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Criteria of regularity
at the end of a tree

S. Amghibech

Universite de Rouen
U.F.R des sciences, mathematique, URA CNRS 1378

76821 Mont Saint Aignan Cedex

Abstract

For a random walk on a tree, we give analogues of Wiener’s test relatively
to Dirichlet’s problem for the endpoints of the tree.

Resume
Etant donnee une marche aleatoire sur un arbre, nous etablissons pour les

points de la frontiere des criteres de regularite analogues a des criteres classiques
relatifs au probleme de Dirichlet pour le mouvement brownien dans dont
celui de Wiener pour n = 2. 

’
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1 Introduction

Let A = be a non oriented infinite tree with a root : A is the set of vertices

x, y, a etc., U the set of edges (x, y) or [x, y] , and 0 a fixed point in A. We denote by
y the symmetric relation (x, y) E U and d(x) the cardinality 

We suppose
. 2  inf d( x)  sup d( x)  o0

~6~ xEA

verified ; in particular A is countably infinite. A geodesic ray (starting at 0) of A is
any one to one sequence r~ = (xn) of vertices such that a:o = 0 and for all

n E N, and the end of A is the set of all geodesic rays.
We consider a resistance R on A, i.e. a function from U to R+ such that ?/] =

R[y, x] for all (x, y] E U and we associate to R a random walk X = with

transition P(Xn+1) = x/Xn = y) = pxy = 
R[x,y]-1 03A3{z:y~z}R[y,z]-1 

if x ~ y and = 0

otherwise, where pxy = if x rv y in the simple random walk (R = 1). We
denote by Px the law of Xo = x, Ty = inf {n > 0 : Xn = y} the first hitting time of
y E A, and SB = inf {n > 0 : Xn E B} the first return time to the subset B of A. We
assume in all this article that X is transient, i.e. = ~] > 0 for all x E A.

Following [1] we say that a geodesic ray r~ = is regular for the Dirichlet
problem if P~n [To  oo] = 0 ; this is analogous to classical definition of a
regular point of a Dirichlet problem. In [4] and ~11~, Wiener’s test in the continuous
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case is presented. In [12], [6] the description of the Dirichlet problem on graph and
conditions to obtain a regular problem are given. In [2] another description is given.

In §2 we establish a criterion of regularity, for geodesic ray for random walk on a
tree, analogue in the simple case to Wiener’s test ~11~, [4] for the brownian motion in

and we give the analogue of Frostman criterion.
In §3 we give a characterization of the regularity of a geodesic ray, analogous in

the simple case to Wiener’s test which we find in [5] for brownian motion in 
n > 2. This characterization is based on the behaviour of the potential kernel in the
neighbourhood of geodesic ray.

2 Electrical network and Wiener’s test

To each a E A we associate a partial order (orientation) a on A as : for x ~ y we
have x a y if and only if x belongs to a geodesic ray between y and a. We call a flow
started at a any function I a from U to 1~ such that

1. Ia([a, y]) =1 and y~) = 0 for all /~ ~ a; ;

2. I°‘(~x, y~) = x~) for all ~x, y] E U and y~) > 0 if x a y.

The energy of the flow Ia is the number E(la) = 2 y~)2. Since the
random walk X is transient, there exists a flow I a starting at a with finite minimal
energy (see [8] and [10]) E°‘ which we call the resistance of A at a and we denote
it by We think of RA(a) as the inverse of the ordinary capacity. If ,~ is a

subtree of A rooted at a, we define in the same way the resistance RB(a) of B at a
if B is transient, and we put RB(a) = oo if B is recurrent. Finally, if r~ = is a

geodesic ray we denote by the subtree of A which has

U ~x E A, zn x, zn o x~,

as vertices and we denote by the resistance of at xk.

We now give the analogue of Wiener’s test for the tree [11]

Theorem 1 Suppose that R(x, y] > 1 for all ~x, y] E U. Then a geodesic ray r~ = (xn)
is non regular if and only if

00 1 n

E DT~ ~ xk-1]  00;
n=1 k=1

in particular, if we have = 1 for all the geodesic ray r~ = (xn)n is

non regular if and only if
°° n

n R~(n) 
 oo.

