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1 Introduction

Stochastic integration in infinite dimensional spaces is a mature area. Several
important classes of stochastic integrals were introduced and studied in depth by
Kunita [12], Metivier and Pistone [15], Meyer [14], Métivier and Pellaumail [16],
Gyongi and Krylov [7], Grigelionis and Mikulevicius [5], Walsh [22], Korezlioglu
[9], Kunita [11], etc. Not surprisingly, the approaches to infinite dimensional
stochastic integration proposed in these works have some similarities but also
some distinct features. The latter are mainly related to the specifics of the spaces
and processes involved. For example, the integral with respect to a stochastic
flow (see Kunita [11], and also Gihman, Skorohod [4]) and the integrals with
respect to orthogonal martingale measures (see Gyongy, Krylov [7], [6], Walsh
[22]) seem to have very little in common. In fact, the relation between these two
integrals as well as others mentioned above is stronger than it might appear.
More specifically, it will be shown below that all these integrals and some others
are particular cases of one stochastic integral with respect to a locally square
integrable cylindrical martingale in a topological vector space.

Let E be a quasicomplete locally convex topological vector space with weakly
separable dual space E’, i.e. E is a locally convex topological vector space so that
all its bounded closed subsets are complete. Let be a predictable family
of symmetric non-negative linear forms from E’ into E and As be a predictable
increasing process. By a locally square integrable cylindrical martingale in E

*This paper was partially supported by ONR Grant N00014-91-J-1526
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(with covariance operator function Qs and quadratic variation ~t0 Qsd03BBs) we

understand a family of real valued locally square integrable martingales Mt ( y),
y E E’, such that 

B~(y)? = das.
Jo

The stochastic integral is constructed in three steps. To begin with, we define
an Ito integral for integrands from the set consisting of E’-valued pre-
dictable functions f s such that

10Qsfs,fs>E,E’d03BBs  ~ P-a.e.

(see Proposition 9). Below this integral is denoted f o fsdMs or It ( f ) . In our

approach, the set Sb of simple (elementary) functions consists of all finite linear
combinations ~~ f $ yk, y~ E E’, of real valued predictable functions so that

~i ~
/ L  ~0 P-a.e.
o k ,j = 1

The choice of the set of simple functions is almost the only nonstandard feature
of the first part of our construction.

Unfortunately, the above integral is not quite satisfactory in that the space
of integrands, (Q), is not complete. So the next important step is to find

a natural completion of this space. To address this problem we rely on the L.
Schwartz theory of reproducing kernels [21]. The results in [21] allow to construct
a family of Hilbert subspaces Hs C E naturally associated with the covariance

operator function Qs; below these spaces are referred to as covariance spaces.
The covariance space Hs is defined as the completion of Q$ E’ with respect to
the inner product

:_ y ~E, E’ (1)

Using these results we demonstrate (Proposition 10) that the closure of (Q)
is isometric to the space (Q) := (predictable E-valued g : :

,Jp  0~ P-a.s.}. 
, . ,° 

The third and final step of our construction is to extend the stochastic integral
from onto . To achieve this goal, we introduce a normalized
stochastic integral for E-valued integrands. We denote this integral fo g$ * dMs
or Loosely speaking, the integral is defined by the equality

Rt(g) = t0 gs * dMs := t0 gsd(Ms/Qs) . (2)

Of course, this "definition" is formal; it explains the origins of the term "normal-
ized" rather than defines the integral. However, if gs = Qsfs and f E 



139

(2) can be made meaningful by setting

t0 gs * dMs := t0 Qsfsd(Ms/Qs) : = t0 fsdMs,
(see section 4.1 as well).

Since Qsfs E the idea now is to extend the Ito stochastic integral
t0 f s dM$ by extending the normalized integral f 4 dMs to all integrands
belonging to We prove that this is indeed possible (Proposition 11), and
for every g E is a local square integrable martingale such that

R(g)>t = t0|gs|2Hsd03BBs .

In addition, we show (Proposition 11) that the range of Ito stochastic integrals,
R(Z( f ), f E is a dense subset of the range of normalized stochastic

integrals, R(R.( f ), f E in the topology generated by uniform in t

convergence in probability.
The linkage between the normalized integral and other extensions of Ito

stochastic integral is considered in detail in Sections 3.3 and 4.1.
The normalized integrals arise naturally in many problems of stochastic anal-

ysis. Indeed, their utility is quite evident in the characterization of measures that
are absolutely continuous with respect to the measure generated by a given mar-
tingale. For example,consider the pair of I-dimensional processes:

{dXt = atdt + 03C3tdWt

dMt = 03C3tdWt
Then

dPX/dPM = as03C3-2sdMs - 1 2 Jo a2s03C3-2sds}
= 

where :_ ~.
In the forthcoming paper [19] we prove that all absolutely continuous shifts of
a local square integrable cylindrical martingale Mt introduced above are of the
form fo gsdaJ, g E and the corresponding Radon-Nikodym derivative is
given by ~dM, - ~ 

Another interesting example arises in the characterization of the stable sub-
spaces of local martingales. It is well known that this problem is of central

importance for the representation theorem in martingale problems (see e.g. [8]).
In Section 3 (Proposition 12) we prove that the stable space of a locally square
integrable continuous cylindrical martingale ~Mt(y’), y’ E E’? coincides with the
set of normalized integrals

L1(M) ={R(f) : E[(10 |fs|2Hsd03BBs)1/2]}  ~.

In Section 4 of the paper we discuss various particular cases of the normalized
integral. These include Hilbert-valued stochastic integrals, stochastic integrals
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with respect to orthogonal martingale measures, stochastic integrals with respect
to stochastic flows, etc.

In Section 5 we apply the same ideas for integration of vector valued functions
with respect to martingale measures.

Our construction obviously does not cover the more difficult case of Banach
space valued integrands with respect to one-dimensional Brownian motion where
the geometry of Banach space is involved (see [1], [2], etc.). Also, we leave aside
the complicated problem of the existence of the factorization Qsd03BBsx in the
most general case. In many particular cases this factorization is known. It was
established in [15], [14] in the Hilbert space setting, in [9] for nuclear space val-
ued square integrable martingales, in [22], [6] and [7] for orthogonal martingale
measures, etc. The stochastic integral for Banach space valued square integrable.
martingales constructed by Métivier-Pellaumail [16] is based on an a priori es-
timate of simple integrals. In the Appendix we show that this estimate actually
implies the existence of the factorization QdA.

