of Theorem 2 in [El], one can show that
a sequence of elements of converges to X E if and only if it
converges in and for all bounded predictable process H with values in 1~~,
(0 HdXn)03BEX- converges in c(R) to °0 HdX (compare with the definition of the
topology of semimartingales in [E1]).

DEFINITION 2.5. - Let E, F = or and let E ~ F be a map.
We will say that ~ is lower semicontinuous if f or every sequence o f elements
in E converging to X E E, the sequence ({~(X’~))~~~X~-)nE~ converges to 
An important example of a lower semicontinuous map is X H E 

if X ~ ~(X) E is continuous and p: -~ R~ the canonical projection.
Note also that if X ~ ~(X) is lower semicontinuous, and if both X and ~(X) are

in De (or ~) and the lifetime of ~(X) is greater or equal to the lifetime of X, then
X H (X, is continuous.

With Proposition 2.4, one can investigate continuity properties for operations
on the sets of continuous adapted processes and of semimartingales. For m E N,
let denote the set of real-valued Cm functions on ]Rd, endowed with the
topology of uniform convergence on compact sets of the derivatives up to order m.

PROPOSITION 2.6. - 1) The map

CO(Rd) x --~ 

(h, X) ~---~ h(X)

is lower semicontinuous.
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2) The maps

C2(JRd) x --~ 

(h, X ) ~-H h(X ) 
;.

and

(IRd) ~ (IR)

X ~ H Mi, Ai, Mi,Mj>

are lower semicontinuous, where X = Xo + M + A is the decomposition of X into
the value at 0, a local martingale and a process with finite variation.

3) Let T be a predictable stopping time. The map

(resp. 2014~ (resp. 
X H 

is continuous, and

(resp. 2014~ (resp. 

is lower semicontinuous and continuous at the points X with lifetime ~X such that
= T) = o. 

’

4) Let U be an open subset o f . I f X belongs to , let Tu(X) denote the
exit time of X from U, i. e., Tu(X) = inf ~t > 0, Xt ~ U} (withinf0 = +oo) . . Then

’_’_~ 

X H 

is lower semicontinuous, and

(~(I~d)) -~ De(U) (Y(U))
X H 

is continuous.

In part 4), De(U) is the set of elements of which take

their values in U, endowed with a topology defined in the same manner.

Proof. - 1 ) By Proposition 2.4, is sufficient to show that for every sequence

(hri, X n) converging to (h, X), there exists a subsequence such that

satisfies condition (i) of local convergence to h(X) in But using

again Proposition 2.4, by extracting a subsequence, we can assume that the X~ are

locally bounded and converge locally a.s. uniformly to X. We conclude using the
fact that h is uniformly continuous on compact sets and h’~ converges to h uniformly
on compact sets.
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2) The proof is analogous to 1) using the equality

v(h(X)) = |h(X0) | + (0Dih(X)Djh(X)dMi,Mj> )
1/2

+ 0|1 2Dijh(X)dMi,Mj> + Dih(X) dAi |
and condition (i) of local convergence in 

3) The proof is left to the reader.
4) We only give a sketch of the proof for the second assertion. It is sufficient

to prove that for every T satisfying T  Tu(X) ~ ~X, ~ T converges
in probability to T, and that converges in probability to Tu(X) on the
event t-~~X lim (X Xt exists in U . But this is a consequence of the existence

for every subsequence of a subsubsequence which converges locally a.s.
uniformly. fl

A consequence of 1) is that if F is a closed subspace of Rd, then taking
h(x) = dist(x,F) shows that the subset of D~ consisting of F-valued
processes is closed. This topological subspace will be denoted by (~(F)).

Property 4) is very.useful for the study of manifold-valued processes and stochastic
differential equations. It removes problems in connection with the exit time from
domains of definition. It allows localization in time.

We are now interested in differentiability properties.

DEFINITION 2.7. - Let a H X(a) E be defined on some interval I in l~.

1 ) The map a H X (a) is differentiable in at ao E I i f it is continuous at ao
and if there exists Y E such that X(a) - X(ao) converges in to Y as( ) 

a-a ao 
9 ( )

a -~ ao . Then (X (ao), Y) is called the derivative of X at ao.
2) The map a H X(a) is C1 in if for all ao E I, a H X(a) is differentiable

in at ao, and if the derivative a ~ Y(a) is continuous in . The

semimartingale Y(a) is denoted by 8aX (a) .

3) For k > 1, the map a H X(a) is in if a ~ X(a) is C1 in 
and is Ck in 

REMARKS. - 1) In the first part of the definition, one asks a H X(a) to be
continuous at ao only to guarantee that ~X(a) converges in probability to X(ao) on
the set ( lim Xt(ao) exists.

2) In the same manner, replacing by in Definition 2.7, the notion
of a map a H X (a) E being C~ in can be defined.

The following proposition says that regularity of paths implies regularity in
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PROPOSITION 2.8. - Let k > 0. Suppose a H X(a) E , with lifetime ~(a), ,
is defined on an open interval I in l~. Assume that w-almost surely, a H ~(a)(cv) is
lower semicontinuous and continuous at ao if lim Xt(ao) exists, a H Xt(a)(w)
is of class Ck on its domain for all t, and that the map (t, a) H 
defined on { {t, a) E I~. x I, 0  t  ~ (a) (cv) }, is continuous.

Then a H X (a) is Ck in .

Proof. - Let us first consider the case k = 0. Let be a sequence of

elements of I converging to ao E I. Then converges almost surely to 
on the set ( lim Xt(ao) exists, hence for e > 0, E Wcp(X(ao),e) for l
sufhciently large. Since A converges almost surely to the stopping
times T’m = infl>m03BE(a0) A are predictable, increasing in m, and converge still
almost surely to Thus there exists a sequence of predictable stopping times

increasing almost surely to such that almost surely, for all m,

By the second part of Proposition 2.4, it is sufficient to show that 

converges in to X(ao)Tm- as l tends to ~. But on 0}, almost surely,
there exists e(w) > 0 such that the map

~0, Tm (co)~ x ~ao _ e ( w ), ao + ~(w)~ --~ 1~d

(t~ a) ~ 

is well-defined and uniformly continuous. Thus lim = o
otTm,

almost surely on 0}, and this gives the convergence of to X(ao)Tm-
in Hence we have the result.