We give an example before proving our theorem.
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symbolizes the infinite
dyadic tree

figure 1

Let us consider the simple random walk X in the tree A depending on the param-
eter r. Using the symmetry of we obtain

= + l..

According to Theorem 1 r~ = (k)kEN is non regular if and only if  oo,
which is equivalent to r > 2. Furthermore if a  2 then Pn [To  ~] = 0 but
if r > 2 then limn~~ Pn[To  ~] > 0.

We prove Theorem 1 in several steps.
First, if R~(k) is infinite for all k then the ray ~ is non regular because R > l. Hence

we can suppose that there exists k such that is finite and then we can change
xk to 0. For simplification we suppose R~(0) is finite, which implies > 0

Proposition 1 Let ~ = (xn)n~N be a geodesic ray.
~~ For all k > 0 the quantity

~ 
xk-1]l

k 

is independent of n > k.
2) A geodesic ray ~ is non regular if and only if 03A0n~N cn > 0.

Proof of proposition 1 Part 1) is trivial. To prove 2) note that the flow starting at
a defined by

y] = 03A3 P03B1[Xk = x,Xk+1 = y] Py[Tx = if x a y,
kEN
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is the flow of minimal energy Exn. This means that

 Pxn[T0  .

Combining this inequality and the transience of X we easily deduce 2). .

Proof of Theorem 1 Suppose  oo and R~(k+1)  ~. Using the minimality
of the energy we obtain the equation of equilibrium

xk+il) + - xk-y)I
= 1’~1 ( ~ + 1 ) 11~k+2 ( ~xk+2 ~ xk+1 ] ) - 

Dividing each term by we obtain

(1 - ’~ 1) ’ + 

Multiplying by c~ for n > k + l, we obtain

n n n

+ 1)(1 - ~ ~i = ~ ~i + ~(~)(1 - Ck) ~ Ci
i=k+2 i=k+l i=k+l

and finally
n-1 n n

~i + .~r~(a) ~ ci, (1)
k=0 i=k+l i=l

if  oo for k = 0,..., n. We show easily that (1) is true if we suppose only
R,,(n) is finite and for k = l, ... n -1 are finite or infinite. This implies the
inequality

1 n n

1 - cn ~ 1 R~(n)(R[xk, xk-1] 03A0 ci)

and therefore

(1- cn) ~ 1 R~(n)(R[xk, xk-1] 03A0ci). (2)

If r~ = (xn ) is irregular, by Proposition 1 cn is finite, and so the series
00 1 n n

1 R~(n) R[xk, xk-1]03A0 ci

converges, and by inequality (2), we have

1 R~(n) R[xk, xk-1] ~.

If ~ is regular, by Proposition 1, x0] > 1 and ( 1 ), we have

(1- cn)1 R~(0)+1~ 1 R~(n)(R[xk,xk-1] ci) (3)
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for all n. Since c; e]0,1] and limn~~ 03A0ni=1 ci = 0, cn) diverges, and by using
inequality (3) we obtain

1 R~(n)(R[xk,xk-1] ci) = ~.

This completes the proof because ci~]0, 1].

The consequence following Theorem 1 has an interesting physical interpretation.
Let us denote by I° and E° the flow and the energy at equilibrium starting at 0 i.e.
the flow with minimal energy starting at. 0.

Proposition 2 Let r~ = geodesic ray and define the equilibrium potential

o

= ~, xk+1J. .
k=0

The ray 7y is irregular if and only if  E°.

Proof First let us define, .for n > 0, the variation potential at equilibrium ~°(n) in
by 

~°(n) _ ~(n)~~°(~x~-1~ - xn+1J)~. °

Suppose ~ is irregular. Using the equilibrium for n  m at R,~, (m) and R,~, (n) we obtain

m-1

~°(n) = Lr + ~U(172), ..