2 Ito Stochastic Integrals

Suppose we have a probability space (S~, ~’, P) with the right-continuous filtra-
tion of 03C3-algebras IF = Let P(F) be the F-predictable 03C3-algebra. Let
E be a quasi-complete locally convex topological vector space, i.e. E is locally
convex topological vector space so that all its bounded closed subsets are com-
plete. Let E’ be its topological dual. Denote by (x, y) (~ E E’, y E E) the
canonical bilinear form. We suppose that there exists a countable weakly dense
subset of E’. Let ~C+(E) be the space of symmetric non-negative definite forms
Q from E’ to E, i.e:

_ (y~’ ~ ~y ) ~ (y >_ 0 y" E E’

Definition 1. We say that a family of real valued random processes Mt =
is a locally square integrable ’cylindrical martingale in E with

covariance operator function Qs and quadratic variation fo Qsd03BBs if for each

y‘ E E’ E P) and

Mt (y’ )Mt (y")-t0y’ ,Qs y"> d03BBs ~ Mloc (F, P), (3)

where Q : : [0,1] x 03A9 ~ ,C+(E) is a P(IF)-measurable function (i.e. y" E
E’, (y’, is and at is an increasing P(IF)-measurable
process.

Here and below Mloc (F, P) is the space of real-valued local (F, P)-martingales
and P) is the space of locally square integrable real valued (F, P)- mar-
tingales.

Our next step is to construct a P(F)-measurable family of Hilbert subspaces
of E generated by the covariance operator of the cylindrical martingale M.
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According to [21], for any K E ,C+(E), one can define an inner product in
by the formula (k’y‘~ h’yn)K = ~~~ Ky") Vy’, y’~ E E’.

The following statements hold true (see Appendix for the proofs).

Proposition 2. (See Proposition 10 in j,~l~). There exists a completion HK of
KE’ with respect to the inner product (., .)K such that HK C E and the natural
imbedding is continuous.

Corollary 3. (cf. Corollary to Proposition 7 in f~l~~. Let T be a countable
weakly dense subset of E’. Then KT is strongly dense in HK, i.e., HK is a

separable Hilbert space.

Denoting Hs = we can rewrite (3) as

Mt(y’)Mt(y") - t0(Qsy’,Qsy")Hs d03BBs ~Mloc(IF, P), (4)

Definition 4. We say that (Hs) = (HQ~) is the family of covariance spaces of
M.

Let L(Q) be the set of all vector fields f = fs = 1(5, v) such that f~ E Hs
and ( fs, are P(IF)-measurable for each y’ E E’. Denote = {f E
L(Q) : fo j f (H8 das  oo P-a.s.}= P).

Let T = {e i , ...} be a countable weakly dense subset of E’. We define a
sequence of E-valued P(F)-measurable functions:

e1s = {Qse’1/|Qse’1 |Hs, > if Qse’1 ~ 0
0, if Qse’1 = 0

ek+1s = {(Qse’k+1 - 03A3ki=1(Qse’ k+1 , eis) eis) /dk+1s , if dk+1s ~ 0 (5)0, if dk+1 = 00, if ds _ 0 ’

where ds+1= ~k 1 (Qsek+1, e$ It follows from the definition
of the sequence (es ) that for each n, there exists an E’-valued P(IF)-measurable
function e$ such that

- ~ (6)
According to Corollary 3, QsT is a dense subset of Hs, then (5) is the Hilbert-
Schmidt orthogonalization procedure. This yields that for each s, the vectors

(ej) form a basis in Hs . Thus we arrive at the following statement.

Corollary 5. Let f E L(Q). Then for each s, we have the expansion in HQ$ =
Hs

fs = > and |fs|2Hs = 03A3(fs,eks)2Hs, (7)
k k

In particular, this expansion implies that ~Ha is a predictable function.
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Remark 6. Assume that P-a.s. for each y e E’ , ,

10Qsy,y>d03BBs  ~.

Then it follows that P-a.s. for each y e E’, E E’*, where E’* is
the algebraic dual of E’. 

°

Remark 7. Assume that P-a.s. .) das E E for each y E E . ‘ Let f E
Then fQ fsd03BBs E E P-a.s. for each t.

Indeed, for each y E E’ , ,

|t0fs,y>d03BBs|~ (t0|fs|2Hsd03BBs)1/2(10Qsy,y>d03BBs)1/2
and the statement follows.

Remark 8. We remark that for a predictable increasing process At, t E [0, 1],
(we assume Ao = 0) the condition A1  oo P-a.s. is equivalent to the existence
of a sequence of stopping times (Tn) such that P(Tn  1) -~ 0, and EATn  o0

for each n (see Lemma 1.37 in [8]).
Now we can construct the Ito stochastic integral for the class (Q) of all

P(F)-measurable E’-valued functions f such that

10Qsfs ,fs~ d03BBs  ~ P-a.s.

We start with the set of simple functions Sb = {f e : f = n1 fs hk, f k
are P(F)-measurable bounded scalar functions, hk E E’, k = l, ... , n, ~~1}. .
For f = ~i f/ hk E Sb, we define the Ito integral by

Zt(f = / fsdMs = fs dMs(hk) .

o 1 a

We see immediately that the map f ~ Z( f ) defined on Sb (with values in
P)) is linear up to evanescence and for each f E sb,

(Z(f ))t - d~s . (8)
Jo

Proposition 9. The map f ~ Z( f ) defined on Sb has a further extension to
the set 2loc (Q) (still denoted f It(f) = f o such that:

1. Z( f ) E P) and (8) holds;
~. f ~ linear up to evanescence;
3. If fn, f E and fo (Qs ( fs - fs), f$ - --~ 0 in probability,

then 1 ~~J ) - Zs ( f ) ~ ~ 0 in probability, as n -~ oo.
Moreover, this extension is unique (up to evanescence).
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Proof. 1°. Firstly, we extend the Ito integral to

Let S = f E L2(Q) : f = n1 f/ hk , fk are real valued P(IF)-measurable func-
tions, hk E E’, k = 1,..., , r~, n > 1 }. Fix f s = ~p f s hk E S and define

Obviously gn E and by the Lebesgue dominated convergence theorem

E 10Qs(fs-gns),fs-gns>d03BBs~0, as n~ ~.

Now it follows from (8) that

E sup -~ 0, as n, oo .
t

Thus we can extend Z to S linearly so that for each f E ~, E P)
and (8) holds.

Now fix f E L2 (Q) Then Qaf" E and by Corollary 5 (see (7) )Qsfs =
. Let gNs = By the Lebesgue dominated

convergence theorem

E10|Qsfs-gNs|2Hsd03BBs~0 (9)

as oo. By the definition of and es (see (5), (6)) it follows that there
exists f N E S such that gN = Therefore we can write (9) as

E10|Qsfs-QsfNs|2Hsd03BBs=E10Qs(fs-fNs),fs-fNs>d03BBs~0, as N ~ ~.