If k =1, let a°, be as above. It is sufficient to prove that for

every m,

- 

ai - ao

converges to in as l tends to ~. Almost surely on {Tm > 0},
there exists e(w) > 0 such that the map

L0, Tm (w)] x ~ao _ e(w), ao + e{r~)~ ~ l~d

(t, a) "~ 

is defined and uniformly continuous. But, for such w, t, a, we have

~Xt(a) - Xt(a0) a - a0 - ~aXt(a0)~ ~ sup ~~aXt(b) - ~aXt(a0)~,

hence

sup~Xt)al) 

- Xt(a0) al - a0 

- ~aXt (a0 )~

~ sup sup ~ ~aXt(b) - ~aXt(a0)~
Il 
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and the left-hand side converges almost surely to 0 as l tends to oo. It implies that

converges to 8aX Tm- (ao) in tends to oo.

If k > 2, one can prove in the same way by induction that for l  k, a X (a) is
C~ in and almost surely, for all t, = 0

REMARK. - Proposition 2.8 is false with .

2.2. . Manifold-valued processes

Let M be a connected smooth manifold endowed with a connection V. With

respect to some fixed filtered probability space for every pre-
dictable stopping time ~, let let ~’) denote the set of M-valued adapted
continuous processes with lifetime ~, and the set of M-valued continuous

semimartingales with lifetime ~. The spaces De (F; ~), Y(F; ~), De (F), ~(F), where
F is a closed subset of M are defined by analogy with the previous definitions.

Let ~: M 2014~ 1~d be a smooth proper embedding. Then f/J(M) is a closed subset
of Rd. As a consequence, resp. (~(~(M)), dsm), is a topological
subspace of resp. By means of the diffeomorphism M ~ 
we obtain complete topological space structures on De (M) and Y(M).

DEFINITION 2.9. - Let ~: M --~ Rd be a smooth proper embedding.
1) The topology of compact convergence in probability on is the topology

induced by the diffeomorphism M --~ and the topological space D~(~(M)).
2) The topology of semimartingales on is the topology induced by the

diffeomorphism 03C6: M ~ 03C6(M) and the topological space (03C6(M)).

Since every smooth function on M is of the form for some smooth g: R~ 2014~ R,
it is easy to see that the induced structures are independent of the choice of the
proper embedding ~.

Independent of the proper embedding § are also the notions of local convergence
in and of local convergence both in and in This
is of great importance in the sequel.

With a proper embedding ~, we can also define differentiability for families of
processes in Dc(M) (resp. In this case, if a is differentiable
at ao and Z is the derivative of ~(X (a) ) at ao, then it is easy to verify that
Z takes its values in and the derivative of X(a) at ao is the process
8a X (ao ) = with values in (resp. .

Let be the set of continuous martingales with lifetime in By
[E4 4.43], .~o(M) is closed in De (M). This implies that it is also closed in Y(M).

PROPOSITION 2.10. - On the topology of compact convergence in
probability and the topology of semimartingales coincide.

To establish this result, we need some lemmas.
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LEMMA 2.11. - Every point x of M has a compact neighbourhood V, contained

in the domain of a chart h, together with a smooth convex function V x V -~ 1(~
which satisfies the following conditions :

1) For all x, y E V, y) = 0 if and only if x = y,
2) There exists a constant c > 0 such that for all (X, Y) E TxM x x, y E V,

with coordinates X = dh(X ), ~ = dh(Y) E ~d,

(V ® y) ((X (X ~ Y)~ ~ c 

3) For every Riemannian metric ~ on V there exists a constant A > 0 such that
~A~Z.

It is proven in [K] that convex geometry (the existence of a convex function ’If;
satisfying 1)) implies that every V-valued martingale has almost surely a limit at
infinity.

Proof. - We show that the function ’If; defined in [E4 4.59] has the desired
properties. For xo E M, take an exponential chart (h, V) centered at and define

y ) - 2 1 (e2 + + 

Note that ’If; satisfies 1) and 3). It is proven in [E4 4.59] that, if V is sufficiently
small, one can choose e > 0 and 0  ~i  1 such that if U = (Ui U2) E TV ®TV is a
tangent vector with coordinates (X, Y) where X = dh(Ul), Y = dh(U2),
then

(o ® U) >- (1- a) Y~2 + + 

~ (1 - ~) e2 ~~X - Y~~2.
This gives 2). []
LEMMA 2.12. - Let V, 8 be as in Lemma 2.11. There exists a constant C > 0

such that if Y and Z are V-valued martingales, h(Y) = ... , Yd) and h(Z) =

(Z1, ... Zd) in coordinates, then

E[03A3  Yi - Zi,Yi - Zi>~] ~ CIE[03B42(Y~,Z~)] .

REMARK. - In particular, applying this result with a constant Z, we deduce
that the expectation of the quadratic Riemannian variation of Y is bounded by a

constant independent of Y.

Proof o f Lemma 2.12. - Let 03C8 be as in Lemma 2.11. The Itô formula applied to

and (Y, Z) gives
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where 6~~ dénotes thé Itô differential with respect to thé product connection in
M x M. Using thé fact that (Y, Z) is a martingale, we obtain

IE[03C8(Y~,Z~)] = E[03C8(Y0, Z0)] + 1 2IE [~0 (~ ~~)d03C8(Y, Z)(d(Y, Z) ~ d(Y, Z))],
hence by 2) and 3) of Lemma 2.11, we hâve

A IE [03B42 (Y~ ,Z~ ) ] ~ IE [03C8 (Y~ ,Z~ ) ] ~ 
c 2 

IE [ 03A3 Yi - Zi, Yi - Zi>~] .

This gives thé result, with C = 2A/c. []

Proof of Proposition 2.10. 2014 We may assume that M is a closed subset of R , and
hâve to show that every séquence of V-martingales converging in De (M)
to a V-martingale X converges in to thé same limit. By means of thé second
equality of Proposition 2.4 with p = 1, it is sufficient to prove thé existence of a

subsequence which converges to X locally in Since we are allowed to
extract subsequences and since we hâve to prove oniy local convergence, by using
thé second equality of Proposition 2.4 with p = ~, we may assume that 
converges to X in S’~(R~, oo). Still using thé fact that it is sufHcient to prove local
convergence, we may further assume thé existence of a unité increasing séquence of
stopping times such that if 9 and T are two consécutive times in this séquence, then
on [S’,T’[ ail thé and X take values in a compact set V as considered in
Lemma 2.Il. Finally, since thé séquence of stopping times is finite, it is sufficient
to prove convergence on one of thé intervais [9, T[. Hence we assume that 
is a séquence of V-valued V-martingales converging to X in 5’~(R~,oo), and it is
sufficient to prove its convergence to X locally in oo).