~ 
k=n 

if R~(m)  oo and  oo. Since xk+1J ~ 0 if k -~ oo we obtain

for 1 ~ 
-~.

, i=k+1 R~I (2 )

For simplification, we put

-~ k) = v° ( pn+1 ) = 1 ~ ... ~ pn+1 - p,~

where  ~, R~(pn + 1 ) = oo, ..., R~(pn+1-1) = ~, R,n ( pn+1 )  ~. Thus we

have _

o 
_ 

~o 
Pn+l-1 

x x 

00 

4+ ~ R 2 ~ (4)
n ( )

since ~ is irregular the series of general term
°° 1
L~ 

i=k+1 

is convergent by Theorem 1. Therefore we have

1+R[xk,xk+1]1 R~(i)) ~;
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by applying the inequality (4) and the nonincrease of we obtain limn~~ 0~(n) >
0, which proves the first implication.

Conversely, 0(~)  E implies infn V°(n) > > 0 and equation (3) gives

0~(pn)~ infV0~(k)(1 +R[xk, xk+1] 1 R~(i));::: 
==ki-1 R(i)

and therefore the result follows.

3 A third criterion of irregularity
In this section we assume that

R[y, z~ 1  o0

yEA 

and we denote by G the potential kernel of the transient random walk X. Let r~ = (xn)
be a geodesic ray.

Since n -  ~] is nonincreasing for large value of n, and since G(xn, x) =
 ~] G(x, x) then lim G(xn, x) exists. We denote it by x).

For a subset B of A we define its capacity Cap(B) as in [9] by

~ = oo~,
xEB

which is equivalent to other classical definitions.

Theorem 2 Let ~ = (xn)nEN be a geodesic ray and put for all k ~ N

Ak = {x E A : 2k  2k+1}.

If ~ is irregular we have
lim sup 2nCap(An) > 0.
noo

If r~ is regular we have x) = 0 for all x E A.

We begin the proof with two lemmas.

Lemma 1 If lim  ~] > 0 then lim  ~] = 0.

Proof of lemma 1 Suppose the result is not true, i.e. lim  0. By"’- ~n J / J

proposition 2.6 of [3] (strong Markov property) we have

Pxn [To ~] = Pxn  ~]Pxn-1[T0  ~]
and .

P0[Txn  ~] =  ~]Pxn-1[Txn  ~].

By this equality we have

lim  ~] =  ~] = 1
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which gives  ~] =1 and so xn) = ~. By (3J we have

 ~]G(0, 0) =  ~] G(xn, xn) (5)

because

C(xn) G(xn, 0) = C(0) G(0, xn)
and for all x, y in A we have

y) = Px[Ty  y).

Since the graph is bounded, this gives lim P0[Txn  ~] = 0, which contradicts the
hypotheses. Hence the lemma is proven.

Lemma 2 If ~ is irregular, then, for all E > 0, the subsets {x E A : Px[T0  ~}
and {x E A : G(xn, x) > E~ are non recurrent.

Proof of lemma 2 Let us denote by the tree induced by {x E A : Px[T0  
E}. If is finite, {x E A : Px[T0  E} is non recurrent ; if is infinite, every
geodesic ray of is irregular, and hence applying Proposition 4.3 of [8], we obtain
that is recurrent, and so {x E A : Px[T0  E} is non recurrent.

To prove the non recurrence of the second subset in lemma 1, we apply the first
part to each element of the decomposition of ~x E A G(xn, x) > E~ in the
subgraph N, and so we easily obtain the conclusion.

Proof of theorem 2 Suppose the geodesic ray is irregular ; by Lemma 1 and equality
(6) we have

lim G(xn, = oo.