Thus is a Cauchy sequence and we can find Z( f ) E P) such that
(8) holds and

t

Obviously this extension is linear (up to evanescence) and unique by the
Property 3.

2°. In order to extend Z to we apply the standard localization pro-
cedure. Fix f E then ’there exists a sequence of stopping times Tm t 1
such that E L’(Q) for each m and we can find Z( f ) E P)
such that = Zt (f 1{.~Tm}). Properties 1,2 of the extension are obvious.
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3°. Finally, we prove that property 3 holds for I(f), f E L2loc(Q). Let 10Qs ( f$ -
f $ ) , f s - ~ 0 in probability as n ~ ~. There exists a sequence ( Tn ) of
stopping times such that

En0Qs(fns -fs), fns - fs>d03BBs + P(n 1) ~ 0

as n ~ ~, and for each n E n0Qs fs, fs>d03BBs  oo. Thus E supt |It^n (f n) -
It^n(f)|2 ~ 0, as n ~ ~. Since P ( rn  1 ) ~ 0, we derive easily that

supt|It fn ) - Zt ( f ) | ~ 0 in probability as n ~ ~. Then the statement follows.

3 Normalized and Ito Stochastic Integrals

3.1 Normalized stochastic integrals

If fn E and 10 (Q$ ( f s - fms,), f m - fs ) das ~ 0 in probability as
n, m ~ oo, then there exists Zt E (IF, P) such that supt |It - It ( fn)| ~ 0 in
probability, as n ~ ~. In order to describe Zt we need to complete 

Let d = f E (Q) : 10Qsfs,fs> das = 0 P-a.s. and = 

For f E (Q) we denote f = f + C~ and define the distance of the convergence
in probability.

d(f , g) = E[10Qs(fs - gs), fs - gs>d03BB1/2s ^ 1].

Let U = f E (~) ~ f o ~fs ~H$ das = 0 P-a.s. , (Q) _

(Q)/O. For f E (Q) we denote f = f + O and define the distance
1

d(f~9) _ ~l ~ 1]~f~9 E 

It is easy to see that these definitions do not depend on the particular represen-
tative of the equivalence class and (Q) is a complete metric space.

Proposition 10. (see [18,19]) The . s Qsfs ’ an isometric imbed-

ding of into L2loc(Q) and is a dense subset of L2loc(Q), i.e.,
is the completion o f .

Proo f. For each y E E’, y) = 0 if and only if Q$ y = 0 and the first part of
the statement follows from the definitions.

Let f s E (~), f N = ~N ( , e J ) e J . Then by Corollary 5
i

/ ~ f s - f ~ ~H~ das --~ 0, , as N -~ oo, P -a.s. ( 10)
0
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From the definition of (es ) (see (5~, (6)) it follows that there exists a sequence

fN E such that fNs = We can rewrite (10) as

10 |fs- QsfNs | 2Hsd03BBs ~ 0, as N~ ~, P-a.s.

Now the second part of the statement follows.

Let G be the map f s Q$ f s from L o° (Q) to If f , g E and

f - g E C~, we have T ( f ) = T (g) Thus according to Propositions 9 and 10, we
can define the stochastic integral on (Q)) C (Q) by

Rt(g) = Rt(g)=t0 gs*dMs=t0fsdMs=It(f)=It(), (11)

where gs = Qs f $ fs E (Q) Obviously (R(g))t = t0|gs|2Hs d03BBs .

Proposition 11. (see ~18,19~ )The map f ~ R( f ) defined on has

a unique extension to the set still denoted f  Rt(f ) = f o f s * dMs, ,
with these properties:

1. R(f) = t0 |fs|2Hs d03BBs;
~. ~Z( f ) is linear up to evanescence;

3. If f,~ , f E and f ~ ~ f s - d~s ~ oo in probability, as n -~ oo,
then sups ~ 1 ~R$ (In) - Rs ( f ) ~ -~ 0 in probability, as n -~ oo.

Proof. 1°. Let f E (Q), f N = ~N ( f s, es By the definition of (ej) (see
(5), (6)), it follows that fN E By Corollary 5, we have P-a.e.

10|fs-fNs|2Hsd03BBs~0, as N~~.

Thus there exists increasing sequences of stopping times (Tp) such that
TN,p  Tp  1 for each N, p, and

P (Tp  1) p-~ 0,  Tp) n-~ 0,

I p0|fs|2H0d03BBs  ~, N,F0 |fNs|2Hsd03BBs~ p0 |fs|2d03BBs + 1.

Then for each p,

E sup|t^N,p(fN)-t^N,p(fM)|2~0,

as N, M ~ ~. Thus the existence of an extension satisfying 1,2 follows imme-
diately.

2°. Now we prove Property 3 of the extension. Let f E (Q) and

10|fns-fs|2Hsd03BBs ~ 0, as n ~ ~.
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Then there exists a sequence of stopping times (Tn ) such that P (Tn  1) +
1’’ ~fa - fs das n~ o.

Hence, 

E supt |Rt^n (fn) - Rt^n (f)|2 ~
~ CE I f S - f $ 0, in probability, as n -~ oo .

Thus the property 3 holds for the extension which is obviously unique.

For the martingale representation theorem, it is important to describe the
stable subspace generated by M ( y), y e E’. According to the definition (see [8]),
this is the smallest subspace, ,C1(~VI), of the closure ofH1 = {M E P) : :

= E supt|Mt|  00} with respect to the norm that contains all the

integrals f o hs dM$ ( y) where hs is a real valued predictable function such that

E[10h2sdM(y)>s]1/2~,y~E’.

Proposition 12. Let M(y) E P) for each y E.E. Then the stable sub-
space of H1 generated by M(y) is

L1(M) = {Rt(f) = t0 fs * dMs : f ~L2loc(Q)

and E [(10 |fs|2Hs d03BBs)1/2]  ~}.
Proof. . From Burkholder’s inequality (see [8]) it follows that ,C 1 (M) is a closed

subspace of H1. Now the statement follows by the definition of the basis (ei)
and the normalized integrals R ( f ) .

3.2 Linear transformations of integrands and covariance spaces

Let F be a quasicomplete locally convex topological vector space and F’ its
topological dual. Denote ,Cw (E, F) the set of weakly continuous linear forms
from E to F. Let {Q, ,Cw (E, F)) be the set of all predictable ,Cw (E, F)-valued
functions us such that for each f’ E F,

10u’sf’,Qsu’sf’>d03BBs~ P-a.s.

where u$ : F’ ~ E’ is an adjoint linear form.