Since we are dealing with martingales, thé finite variation parts of the coordinates
satisfy

~(X~ = - . E ~(~") ~~ (~)’> ~

~=-, ~r~(x)d~,~>
where Fijk are thé Christoffel symbols of thé connection. This gives thé bound

’ 

d d

!!~ -  E E!(~ - ~! E (~)’ - ~~ (~ - ~>~~Xn - X~H1(Rd,~) ~ E[03A3|(Xn)i0 - Xi0| 03A3(Xn)i - Xi,(Xn)i - Xi>1/2~

+ 03A3 ~0(|0393ijk(Xn) - 0393ijk(X)||dXj,Xk>|B .

+ !r~(x~ (~(x~)~ - ~, (x~)~ + (x~)~ - ~>~1. .
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The Christoffel symbols are Lipschitz on V, hence by dominated convergence,
~a j,k=1 r~~ (X) X~ > ( converges to 0 almost surely, and
still by dominated convergence and the remark after Lemma 2.12, its expectation
converges to 0. Since the Christoffel symbols are bounded on V, the last terms can
be bounded by

d

C ~ ~  (X n)i - X~, (Xn)~ - Xz>~2  >~2 + X’~ >~2i, j=1 ce , ce , ce 

with a constant C > 0. Using Hölder’s inequality and uniform boundedness of the
expectations of the quadratic variations of V-valued martingales, we are led to

d

show that IE[ 03A3 (Xn)i - Xi,(Xn)i - Xi>~] converges to 0. But, by means of

Lemma 2.12,

d

E ~ (Xn)i _ Xi~ (Xn)~ -  G‘~ ~~2(Xoo~ 
, i=1 

with a constant C > 0, and this gives the result. fl

3. Regularity of solutions of stochastic differential equations

Let M and N be connected smooth manifolds. In this section, we will study
stability of second order stochastic differential equations of the type

DZ = f(X, Z) DX (3.1)

where f E r(T(M)* ® T(N)) is a Schwartz morphism, X belongs to and Z

to 

REMARK. - If P is a submanifold of M x N such that the canonical projection
P -~ M is a surjective submersion, and if f is only defined on P and constrained
to P (see [E3]), then one can extend f in a smooth way to M x N, and one knows
that a solution (X, Z) of (3.1) with (Xo, Zo) E P will stay on P.

PROPOSITION 3.1. - Let be a sequence of elements in converging
to X in , let be a sequence ofN-valued random variables converging
to Zo zn probability, and let ( be a sequence of locally Lipschitz Schwartz

morphisms in r(T(M)* ® T(N)) with uniform Lipschitz constant on compact sets,
converging to a Schwartz morphism f E r(T(M)* ® T(N)). If Zn is the maximal

solution starting from Zô to DZn = f n Zn) DXn, then (X n, Zn) converges in
(M x N) to (X, Z) where Z is the solution to DZ = f(X, Z) DX starting from Zo. .
Moreover, if ~Xn converges in probability to ~X then Zn converges to Z in ~(N).
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Proof. - Let ~Z be the lifetime of Z. We will show that converges

to Z and that Zt does not exist on ~~Z  ~X }, which is stronger than the
results of Proposition 3.1. The second point is known, let us prove the first one.
We have to show that there exists a stopping time T as close to ~Z as we want

and a subsequence Znk converging to Z. Hence we can assume that Xn, X take
their values in a compact subset KM, Zô in a compact subset KN and that X n

converge in H°° (KM, oo) and in S°° (KM, oo) to X. We can also assume that Z
takes its values in KN and has lifetime ~. Consider Schwartz morphisms f K, fK
satisfying the same convergence assumptions as f’~ and f with compact support
K containing a neighbourhood of the product KM x KN. Using the continuity
results of Proposition 2.6 and [E2] theorem 0, we obtain that the solution ZK of

DZK = with (ZK)° = Zô converge in to the solution

ZK of DZK = fK(X, ZK) DX with (ZK)° = Zo. This implies that a subsequence
converges locally in H°° (N) and in S°° (N), but then locally, for indices sufficiently
large, the solutions to the truncated equation coincide with the solutions to the

original equation. This gives the claim. fl

Immediate consequences of Proposition 3.1 are the following results.

COROLLARY 3.2. -1) Let be the set of cI Schwartz morphisms
endowed with the topology of uniform convergence on compact sets of the maps and
their derivatives, and let L°(N) be the set of N -valued random variables endowed
with the topology of convergence in probability. Then the map

x ® T(N)) x L°(N) --~ x N),

defined by (X, f, Zo) ~ (X, Z) with Z the maximal solution of DZ = f(X, Z) DX,
is continuous.

2) Let be the set of cI forms of order 2 endowed with the topology of
uniform convergence on compact sets o f the maps and their derivatives. Then the

map

is lower semicontinuous.

EXAMPLE. - Here we give an example of a sequence of deterministic paths
converging uniformly to a constant path, but such that parallel transports above
the elements of this sequence do not converge. This shows in particular that in 1)
we cannot replace the topology of semimartingales in by the topology of

compact convergence in probability, unless we restrict for instance to the sets of

martingales with respect to a given connection.
Let M be a simply connected surface endowed with a rotationally invariant

metric about o E M, represented in polar coordinates as ds2 = dr2 + g2 (r) d03B82 for
some smooth function g. Let t ~ E M be a path in M, defined on the unit
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interval [0,1], with polar coordinates r(t) and = at for some a > 0. A
straightforward calculation shows that the rotational speed of a parallel transport
above x in polar coordinates is -ag’ (e) . Hence the rotational speed in an exponential
chart with centre o which realizes an isometry at o is ~(1 - g’(e)) (note that this
gives 0 if the metric is flat).

In the following, M is taken to be an open subset of the sphere S2. Thus we have
g(r) = sin r, and a(1- g’(~)) = Consider the sequence of paths 
defined in polar coordinates by n(t) = 203C0nt and - en = arccos(l- (hence
27rn(l - cos en) = 7r). Since 0, we get uniform convergence of to the
constant path o. But for all n, the rotation at time 1 of a parallel transport above
xn is 7r. Hence parallel transports above xn do not converge to a parallel transport
above o.

In the sequel we are seeking differentiability results. This requires some geometric
preliminaries. We will use the maps defined by Cohen [Cl]
and [C2] to describe stochastic differential equations in manifolds with càdlàg
semimartingales.

DEFINITION 3.3. - Let k ~ N. A Schwartz morphism f E r(T(M)* ® T(N))
(resp. a section e E r(TM* ® TN)) is said to be of class CLip if f (resp. e) is C~
with locally Lipschitz derivatives of order k.

We say that a measurable map ~: M x N x M -~ N is of class CLip if there
exists a neighbourhood of the submanifold {(x, z, x), (x, z) E M x N} on which ~
is C°° .with respect to the third variable and all the derivatives with respect to this
variable are Ck with locally Lipschitz derivatives of order k (with respect to the three
variables) .

LEMMA (AND DEFINITION) 3.4. - Let k ~ N. For every Schwartz morphism
f E r(T(M)* ®T(N)) of class CLIp, , there exists a map ~: M x N x M ~ N of class

CLip such that f or all (x, z) E M x N

f(x,z) = 

where T3~ denotes the second order derivative of ~ with respect to the third variable.
Such a map ~ will be called a Cohen map associated to f. .

In particular, a Cohen map satisfies z, x) = z for all (x, z) E M x N.

Proof. - First, we remark that it is sufficient to construct ~ in a neighbourhood
of the submanifold { (x, z, x), (x, z) E M x N} and to extend it then in a measurable
waytoMxNxM.

Let VM (resp. VN) be a connection on M (resp. N). There exists a neighbourhood
of the diagonal of M x M on which the maps (x, z) H v(x, z) = ~y(0) and (x, z) ~
u(x, z) = ~(o) are smooth, where y is the geodesic such that ~y(o) = x and ~y(1) = z.
There exists a neighbourhood of the null section in T N on which the exponential
map, denoted by expN, is smooth. If u OE TN is a second order vector, denote by
F(u) E TN its first order part with respect to the connection (see [E4] for the
definition) .
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Thus there exists a neighbourhood V of { (x, y, x), (x, y) E M x N} such that
the map

(x, y, z) H expN f (x, y) v(x, z) + -F( 2 1 f (x, y) u(x, z))
is defined and satisfies the regularity assumptions. We have to verify the equation

y, x) = f (x, y). For this, it is sufficient to check that these maps coincide on
elements of T~M of the form (o) and ~(o) where, is a geodesic with ~y(o) = x and
~ ( 1 ) = z. A change of time gives

03C6(x, y,03B3(t)) = expN (t f (x, y)v(x, z) + t2 2 F (f (x, y)u(x, z)))
Taking successively first and second order derivatives with respect to t at time 0
gives the result. fl
THEOREM 3.5. - Let a H X (a) be C1 from I to ~(M), , let f E r( T(M)* ®T(N))

be a Schwartz morphism of class CLip, , and a H Z(a) the maximal solution of

DZ(a) = J(X(a), Z(a)) VX(a) (3.2)
where a H Zo(a) is C1 in probability. Then the map a H (X(a), Z(a)) defined on I
and with values in x N) is Cl, , and the process 8aZ(a) is the maximal solution
of

, 

DâaZ(a) = f’(8aX(a), 8aZ(a)) DaaX (a) (3.3)
with initial condition ~aZ0(a) where f’ is the Schwartz morphism of class defined
as follows if f (x, z) = T3 z, x) with a CLip Cohen map ~ associated to f, , then

f’ (u, v) = f or (u, v) E T M x T N, i. e., T ~ is a CLip Cohen map
associated to f’. If moreover a H ~X(a) is continuous in probability, then a ~ Z(a)
is Cl in 

REMARK. - If P is a submanifold of M x N such that the canonical projection
M is a surjective submersion, and if f is only defined on P and is constrained

to P, then one can show that f’ is constrained to TP. As a consequence, by the
remark at the beginning of this section, if belongs to TP, then
(8aX(a),8aZ(a)) takes its values in TP.
LEMMA 3.6. - Let P, Q, R, S be manifolds, p: Q --~ P and ~: R -~ S maps,

and let ~: Q x R x Q -~ Rand P x S x S be Cohen maps such that

~’ o (p, ~, ~p) _ ~ o ~. Then, f or all (x, y) E Q x R, we have

(~P(x)~ ~(y)~ ~P(x)) ° = T~(y) ° y~ x)~ .

If semimartingales X, Z take values in Q, resp. R, and satisfy the equation
DZ = T3 Z, X) DX, then U = cp(X ) and V = satisfy

DV 

Proof. - It is suflicient and easy to prove the first equality with second order
derivatives of curves. The second equality is a consequence of the first one. fl
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Proof o f Theorem 3.5. - Assume that 0 E I. Using Proposition 3.1, it is sufficient
to prove that a e (X (a), Z(a)) is differentiable at a = 0 and that the derivative of
a ~ Z(a) is the maximal solution of (3.3).

Let VM be a connection on M. There exists an open neighbourhood of the

diagonal dM in M x M such that for a ~ 0 the function

01~ -~ vâ := ~Pa (01)

(x, y) ~ 1 a(expNx) -1y
is well-defined and a diffeomorphism. The same objects on N are denoted with the
superscript N. Let 03C6 be a CLIp Cohen map associated to f. It is easy to see that
D(Z(0), Z(a)) = T3 (~, 4) ((X (o), X (a)), (Z(o), Z(a)), (X(o), X (a))) D(X (o), X (a)).
Let T~ (a) be the exit time of (X(o), X (a)) of X(a) = and

Z(a) be the maximal solution to

VZ(a) = T3 (4, 4) (X (a), Z(a), X(a))) DX (a)
with initial condition (Zo(O), Zo(a)). Let then TN(a) be the exit time of Z(a) of 
Using Proposition 2.6, it is easy to see that T M (a) converges in probability to

as a tends to 0, and then that TN (a) ~ converges in probability to .