Definition 13. We define the stochastic integral t0 u’sdMs as the cylindrical
locally square integrable martingale Mt = ( Mt ( f’ ) ) in F such that

Mt(f’) = t0u’sf’dMs,f’ ~ F’ .
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Remark L~. It follows immediately by the definition that the covariance operator
function of M

~ws = .

Obviously, f’s E if and only if E .

Let Elbe a quasicomplete locally convex topological vector space and E be
its topological dual with weakly dense countable subset. Let u be a weakly
continuous linear form from Eito E, (i.e., u E e =

HK ~ E1. We define a Hilbert structure on u(H) C E by (see [21])

|f|G= inf |y|H.

We shall need the following statement from [21] (see Appendix for the proof). .

Proposition 15. (see ~~~~, Proposition ~I~.
1. The set a dense subset of the orthogonal complement ~C to =

u-1(0) u in Hand u is an isometry between ~C and u(H);
2. u(H) = HK, , where K = E ,C+(E). .

Corollary 16. For each y E H, .

Proof. The statement follows obviously from part 1) of Proposition 15.

These statements can be generalized a little. Consider a finite number of qua-
sicomplete locally convex topological vector spaces E;, (i =1, ... , N) with topo-
logical duals E’i having weakly dense countable subsets. Let Ki E L+(Ei), Hi =
HKi C E We define a Hilbert structure on G = ~N uz(Hi)
by (see [21])

N

~ Iy11H2 .
This setting can be reduced to the previous one by setting E = Ei ,

H= H1 and u(yi ®...®yN) 
Hence we obtained the following result.

Corollary 17. 1. G = HK where ~~ = ~N .

2. +... + ~ ~yyH~ + ... + 

Let Q1 be a predictable [’+(E1)-valued function and us be a predictable
L03C9(E1, E)-valued function. Denote Hs = Hs = HQs .

Proposition 18. Let Qs = Then

a~ Hs = 
L2 (Q) i f and only if there exists gs E L2 (Ql ) such that f s = us (gs ) .
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Proof. Part a) follows immediately from part 2) of Proposition 15. Since by
Corollary 5  Igs I, one of the implications in b) is obvious. Assume now
that f s E L2 (Q). Let f s = Then 10 |fs - fs |2Hsd03BBs  o.

By the definition of we see that f s = for some predictable E’-valued
function Thus 10|Qsfns-fs|2Hsd03BBs ~ 0. Let .- ._ Then =

~s (gs ) . By Proposition 15, gs takes values in the orthogonal complement of
~s 1 ~0}, and

= 
> |Qsfns - Qsfms|2Hs = |gns - gms|2H1s ~ 0.

This completes the proof.

It is readily checked that Corollary 17 and Proposition 15 yield the following
statement.

Corollary 19. Let El, ... , En be. quasicomplete topological vector spaces with
topological duals Ei, ... EN, , respectively, having weakly dense countable, subsets.
Let Qs = ~N for some predictable functions Qs and
some predictable ,Cw (Ei , , E) - valued functions ui. . Then

a~ Hs = = 
~

b) f$ E if and only if there exists gs E such that fs =
~1~ .

Remark 20. By Corollary 17,

N

(fslH, _ if fs =’~s(gs) ~ .
1 

Let Mz (i =1, ... , N) be cylindrical locally square integrable martingales in
Et with covariance operator functions Qs and quadratic variations f o Qisd03BBs .

Assume that for each y= E E=, y~ E ,

~M1(y~), = 0, if i # j . .

Proposition 21. Let u~ E . Then Mt = ~N is

a cylindrical locally square integrable martingale in E with covariance operator
function Q$ = ~1 nsQsus’ and quadratic variation fo .

Proof. By the definition for each f’ E E’ Mt(I’) = ~~ fQ . By our
assumption

10 ui’sf’dMis , i0 us’g’dMs ) = 0,
if i ~ j, for each f’, g’ E E’. Now the statement follows.
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3.3 Linkage between normalized and Ito integrals

Now we shall discuss the relation of the normalized and Ito integrals. Let T =
e2, ...} be a countable weakly dense subset of E’. For any I~’ E ,C+(E), using

the Hilbert- Schmidt orthogonalization procedure, we obtain an orthogonal basis
in HK :

ei - if # 0,e =  
0, otherwise,

ek+1 = { (Ke’k+ 1 
- 03A3ki= 1 (Ke’k+ 1 , ei)HK ei) /dk+1 , if dk+1 ~ 0 ,

0, Otherwise,

where dk+1 = ~k’ek+1 - ~k 1 e’ 

Remark 22. From the definition of (ek ), it follows that for each n there exists ek
E E’ such that

e~ , n=1,2,... (12)

Lemma 23. a~ If h E HK, > then there exists a uniq~ue F E HK such that h =
F o ~i (here F o k’(e’) = e’ E E’) ;

b~ Let F E HK. Then F o h E HK and ’

IF o K|2HK = |F o Ke’, e’) _ 03A3n F o K(en)2=|F|2H’K ,

(F o I~, = F o K(e’) for all e’ E E’. 
h

Proo f . a) If h E HK, then for all e’ E E’,

. (h, e’) = (h, . (13)

Define = (h, e’) Since (13) holds, F E and h = F o ~~ .

b) Let F E HK. Then by Riesz theorem, there exists h E H~ such that for
all e’ E E’ ,

= F o = (h, = (h, e’) .

Thus h = F o k’ and

|h|2HK = sup |F o K(e’)|2/ Ke’, e’> _ 03A3F °  +oo.
e’ 

n

The statement is proved.

Remark ~,~. Since the imbedding of HK into E is continuous, a continuous form
on E is continuous on HK, i.e..E’ C HK.
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Corollary 25. a~ If f’ E E’, we have f’ o K = K f’ and = I k’ f’ (HK , .
Also, 

~ 

f’ o K(e’) = f’,Ke’>E’,E = (e’, = (k’e’, (14)
= f’, Ke’>H’ K,HK.

b) the sequence defined by (12) is an orthogonal basis of HK, i.e. for
F E HK we have an expansion F = ~~ F o K(e’~)e~ in HK, and E’ is a dense
subset of HK.

c~ the kernel K on E’ can be continuously extended from E’ to HK, , and it
defines a canonical from HK onto H K. Also, for all F E HK, e’ E E’ ,
and h E HK, ,

(e’, = (F, = (k’F, = F o ~’(e’), (15)
= ~F~ ~ ~F~ = = 

°

Proof. a) Indeed, for each e’ E E’ we have

f’ o h(e’) = ( f’, = (e’, h f’) .