By Lemma 3.6, defining V(a) = cp~ and Y(a) = ~â 
for a ~ 0, we have that V(a) is the maximal solution in of

T3 ° (~~ ~) ° ((~Pâ ) 1? (~Pâ ) 1 ~ (~Pâ ) 1 ~ ~ ~Y(a) ~ V (a) ~ Y(a)) 
with initial condition Vo(a) = Zo(a)) on {(Zo(o), Zo(a)) For

u E C/~ (resp. u denote by ~â (u) (resp. ~â (u) ) the second coordinate of
(cpâ )-1(u) (resp. (~â )-1(u)). Then the mapping

(a,u,v,w) ~ {03C6Na(03C6(03C0(u),03C0(v),03C0(w)),03C6(lMa(u),lNa(v),lMa(w))) if a ~ 0 ,T03C6(u,v,w) if a = 0,

defined on an open subset of (-1,1) x TM x TN x TM containing the elements
of the form (o, u, v, u) with (u, v) E T M x T N, depends C°° on the last vari-
able and its derivatives with respect to this variable are locally Lipschitz (as
functions of all four variables). This implies the convergence of T3 o (~, ~) o

((03C6Ma)-1,(03C6Na)-1,(03C6Ma)-1)) to 3T03C6 as a ~ 0, and the existence of uniform

Lipschitz constants on compact sets. Since a ’-~ X(a) is differentiable at a = 0,

TM (a) ~ converges in probability to and TN (a) ~ converges in

probability to we have that Y(a) converges to with Y(0) := 8aX(0);
on the other side, Vo (a) converges in probability to 8aZo(0) = Vo (o) on {~Z (o) > 0}; §
hence we get by Proposition 3.1 that (Y(a) V (a)) converges to (Y(o), V (o)) where

V(0) is the maximal solution of

= T3 V (o), Y(o)) DY(o)
with initial condition Vo(0) = 8aZo(0). This implies that a H (X(a), Z(a)) is

differentiable at a = 0 and that its derivative is (Y(o), V (o)). fl
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We now want to investigate Stratonovich and Itô equations. In the following,
if (t, a) H x(t, a) is a map defined on an open subset of R2 and with values in
a manifold M, x(t, a) will denote its derivative with respect to t, and x(t, a) will
denote the second order tangent vector such that for all smooth function g on M,
x(t, a) (g) = ât (g o x) (t, a). For a smooth function g on M, d2g will denote the second
order form defined by (d2g, x(t, a)) = x(t, a) (g) (see ~E4~).
LEMMA 3.7. - Let J, I be two intervals in 1~. Suppose that (t, a) H x(t, a) E M

and (t, a) H z(t, a) E N are C2~1 maps defined on J x I, and satisfy for each a

z(o, a) = T3 ~(x(o, a), z(o, a), x(o, a)) x(o, a) (3.4)
where ~: M x N x M -~ N is a CLip Cohen map. Then

(âaz)" (o, a) = T3 a), a~z(0, a), âax(o, a)) (aax)"(o, a).
Proof. - It is sufficient to prove

/d2~? (aaz)..(~~ a)‘ = /d2~~ T3 a)~ a)~ a)) (aax)~~(~~ a)~ (3.5)
and

(~~ a)Î2 = T3 a)a a)~ a)) (0, a)~2 (3.6)
for l = g o 03C0: TN ~ R and l = dg: TN ~ R where g: N ~ R is smooth. Equations
(3.5) and (3.6) for l = g o 03C0: TN ~ R, g E are direct consequences
of assumption (3.4). To establish (3.5) for T N --~ R, we define z’ (t, a) =
~(x(o, a), z(o, a), x(t, a)). Then

(d2~~ (aaz)..(~~ a)) = ° z)(~~ a) = ° z)(~~ a) = z(Da a)~
= Ts ~(x(0~ a)~ a)a a))x(0~ a)I
= (z’)~~ (0~ a) ~ = aaat (g ° z~) (~~ a) = at aa (9 ° z’) (~~ a)
= ~2tdg o T03C6(~ax(0, a), ~az(0, a), ~ax(t, a))
=1d2~~ a)~ 8az(0, a)~ a)) (aax)~~(~~ a)~.

Finally, to verify (3.6) for l = dg: TN ~ R, we have to prove that

( 8t 8 a (g ° z)(~~ = (8t 8 a (g ° z~)(~~ a))2~
We first derive from (3.4) that

( 8t (g ° z)(~~ a))2 = (at(9 ° z’)(0~ a))2~
and by taking the square of the derivative with respect to a,

~at(9 ° z)(~~ ( 8t8a (g ° z)(~~ a))2 = (at(g ° z’)(~, a))2 ° z’)(~~ a))2~
Let ao E I. If (ât(goz)(0, ao))2 ~ 0, equality (3.6) is satisfied for a = ao. Now consider
the case (8t(goz)(0, ao))2 = 0. If (8t8a(goz) (0, ao))2 ~ 0 or ao))2 ~ 0,
then we have (ât (g o z) (o, a)) 2 ~ 0 in a neighbourhood of ao (ao excepted) and (3.6)
is satisfied for a = ao by continuity. 0
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DEFINITION 3.8. - A Cohen map M x N x M -~ N is said to be a

Cohen map of Stratonovich type if in addition it has the following property:
if a C2 curve (~y, a) in M x N satisfies â(t) = T3~(~y(t), a(t), ~y(t)) ~(t) then

= T3 ~(’Y(t)~ a(t)~ 1’(t))’Y(t)~
PROPOSITION 3.9. - Let k > 1 and e be a CLIp section of the vector bundle

T*M x TN over M x N. Then there exists a Cohen map ~ of Stratonovich

type such that e(x, z) = z, x) f or ali (x, z) E M x N. is a CLiP Cohen map
o f Stratonovich type, then T M x T N x T M -~ TN is a Cohen map o f
Stratonovich type.

Proof. - The existence of 03C6 of class is a consequence of [E3 Theorem 8],
which gives the existence of a unique Schwartz morphism of Stratonovich type f of
class associated to e, together with Lemma 3.4.

Let 03C6 be a CLIp Cohen map of Stratonovich type; we want to show that T03C6 is
also a Cohen map of Stratonovich type. Let t ~ ~i(t) be a smooth curve with values
in TN and t H b(t) a smooth curve with values in TM such that

~(t) = ~(t)~ ~(t)) ~(t)~ (3.7)

We have to prove that

~(t) =T3T~(~(t)a~(t)~b(t))~(t)~ .

This will be done by means of Lemma 3.7. More precisely, let (t, a) H x(t, a) satisfy
âax(t, o) = ~(t), and let (t, a) ~ z(t, a) E M be a solution of

z(t, a) = a), z(t, a), x(t, a)) x(t, a) (3.8)

with the property 8az(0,0) = ,Q(o). It is easy to verify that ,Q(t) = 8az(t,0) then
already for all t, by exploiting uniqueness of solutions to (3.7) with given initial
conditions and by calculating (dh, (âaz)’ (t, 0)) for h = dg and h = g o 7r where

g: N ~ R is smooth. Since 03C6 is a Cohen map of Stratonovich type, together with

equation (3.8), we get from Lemma 3.7

(aaz)"(t’ a) - T3 a)~ a)~ a)~ a)

which can be rewritten for a = 0 as

p(t) = T3 ~ ~(t) ~ ~(t)) ~(t) 

This proves that T03C6 is indeed a ,Cohen map of Stratonovich type. fl

Rephrased in terms of Cohen maps of Stratonovich type, the following result is a

consequence of [E3 Theorem 8~ .
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PROPOSITION 3.10. - Let k > 1 and let e be a CLip section of T*M x TN
over M x N. Let ~ be a Cohen map satisfying e(x, z) = z, x). . The
equations bZ = Z, X) 03B4X and DZ = T3 Z, X) DX are equivalent if and
only if ~ is a Cohen map of Stratonovich type.

For the rest of this section we assume that both M and N are endowed with

connections and ~N. On the tangent bundles TM and TN we consider the
corresponding complete lifts (~M)’ and (~N)’ of these connections (see [Y-I] for a
definition) .
We will say that a Schwartz morphism f E r(T(M)* ® T(N)) is semi-affine if

for every ~M-geodesic 03B3 with values in M and defined at time 0, for every y E N,
f(03B3(0), y) (0) is the second derivative of a ~N-geodesic in N (see [E3] for details).
In fact f (~y(0), y) ~(0) is the second order derivative ~(0) of the geodesic a which
satisfies a(0) = y and â(0) = a(0)) ~y(0).

DEFINITION 3.11. - We say that a Cohen map ~ is a Cohen map of Itô type (with
respect to the connections ~M and if T3 z, x): T~M ~ TzN is a semi-affine
morphism.

PROPOSITION 3.12. - Let k > 0 and let e be a CLip section o f T *M x T N over
M x N. There exists a CLip Cohen map ~ of Itô type such that e(x, z) = z, x)
f or all (x, z) E M x N. I f k > 1 and ~ is a CLIp Cohen map o f Itô type, then T ~ is
a Cohen map of Itô type (with respect to the connections (~M)’ and (~N)’).

Proof. - The existence of 03C6 is a consequence of [E3 Lemma 11] which gives the
existence of a unique Schwartz morphism of Itô type associated to e, together with
Lemma 3.4.

Let 03C6 be a Cohen map of Itô type; we want to show that T03C6 is also a Cohen
map of Itô type. We have to prove that for all (yo vo ) E T M x T N, T3 Vo, Yo)
is semi-affine, Le., if t H y(t) is a in TM with y(0) = yo, then
the t H v(t) in TN with v(0) = vo, yo) (0) satisfies

v(0) = T3 vo~ Yo) y(0)~
Let (t, a) H x(t, a) E M satisfy x(t, a) = y(t) and such that t H x(t, a) is

a ~M-geodesic for all a. Note that this is possible because y is a Jacobi field. Let
(t, a) H z(t, a) E N be such that for all a, t H z(t, a) is a ~N-geodesic with

z(0, a) = a), z(O, a), x(0, a)) x(0, a)

and z(0, a) = v(0). Since t H x(t, a) and t H z(t, a) are geodesics and
z, x) is semi-affine, we deduce that

z(0, a) = T3 a), z(0, a), x(0, a)) x(0, a).

Now we can apply Lemma 3.7 tô obtain

(âaz)" (0, a) = T3 a), â~z(0, a), â~x(0, a)) (âa~)" (0, a). (3.9)
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It remains to prove that (a~z)"(0, 0) = v(0) and (aax)"(0, 0) = (0). But t ~ a)
and t ~ aax(t, a) are geodesics for (DN)’ and (D~)’, hence it is sufficient to know
that (8~z)’ (0, 0) = v(0) and (0, 0) = (0) (the last equality is already known).
For this, we want to calculate (dh, (0, a)) for h = dg and h = g o ~r with
g: N ~ l~ smooth (we will do the verification only for h = dg). Let h = dg, then

(dh, (0, a)) = 8az(t, a)~
= ° z)(t, a) = ° z)(t, a)
= o (x(0, a), z(O, a), x(t, a))
= ~ (x(0, a), z(O, a), x(t, a))
= a)~ a~z(0~ a)~ a))Î
= (dh, T3T~(â~x(0, a), âaz(0, a), âax(0, a)) (aax)’ (0, a)~.

In particular, for a = 0, this gives

(dh, (âaz)’ (0, 0)~ _ vo~ yo) (~)~.
Since v(0) = vo, yo) (0) we obtain v(0) _ (âaz)’ (0, 0) which finally gives
with (3.9)

v(0) _ (0~ 0) = T3 vo~ yo) (0)~

This proves that T~ is a Cohen map of Itô type. fl
Rewritten with Cohen maps of Itô type, we get the following result as a

consequence of ~E3 Theorem 12~ . .

PROPOSITION 3.13. - Let k > 0 and e be a CLIp section ofT* M x T N over M x N.
Let ~ be a CLip Cohen map satisfying e(x, z) = z, x) f or all (x, z) E M x N.
Then the equations = Z, X) and DZ = T3 ~(X, Z, X) DX are
equivalent if and only if ~ is a Cohen map of Itô type.

The main motivation in our study of Cohen maps of Stratonovich and Itô type is
the following result.