Thus f’ o k’ = K f’ and obviously = f’ .

b) By Lemma 23 for each e’ E E’, we have (F o h, = F o Is’(e’).
Therefore

n n

i.e. F = ~n F o in HK. Since e’~ E E’, it follows obviously that E’ is
dense in HK .

c) By (14),

(e’, h’ f’~E, E = Ii f’)Hh = ~ f’, .

By a), a sequence fn E E’ is a Cauchy sequence in HK if and only if h’ fn is

Cauchy in HK. If f n -~ F in HK then (~~ f n ) converges to an element g E HK . .
We denote g = and obtain (15) by continuity.

Remark ~6. We note that the set of restrictions _ ~ e’ e’ E E’ } is

isomorphic to E’/Ker h’ and h KE’ is an algebraic isomorphism. It
follows from the Corollary 25 that Ii can be continuously extended to a canonical
isomorphism from HK onto HK . .

Let L(Q) be the set of all functions Fs = such that Fs E HQ and
Fs o Qs (e’) = (e’, is P(IF)-measurable for all e’ E E’. Define 

= f F E L(Q) :10|Fs|2H’s das  oo P-a.s.}.
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Lemma 2’T. The inclusion L2loc (Q) C (Q) holds, and for each F E (Q), ,
there exists a sequence F’~ E such that

i

10 |Fns -Fs |2H’sd03BBs ~ 0

in probability, as n -~ oo.

Proof. Obviously, C by Corollary 25. Let (es ) and ( J ) be
sequences defined by (5) and (fi), i.e. (es ) is a basis in H$ = HQs, and (e$ ) is a

sequence of E’-valued predictable processes such that Qs e$ = es . Let

Fns = F o Qs (e ks) eks.

k=1

Then the statement follows immediately by Corollary 25.

Now we show that there exists a natural extension of the Ito integral related
to the normalized integral.

Proposition 28. The map F ~ defined on has a further ex-
tension to the set (still denoted F Zt(F’) _ t0 FsdMs) with these
properties:

1. i(F) E P) and = ft das holds;
2. F  Zt (F) is linear up to evanescence; 
3. If Fn, F’ E and 10 |Fns - Fs|2H’ s d03BBs ~ 0 in probability, then

sups ~ 1 ~Zs (F’~) - Zs (F) I -~ 0 in probabitity, as n -~ 
Moreover, this extension is unique (up to evanescence), and for all F E

9 E ,

t t t

t0 FsdMs = t0 (Fs o Qs ) * dMs = t0 QsFs * dMs,

/ g$ * dMs = / GsdMs,

0 0

where GJ o Qs = gs (recall that i f F E 2loc (Q), then FS o Q$ = and the
first equality is simply (11~ ~. 

Proof. We claim that the extension with the properties specified above is given
by

t

Zt (F) = / Fs o (~s ~ .

0

This fact is an obvious consequence of the isometry of Hs and H$ induced by
Qs (see Corollary 25, (c), definition of the normalized integral and Lemma 27).
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Example 29. Let Y be a separable Hilbert space. Consider a Y-valued locally
square integrable martingale with a deterministic covariance operator Q and
At = t. In this case there exists a CONS (ek of eigenvectors of Q, and

~ _ ~ ~)y ek (see [14]).
k

Then HQ = is the set of all h = 03A3k 03BB1/2khkek such that 03A3k hk  oo . The

dual space HQ is the set of all 9 = ~k 1129k ek such that  oo. We
have an obvious duality here:

9(h) - L hk9k

where h = ~k E HQ~ 9 = E HQ. .
Let gn = Then

9k -~ ~,
,1k>0, 

as n, m -)- oo. It was explained above that in this case g o Q = Qg = ~k 
HQ ..

Remark 30. A stochastic integral with respect to a Hilbert space-valued martin-
gale with At = t, and Q = ~k 2-k(ek, , .)y ek was constructed in [16] (p. 171).It
was shown in there that the unbounded deterministic linear operator g = ~k kek
is an admissible integrand.

Obviously the aforementioned integral fits into the setting of Example 29 In
particular, it follows from Example 29 that in the case of [16] (p. 171) the set of
all deterministic integrands coincides with

HQ = ~g = ~ ~ gk  oo . .
k k

4 Some Particular Cases

4.1 Case when E’ is a subspace of E.

In this subsection it is assumed that we are given a symmetric injection I : E‘ -~
E. So we identify E’ by I to a subspace of E and call I an identity. Obviously I is
weakly continuous. Since I is injective, then I’ = I has a dense image, i.e. in this
case E’ is necessarily a dense subset of E . We think here most frequently about
the example E = D’ (X ), the space of distributions on an open set R’~,
E’ = D(X ), the space of test functions on X.



153

Remark 31. If E is an arbitrary quasicomplete locally convex space, K E ~C~ (~), ,
and H = HK is a dense Hilbert subspace of E, then K is an injection and can
play the role of I.

Also, in this case f’ o K = K f’ ((K f’ e‘) = ~~~e’, f’)).

We introduce now an important class of Hilbert subspaces of E.

Definition 32. We say that a Hilbert subspace H C E with weakly continuous
injection H -+ E is normal if E’ is a dense subspace of H.

Remark 33. If H C E is a normal Hilbert subspace, then H’ is a normal Hilbert
subspace of E.

Proof. Indeed, if H is normal we have weakly continuous dense injections E’ ~
H -4 E. Passing to the adjoints we get weakly continuous dense injections
E’ ~ H’ ~ E. Thus we identify H’ with a subspace of E which is normal as
well: for each e’, f’ ‘ E E’.

= (e‘ ~

One can say here (see [13]) that H’ is identified with the subspace of elements
e E E such that the linear form e’ -~ (e, is continuous on E’ with respect
to the topology induced by H.

Example 34. Let X C Rn be a bounded open subset. Let Hs be a completion
of E’ = Ð(X) with respect to the norm

H~= s > 0 . .

Define H-’ = (H’ )’, s > 0. All the E R, are normal subspaces of
E = D’(X). Obviously H-s = and (-G1)-’ : (Hs)’ = H-’ -~ H$ is a
canonical isomorphism between (Hs)’ and .

The following statement is true (Propositions 28 bis, 29 in [21], see Appendix
for the proof). .

Proposition 35. For K E ~C+(E), assume that H = HK is a normal Hilbert

subspace and H’ = HK is its dual. Then
a) we can extend the E’- restrictions of K and k’ to the continuous linear

forms K : H’ --~ H, k : H --~ H’ which are canonical isomorphisms between H
and H’, i. e., Ii = I~-1, I{H’ = H, = H‘ ;

b) for each e’, f E E’

(e’~ f‘)H~ _ (k’e‘, k’ f ‘)H = (K e’, f ‘~E,~~ = (I1 f ‘, e‘)E, E~
(e’, f’)g = (Ke‘, k’ f’)H~ = (ke’ f ~~E,E~ = (k f ~, .



154

Remark 36. Let H = HK be a normal Hilbert subspace. If F E HK, then

Denote = {K E £+ (E) HK is a normal subspace}. By Proposition
28 and the previous remark we get the following statement.

Proposition 37. Let Q be a predictable function. In this case

Fs E if and only if Q s Fs E . Also, hs E (Q) if and only if
Qs hs E L2loc(Q), and for each f E 9 E 

t0 fsdMs = t0Qsfs*dMs
, t0 gs * dMs = t0 Q-1sgsdMs.

Now we shall discuss briefly some criterions of normality.

Proposition 38. (see ~,~1 J, p. ~15~. Assume that we can extend K E ~C+ (E) to
a weakly continuous linear form K : E ~ E and E’ C H C HK. Then H is
normal.

Proof. . Since K = K’, we have C E’ C H = HK and HE’ is dense in H .

Then E’ is dense in HK and the statement follows.

Corollary 39. Let E=(i = l, ..., N) be quasi-complete locally convex topological
vector spaces, let uz : Ez -~ E be weakly continuous linear forms, E 

and Ii = ~N Assume that u’’ is extendable to a weakly continuous
linear form uz’ : E --~ Hz = , and there exists i such that E’ c uz (Hz ) . . Then
~~ (E) ~ 

.

Proof. By the assumptions h is extendable to a weakly continuous linear form
and E’ C ~~ ui(Hi) = HK. The statement follows by Proposition

38.

4.2 Orthogonal martingale measures.

Let (U, fi(U)) be a countable measurable space (i.e., B(U) is generated by a
countable subset of ~3(U)). Let A be an algebra generating B(U) and for each
A E A we have Mt (A) E P). Suppose that there exists an increasing
P(F)-measurable process A and P(F)-measurable family qs (dx)of non-negative
measures on (U, B(U)) such that

Mt(A)Mt(B) - t0 A~Bqs(dx) d03BBs ~Mloc(F, P) ~A, B ~ A.

Suppose that there exists an increasing sequence of B(U)-measurable sets
such that Uri t U and

t0Un qs(dx)d03BBs~ P-a.s. ~n.
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Let E’ be the set of bounded B(U)-measurable functions f such that supp
f C U,~ for some n. Let E be the set of measures p on (U, ~i(U)) such that ~~Un
is bounded for each n with the weak topology E’). Now = 

for each f E E’, i.e., it is a measure on (U, ,~(U)) from E.

Proposition 40. (see [18]) For each s, Hs is the set of all measures on (U, S(!7))
of the form such that  oo, and H’s is the set of all
measurable functions f on U such that  oo.

the set of all P(IF)-measurable measures on (U, B(U)) of the form
(f is a P(F) ~ B(U)-measurable function) such that.

t0U|f(s,x)|2qs(dx)d03BBs  ~ P-a.s., ~t ,

and |fsqs|2Hs = U|f(s, x)|2qs(dx).

the set of aIt P(IF) ~ B(U)-measurable functions f such that

t0U|f(s,x)|2qs(dx)d03BBs  ~ P-a.s., ~t,

|fs|2H’s = U|f(s,x)|2qs(dx).
Proof. The set consists of all measures of the form f E E’.
We will treat it as the space of classes of equivalent measures, two measures
f(u)qs (du) and are equivalent if f = g q-a.s. This vector space en-
dowed with the norm

= y = (Qsf, , f )

becomes a Banach space isometrically isomorphic to L2(U, qs) = Hs, and
hence complete. Now our statement follows simply from the definitions and The-
orem IV:Q.4 in ~3~. .

4.3 Integrals with respect to stochastic flows.

Here we generalize some results of H. Kunita in [11] concerning the integrals
with respect to stochastic flows.

Let X be a locally compact metrisable space (there exists a countable dense
subset of X). For each x E X we are given Mt(.r) C Suppose that
there exists a measurable function Q$ (x, y) and an increasing
P(IF)-measurable process at such that

Mt(x)Mt(y) - t0Qs(x,y)d03BBs ~ Mloc(IF,P) (16)
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We assume that Qs is symmetric and non-negative definite, i.e. ~(03BEn), ~(xj),

_> a .

Let E be the set of all real valued functions with the topology of simple
convergence and E’ its dual space, i.e., the space of finite combinations of Dirac
measures. If  E E’, we have  = 03A3x cx03B4x and only a finite number of 0.

For  _ 03A3x cx03B4x we can define

_ ~ _ ~ .

x x

Obviously, (1fi) yields
t

Mt( )Mt( ’) - 03A3cxc’yQs(x, y) d03BBs ~ Mloc(IF, P),° 
xy

where

, .

x x

For  = 03A3xcx03B4x , we define _ 03A3y cyQs (y, x), i.e., E ,C+(E) and ~ ,
yEy 

Mt( )Mt( ’) - t0 ’,Qs >E’,E d03BBs E Mloc(IF, P).

In this case the corresponding Hilbert subspaces Hs = HQS can be described
using their reproducing kernels ~?s (x, y) (see ~21~ ) . We consider two particular
cases.

(a. ) Let ~s be separately continuous on X x X, continuous on the diagonal and
locally bounded.

Denote E°(X) the space of continuous functions on X with the topology of
uniform convergence on compact sets. Let E°(X)’ be its dual space which is the
space of Radon measures with compact support. We can extend the kernel ~s
to E° (X)’ . If v E E° (X)’, we set

Qsv(x) = / Qs(x, y)v(dy) .x

Lemma 41. For each v E E°(X)’, there exists a sequence from E’ and
E P) such that

SUP |Mt( n) - Mt (V) 1 + 1 
i 

(Q3 (Pn - V» Pn - 03BD> dA3 ~ °

in probabidity. Moreover, for each ~, v E E° (X )’,
t

(~s(I~ - v)~ (~ - v))das E P) .
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Proof. For each n there exists a finite measurable partition of supp v
such that I/n. We choose arbitrary xk E Ak and define 
Ek Obviously, we have inequality  ~v ( for their variations and
for each continuous function f on X n ( f ) ~ v ( f ) Thus by our assumptions
fo n~ 0 in probability. Therefore there exists increasing
sequences of stopping times (Tp) such that Tn,p  Tp  1 and

(  1) p-+oo 0,  ) »-~ 0,

E  oo, 

 + 1. .

Then for each p

E sup|Mt^n,p( n)-Mt^n’,p( n’)|2 ~ 0 , ,

as n, n’ ~ oo. Thus the existence of a limit with required properties follows
immediately.