COROLLARY 3.14. -1) Let k > 0 and e be a Ck+1Lip section of the vector bundle
T*M x TN over M x N. Assume that a ~ X(a) is Ck in , and a H Z(a) is
the maximal solution of

bZ(a) = e~X (a), Z(a)) 8X(a) (3.10)

where a ~ Zo(a) is Ck in probability. Then a H (X (a), Z(a)) is Ck in x N), ,
and if k > 1, , the derivative 8aZ(a) is the maximal solution of

03B4~aZ(a) = e’ (~aX(a), ~aZ(a)) 03B4~aX(a) (3.11)

with initial condition 8aZo(0) where e’ is the CLip section of T*TM x TTN over
TM x TN defined as follows: if e(x, z) = z, x) with a Cohen map ~
then e’ (u, v) = f or (u, v) E T M x TN . I f moreover a H is

continuous in probability, then a H Z(a) is Ck in 



209

2) Let k > 0 and e be a CkLip section of the vector bundle T*M x TN over M x N.
Assume that M (resp. N) is endowed with a connection ~M (resp. , and denote

by (~M)’ (resp. (~N)’) the complete lift of ~M (resp. in TM (resp. TN).
Assume that a X(a) is Ck in , a H Z(a) is the maximal solution of

= e(X (a), Z(a)) (3.12)

where a H Zo(a) is C~ in probability. Then a ~ (X (a), Z(a)) is Ck in x N), ,
and the derivative 8aZ(a) is the maximal solution of

= e’ (8aX(a), 8aZ(a)) (3.13)

with initial condition 8aZo(0) where e’ is the Ck-1Lip section of T*TM x TTN over
TM x TN defined in 1) If moreover a H is continuous in probability, then

a ~ Z(a) is Ck in 

REMARK. - We like to stress the pleasant point that both Stratonovich and Itô
equations differentiate like equations involving smooth paths.

Proof of Corollary 3.14. - 1) We only have to consider the case k > 1. Let 03C6
be a Cohen map of Stratonovich type such that z, x) = e(x, z) for all
(x, z) E M x N. By Proposition 3.10, equation (3.10) is equivalent to

DZ(a) = T3 ~(X (a), Z(a), X (a)) DX (a).
Applying Theorem 3.5, we can differentiate with respect to a and we get

= T3 8aZ(a), 8aX (a)) DBaX (a). (3.14)

But by Proposition 3.9, T~ is a Cohen map of Stratonovich type, and again
by Proposition 3.10, equation (3.14) is equivalent to

= 8aZ(a), 8aX(a)) 
which is precisely equation (3.11).

2) The proof of 1) carries over verbatim, replacing Stratonovich by Itô, Proposi-
tion 3.10 by Proposition 3.13, and Proposition 3.9 by Proposition 3.12. fl
We want to rephrase equation (3.13) in terms of covariant derivatives. For this

we need some definitions and lemmas. Let RM denote the curvature tensor of
the connection ~M on M, which is assumed here to be torsion-free. If J is a

semimartingale with values in TM endowed with the horizontal lift of vM
(see [Y-I] for a definition), let DJ denote its covariant derivative, Le. the projection
of the vertical part of thus DJ = with v~: TxM --~ TjTM
denoting the vertical lift for j E TxM. We observe that also DJ = 
where / /o,t means parallel translation along 7r(J) . Indeed, this equality is verified if
J is a smooth curve, and since by ~Y-I~ (9.2) p. 114, J is a geodesic if and only if
(7r(J) , is a geodesic in M x for the product connection, using [E3]
corollary 16, it extends to semimartingales as an Itô equation.
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LEMMA 3.15. - Let J be a semimarlingale with values in TM, and X = 7r(J) its
projection to M. Then

= + 1 v ( 3.15 )

where v j ( u) is the vertical lift above j E TxM of a vectoru E TxM.

Proo f. - Following [E3], if is a connection on T M, the Itô differential

dJ may be written as F(DJ) where F: 03C4TM ~ TTM is the projection
defined as follows: if A and B are vector fields on TM, then F(A) = A and
F(AB) = Z (V AB + V BA + [A, B]). The result is a direct consequence of the

following Lemma. fl
For l ~ M, let b(l) E TM o TM denote its symmetric bilinear part, Le.,

(df ® dg, b(~)) = 2 ~.~( f g) - f - g ~( f )~ for f , g smooth functions on M.
LEMMA 3.16. - Let L be an element ofTuTM with u E TxM. Then

- = vu( ’ ) ’ )b(~*L)
where ~r*: TTM -~ TM is induced by 7r: TM -~ M.

Proof. - It is sufficient to prove this for Lu = (AB)u with A and B horizontal
or vertical vector fields. But since among these possibilities and 

coincide except if both A and B are horizontal, we can restrict to this case. Let A

(resp. B) be the horizontal lift of Â (resp. B). Then by [Y-I],

- = vu lRM (u, Âx)Bx)
where x = ~r(u), and this gives the result, since = 2 (Ax ® B~ + Bx ® Âx). .
Ù

COROLLARY 3.17. - Let k > 0 and e be a CLip section of the vector bundle
T*M x TN over M x N. Assume that M (resp. N) is endowed with a torsion-free
connection ~M (resp. Assume that a ~ X(a) is C~ in , a H Z(a) the
maximal solution of

= e(X(a), Z(a)) (3.16)

where a H Zo(a) is Ck in probability. Then a H (X (a), Z(a)) is C~ in x N), ,
and the derivative 8aZ(a) is the maximal solution of the covariant stochastic diffe-
rential equation

D~aZ = e(X, Z) D~aX + ~e(~aX, ~aZ)d~MX

+ - 2 1 
(3.1?)

with initial condition If moreover a H is continuous in probability,
then a ~ Z(a) is Ck in 
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REMARKS. - 1) If V~ and V~ are allowed to have torsion, one can write first a
covariant équation of the form (3.17) with respect to the symmetrized connections
~M and ~N. With the obvious notations, expressing D~aX, D~aX, RM and RN
in terms of D8aX, D~aX, RM, RN and the torsion tensors, one obtains then a
covariant équation with respect to V~ and 

2) Starting with (3.Il) in Corollary 3.14, one can also easily détermine a
Stratonovich covariant équation, identical to the équation for smooth processes.