Proposition 42. Suppose that for each s, Qs E ,C+(E°(X )), and ~o (~$ d~s E
L+(~0(X)). Ifvs is a P(IF)-measurable function such that

10X03BDs(dx)XQs(x,y)03BDs(dy)d03BBs  ~ P-a.s., ,

we can define the Ito integral t0 03BDsdMs = It(v) E P) such that (I(v))t =

~ .~x ~x y)vs(dy)das.

Proof. The statement follows from Lemma 41, the definitions and Proposition
9.

Remark 43. In [11] the case vs = 03B4fs was considered, where fs is an X-valued

P(IF)-measurable function.

(b.) In addition to the assumptions made in (a) let us suppose that X is an

open subset of Rd. Assume that Qs has all derivatives up to order m and for
~p~  rn, ~ m, y) are separately continuous, locally bounded and
continuous on the diagonal. Let be the space of m times continuously
differentiable functions with the topology of uniform convergence on compact
sets of all derivatives up to order m. The dual space (X)’ will be the space
of the generalized functions of order ~ m with compact support. We can easily
extend Qs to by - f X Qs(x, y)T(y)dy, where T E 
(obviously QsT E Em(X)).
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Lemma 44. For each T E there exist a sequence ~,~ E E’ and a process
Mt(T) E P) such that

da~+

supt - ~ n~ 0 in probability.

Proof. . Fix T E Em (X )’ Then there is a family of Radon measures { vp } ~ 
m, with compact supports such that

T= ~ ap vp. .ax

It is enough, obviously, to prove the statement for T = ( a~ ) ~ vp As in the proof
of Lemma 41, for each n we take a measurable partition (Ak ) of the support of
vp such that 1/n. Then we choose an arbitrary xk E Ak and define
~cn = ~k vp(Ak . Obviously, the variations satisfy the inequality  ~v~ (,
and converges weakly to vp Thus,

in probability. Let (ek ) 1  k  d be a canonical basis in Rd p = ( pl , ... Pd). . For
sufficiently small h > 0 and x EX, define = bx ) . Consider
~tn = (dh)pl ... = ~k ... It is well defined

for small h > 0 and is an element of E’. By our assumptions, for each n,

10 Qs ( hn - (~ ~x) p n), hn -(~ ~x)p n> d03BBs ~ 0 .

Thus we can find a sequence (hn such that

10 Q( hnn - T) , ( hnn- T)> d03BBs ~0

in probability, and n = E E’. We complete the proof as in the case of
Lemma 41. There exist sequences of stopping times (T,~,p), such that 

p~1 and

Then for each p supt|Mt^n,p( n) - ~ 0, as n,n’ ~ ~. The
existence of a limit with required properties follows immediately.



159

Proposition 45. For each s, Qs E Qs d~s E ,~+ (Em (X) ) . . I f T$
is an ~m (X )’-vatued P(IF)-measurabde function such that

10 X T$ (x)dx y)Ts(Y) dy  oo P-a.s., ,

we can define the integral It(T) = f a T$ dMs E P) such that

(I(T)>t = t0XTs(x)dxXQs(x,y)Ts(y)dy d03BBs .

Proof. The statement follows from Lemma 44, the definitions and Proposition
9.

Remark 46. Let Ts = be such that

0 x 

where c~ are one dimensional predictable functions and are predictable func-
tions with values in the space of Radon measures on X with compact
support. Then the function T is M-integrable.

4.4 Integrals with respect to purely discontinuous martingales

In this Section we apply the ideas discussed above to integration of infinite-
dimensional vector functions with respect to purely discontinuous martingales.

Let (U, U) be a measurable space and p(dt, du) be a non-negative point mea-
sure on ([0,1] x U, ~i( ~0,1~ ) ® U). . Assume that there exists a P(F)-measurable
family of measures and an increasing continuous process at such that
q(dt, du) = p(dt, du) - is a martingale measure. Let (Un) be an in-
creasing sequence of measurable subsets of U such that UnUn = U and for every
n,

10 Um 03C0s(du)d03BBs~ P-a.s.

Let f(s, u) be a P(IF)-measurable E-valued function such that

10f(s,u),y>2 ^ |f(s,u),y>|03C0s(du)d03BBs  ~

for each y E E’, P-a.e.
For each y E E’, define

Mt(y) = t0uf(s,u),y>q(ds,du) ~ Mloc(IF,P) .
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The function I(s, ~) defines a U-measurable family Qa,u of kernels
from ,C+(E) such that 

y‘ ) = (f (s~ u) ~ y) (f ~s’ ’~)’ y ) for all y’ y E E

Obviously, the corresponding Hilbert space Hs,u is one dimensional:

Hs,u = { Rf(s, u) , if f(s, u) ~ 00, if f (s, u) = 0 .

In this case we can integrate functions of the variables (w, s, u) . Let D1 =
be the set of all E’-valued P(F) 3 U-measurable functions g such that

E[10 U g(s, u),f(s,u)>2p(ds, du)1/2] ~.

Define D1 = D1 (P) as the set of all 0 U-measurable scalar functions p
such that

03C1 =03C11{f~0} and E[10 U 03C1(s,u)2p(ds, du)1/2] ~.

Let D1 = D1 (P) = {g = pI : p E D1}. Since is one dimensional and

q(ds, du) is a scalar measure, the integration is elementary. Now let ~yl, y2, ...}
be a weakly dense subset of E’. Write

inf(n :f(s,u),yn> ~ 0, if f(s,u) ~ 0N=n(s,u)=1, if f(s,u) = 0yn(s,u)f( s,u ) , yn(s,u)> -2 , if f(s,u)~0 (17)

0, if f(s,u) = 0.

Then ( f (s, u), e’(s, u)) f (s, u) is a measurable basis in We define the

integrals

= .~o g$ ~ dMs = f o fU p(s, u)q(ds, du),g = Pf E D1’

(see [8] for the definition of the right sides). Now we write

O = g E D’: f,g> = 0 
O = {g = 03C1f ~ D1 : 03C1 = 0 03C0s(du)d03BBsdP-a.s.},

O = {03C1 ~ D1 : 03C1 = 0 03C0s(du)d03BBsdP-a.s.},

D1=D1/O, D1 =D1/O,D1=D1/O .

For g E we denote § = g + C and define the distance

d(,]) = E[10f(s,u),g(s,u) - g’(s,u)>2p(ds,du)1/2].
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For g E D1, we denote 9 = g + C~ and define the distance (g = p f, g’ = p’ f E
Dl) d(9,9~) = E f a u) - du)1~2 . For p E write

p = p + C~ and define the distance

d(,’) = E[10 U (03C1(s, u) - 03C1’(s,u))2p(ds, du)1/2].

Proposition 47. The maps : s  ( f s f s , and g2 : ps f s ps are isome-
tries from D1 to D1 and from D1 to D1, , respectively, i.e., all the spaces are
complete. Moreover,

T (g) =~t((f~9)f) fu(f, g)q(ds, du),
= ,~a Ju pq(ds, du) ~ 9 pf .

Proof. Let g = p f e D1 and g’ = p(s, u)e’(s, u) where e’(s, u) is defined by (17).
Then ( f g’) = p, i.e., g’ E D1 and the statement follows from the definitions.

Remark 48. We can localize the definitions and integrate the functions from
and (a function g E Aloc, if there exists a sequence of stopping

times (Tn) such that Tn t 1 and E A where A = 

Let = P) be the set of all P(IF)~U-measurable scalar functions
p such .that P-a.e.

10 U|03C1(s,u)|2 ^|03C1(s,u)|03C0s(du)d03BBs  ~.

Remark 49. By Proposition (3.71) in [8] we have the following predictable char-
acterizations of the classes D1loc:

a) 03C1 ~ D1loc ~ 03C1 ~ G1loc,
b) 9 E D1loc a g, f ) E G1loc,

.

5 Appendix

Proof of Proposition 2. Let 0 be a completion of H0 = Since the
natural embedding j : is continuous we can extend it continuously to
a linear continuous mapping j where E is the completion of E and

= j. Let zn E H0 and xn ~ x in = ~ j(x) in E.
Therefore = j(xn) is a bounded Cauchy sequence in E. From the quasi-
completeness of E it follows E, i.e. ] is a continuous linear map from
0 to E. We shall prove that] is an injection. Let k E 0 and (k) = 0. Then
for each y E E’,

~ = (~ (~) ~ y) = (k, 
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This equality is obvious for k E and the general case follows by con-
tinuity of both sides. Thus k E ilo is orthogonal to i.e., k = 0. Thus

: 0 ~ E is a continuous injection. Let HK = ](ilo) C E and define
= ( j ’ 1 ( x ) , j -1 ( y) ),~ a for every x, y E HK. Then HK E E is the comple-

tion of and the natural imbedding E is continuous by the continuity
of j. The statement is proved.

Proof of Corollary 3. Let L be a linear subspace generated by T. It is

weakly dense in E’. Denote by L the closure of in KE. If L ~ KE, we can
find xo = and a continuous linear form l R such that

t (xa) = > 0 and = 0. By Riesz theorem there exists h E HK such
that l(Ky) = (h, for each y E E’. On the other hand (h, = (h, y).
Indeed, this equality is obvious for h EKE and follows from continuity of both
sides in the general case. Thus (h, yo} > 0 and (h, y) = 0 for each y E L, and
we get a contradiction. It means that L = KE. Since is obviously strongly
dense in HK, our statement is proved.

Proof of Proposition 15. For each f’ E E’ and h E H = HK C Ei,

(h~ = Bh~ (uh, .

So, h is orthogonal to if and only if uh = 0, i.e., h E =Ker u.

Then the orthogonal complement to N in H is the closure in H of the set .

Then the scalar product is always equal to the scalar product of the
corresponding images in u ( H ) :

~uh, f’}E,Er = (h, f’)H = (uh, 

This proves that uliu’ is a reproducing kernel of u(H), i.e., u(H) = HuKu’.

Proof of Proposition 35. If H = HK, then K E ,C+(E) is the composition
of linear forms: : E’ ~ r H’ ~ H -~ E, where j is the injection from H to
E, j’ is the injection from E’ to H’ and 03B8 is the canonical isomorphism between
Hilbert space H and its dual H’. Similarly with the identifications discussed in
the proof of Remark 33, k’ is the composition of the linear forms j’, 8’ l, and j: :

:E’~H~H’~E.

Now we shall discuss briefly the stochastic integral for Banach space valued
martingales (see [16]). The Metivier-Pellaumail construction is based on an a

priori estimate for simple integrals. It will be shown below that this estimate
guarantees the existence of the factorization QdA. For the sake of simplicity,
we consider a particular situation. Let L be a separable Banach-space with its
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dual L’ . Let X be a square integrable L-valued martingale and P be a boolean
ring generated by the sets of the form ]~] x F, F e ~(Z/) will denote the
vector space of the L’-valued and ~-simple processes, i.e., the processes Y such
that Y = ~. where (ai) is a finite family of L’ elements and is a
finite family of P elements. If Y C ~(L’) the definition of the stochastic integral
J~ YdX is obvious (see [16]). In [16], p. 20, the following assumption is made.

[i] there exists a finite positive measure ~ on predictable sets, vanishing on
evanescent sets and such that for every L-valued P-simple process Y,

E(10YsdXs)2~03A9,|Ys|2L’d03B1~,
where 03A9’ = [0,1] x 03A9.

Note that this assumption is always satisfied if L is a Hilbert space.
Let ~C(L~, L~) be the space of continuous linear operators from L’ to its dual

~ and

/;+(r, z~) = {~ e /;(~, ~): 0, = e ~} . .

Proposition 50. Let L’ be separable and the assumption (i) be satisfied. Then
there exists an increasing P(IF)-measurable process A and L+(L’, L")-valued P(IF)-
measurable function Q such that for each z, y ~ L’

z(Xt)y(Xt) - t0(Qsy)zd03BBs~ Mloc(IF,P).

Proof. Let {2/1, y2,...} be a countable dense subset in L’ . Denote 03BBit = 
Choose a sequence (c,), c, > 0 such that  oo and define At 
Then by assumption (i), we have that for each y ~ ~/,

d(y(X))sdP « d03BBsdP on 

Thus for each y, z E L’, there exists a P(IF)-measurable function Cs (y, z)
such that 

/ e .

Obviously, for each y, z, u e L’ and a, b C R

Let J be the vector space generated by ~2,...}. Then it is easy to find
a bilinear form (~ on J x J such that for each y, z ~ J, 0(2/, z) =

> 0 and, moreover, = Cs(y, z).
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By the Lebesgue theorem, there exists a P(F)-measurable function / ~ 0
and a finite measure a on P(F) orthogonal to d03BBdP such that

da = fd03BBdP + d03B1.

Let l E C y = Then

= E ~  E /’ .

Since A is arbitrary, dA.dP-a.e. Thus we can find a dÀdP-
modification of Qs such that

everywhere and we can extend Q~ continuously as a bilinear form on the whole
L’ x L’. So there exists Qs : L’ -~ L~ such that = for every

y, z E L’ and we are done.
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