Proof of Corollary 3.17. - Applying Lemma 3.15 to part 2) of Corollary 3.14
gives the following équation for ~~

= + 

- 

But, ifu,w ~ TxM, z ~ TN, we have e’(u,z)vu(w) = vz (e(03C0(u),03C0(z))w), and by
définition, if ~ TuTM is the horizontal lift of w, then vz(Ve(u,z)w) is

the vertical part of e’(u, (w). Thèse equalities applied to u = ~aX, z = 8aZ,
and successively to w = = dvMX and w = give the
desired équation. [] 

’

As an application of Corollary 3.14, we get differentiability results for stochastic
integrals, considered as particular instances of stochastic differential équations :

COROLLARY 3.18. - 1) Let k > 0 and Of be a section of the vector bundle
T*M. Assume that a ’-~ X(a) is C~ in .

Then (~(a), ~ C~ in x M).

2) Let k > 0 and 03B1 be a section of the vector bundle T*M x TN over M x N.
Assume that M (resp. N) is endowed with a connection V~. Assume that a e X(a)

.

4. Application to antidevelopment

If M is a manifold, we will dénote by s: TTM 2014~ TTM the following canonical
isomorphism: if (t, a) e a) is a smooth M-valued map defined on some open
subset of]R2, then a) = s a)).
THEOREM 4.1. - Let M be a manifold endowed with a connection V. Denote

by V’ the complete lift of ~ on TM. Let A’ denote the antidevelopment with respect
to V’. Let a e X(a) ~ be a map of class C~ defined on some interval 7 ofR.
Then a ~ (X(a),A(X(a))) ~ (TM x TM) is of class C1 and

.

Moreover, if a e continuous in probability, then a ’2014~ is (7~
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Before proving this result we introduce some definitions and lemmas. Let M be
a manifold of dimension m. If V is a connection on M, we consider the complete
lift V’ of V on TM, which is characterized by the relation = valid

for all vector fields X, Y E r(TM). Here Xc denotes the complete lift of X, i.e. the
vector field in r(TTM) defined by Xû = s(TX (u)) (see [Y-I] for details). Recall
that the geodesics for V’ are the Jacobi fields for V.

Let L(M) be the principal bundle of linear frames on T M: thus Lx (M) is the set
of linear isomorphisms l~m -~ Tx M for each x E M. There is a canonical embedding
~: TL(M) -~ L(TM) defined as follows: if W E TL(M) is equal to (8aU)(0) where
a ~ U(a) is a smooth path in L(M), and if v E TJRm = is equal to (9~)(0)
where a ~ z(a) is a smooth path in then one has = s 

Let (e1, ... , em eï, ... en) be the standard basis of TRn. Then ((03B8aU) (0))e03B1 =
s ((8a(Uea)) (0)) and ,~((âaU)(o))e~ is the vertical lift of (Uea)(o) above

o !7)(0) where 7r: L(M) -~ M is the canonical projection.

LEMMA 4.2. - If a ~ X(a) E CI and U(a) E is a

horizontal lift of X(a) such that a H Uo(a) is CI in probability, then a ~ U(a)
is CI in and (8aU(a)) is a horizontal lift of 8aX(a) with respect to the
connection V’.

Proof. - The fact that a t-~ U(a) is CI is a direct consequence of Corollary 3.14
and the fact that Ut(a) exists} is included in Xt{a) eXiStS).
Another consequence of Corollary 3.14 is that it suffices to prove the assertion with
both Xt(a) = x{t, a) and a H Uo(a) = u(o, a) deterministic and smooth. Write
u(t, a) = Ut(a).

It is suflicient to verify that for all i E ~1, ..., m~, t ~ and

t ~ a)) ez are parallel transports. But by [Y-I chapt. I, prop. 6.3~, we have

= s = 0

and

o.

This proves Lemma 4.2. 0

Proof of Theorem 4.1. - The fact that (X(a) , A(X(a))) is Cl is a conse-
quence of Corollary 3.14. We can calculate as if dealing with smooth deterministic

paths. Let a ~ Uo(a) E be Ci in probability and denote by U(a) the

parallel transport of Uo (a) along X(a). Write Z(a) = ,A(X (a) ) . Then we have the
equation

= 

where if z E TxM and v E TzTM is a vertical vector, denotes its canonical

projection onto TxM.
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Denoting by m the dimension of M, we define a family of Rm-valued processes R(a)
by R(a) = hence

= U~ 1(a) p(~Z(a)). (4.1)

We have U(a)bR(a) = and by differentiation with respect to a, using the
definition of ~,

s(bâaR(a)) = bâaX(a). (4.2)

On the other hand, differentiation of (4.1 ) gives

= p’(8s(aaZ(a))) (4.3)

where p’ on the vertical vectors to TTM is defined like p. Putting together (4.2) and
(4.3) gives

= 

But is the parallel transport of above 8aX(a) by Lemma 4.2,
hence s(8aZ(a)) = A’ (8aX(a)). 0

COROLLARY 4.3. - Let J be a TM-valued semimartingale with lifetime ~ = ~(o). .
There exists a C1 family of elements in such that the equality
J = âaX (o) is satisfied. In particular, is the lifetime of X (a), , then 

converges in probability to 03BE(0) as a tends to 0. The semimartingale J is a V’-
martingale if and only if one can choose such that X(a) is a V-martingale
f or each a E l~.

Proof. - With the notations of Theorem 4.1 define V = A’(J) , and for a 

Z(a) = T exp(s(as(V))).

Note that the lifetime of Z(a) can be 0 if exp aJo is not defined. A straightforward
calculation shows that s(âaZ(o)) = V. Define now X(a) as the stochastic devel-
opment of Z(a). We have the relation Z(a) = ,A(X (a)); by Corollary 3.14, the
map a H (Z(a), X (a)) is C°° in and in particular, A ~(o) converges in
probability to ~(o) as a tends to 0. By Theorem 4.1, the antidevelopment of the
derivative at a = 0 is s(aaZ(0)) = V. This implies that âaX(0) = J.

If J is a martingale, then V is a local martingale (with possibly finite lifetime).
It is easy to see that for each a E R, Z(a) is also a local martingale, hence its
development X (a) is a martingale. fl
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