Let n E N* such that, in An we have a vertex Xk of r~ and in the largest k E N such
that xk E An. Let un be the equilibrium measure of An, i.e. the non negative function
u,~ such that Gu~ == 1 in An and vanishes in the complement of An. In fact An is non
recurrent by Lemma 1, and we have = = ~] for x E By definition
we have

(An) = ~ un(x)C(x); ;
xEAn

since x) E [2n, 2n+1J for x E An, we have

2n+1Cap (An) ~  lim G(xk,x)un(x)C(x),

and

~ lim G‘xka x)un(x)C(x) > 2nCap (An).xEAn
On the other hand, since xi" is in the geodesic ray between xk and x for large values
of k, we have

G(xk ,x) = Pxk[Txin  , x).
This implies .

2n+1Cap(An)~ lim Prk  ~]G(xin, x) un(x)C(x)
xEAn 

~~



135

and

lim C (x) ~ 2nCap (An)

SO

2n+lCap (An) ~ lim  °°l ~ ~~ 
xeAn

therefore

2n+1Cap (An) ~ lim Pxk[Txin  ~].

With the same argument we have

lim Pxk[Txin ~]~2nCap(An)/[maxC(x)].

which finishes the result and the theorem.

Remark Here we use a geodesic ray for the determination of An. We have an anal-
ogous result if we replace the geodesic by a vertex : we obtain in the case of a tree
Wiener’s test for Markov chains in [7]. .

4 Appendix
We give an example in which there are infinitely many non countable irregular points
which are in the support of the harmonic measure starting at the root.

Let r be the dyadic tree which has vertices, root and edges denoted respectively by
Xo and (i, j) if x= N Let (np) be a increasing sequence of N* such that the

series np/np+1 is convergent. We construct the tree A (see figure 2) as follows.
We introduce vertices, in each edge (i, j ) such = p and = p+ 1
and we attach at each vertex .r, of r a tree r2,p where r2,p is the tree obtained by
attaching at the root of a dyadic tree a geodesic ray formed with np 2014 1 edges.

V symbolizes the infinite B /
dyadic tree the pasted tree at 

figure 2 
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We show easily by applying theorem 1 that a geodesic ray of A which contains an
infinite mumber of and passes through zo, is irregular and is in the support of the
harmonic measure ~c(~) = P~o(~). Then we have an uncountable set of irregular points
in the support of the harmonic measure

Acknowledgments. The author thanks C. DELLACHERIE, V. KAIMANOVICH, A.
BENASSI, R. LYONS and Y. PERES for useful suggestions.

References

[1] BENJAMINI, I., AND PERES, Y. Random Walk on Tree and Capacity in the
Interval. Ann. Inst. H. Poincaré sect B. 28, 4 (1992), 557-592.

[2] BENJAMINI, I, R. PEMANTLE, AND Y. PERES. Martin capacity for Markov
chains. Ann. Probability. 23, 3 (1995), 1332-1346.

[3] CARTIER, P. Fonctions harmoniques sur un arbre. Symposia. Math. Acadi 3
(1972), 203-270.

[4] CONWAY, J. Fonctions of One Complex Variable II. Springer-Verlag, 1995.

[5] DOOB, J. L. Classical Potential Theory. Springer-Verlag, 1984.

[6] KAIMANOVICH, V., AND WOESS, W. The Dirichlet problem at infin-

ity for random walks on graphs with a strong isoperimetric inequality.
Probab. Theory Relat. Fields 91, 3-4 (1992), 445-466.

[7] LAMPERTI, J. Wiener’s Test and Markov Chains. J. Math. Anal. Appl. 6

(1963), 58-66.

[8] LYONS, R. Random Walk and Percolation on Trees. Ann. Probability. 18, 3

(1990), 931-958.

[9] REVUZ, D. Markov Chains. North Holland, 1975.

[10] SOARDI, P. Potential Theory on Infinite Networks. Springer-Verlag, 1994.

[11] TSUJI, M. Potential Theory in Modern Function Theory. Maruzen Co. LTD,
Tokyo,1959.

[12] WOESS, W. Behaviour at infinity and harmonic functions of random walks on
graphs. Probability Mesures on Groups X. ed. H. HEYER. Plenum Press, New
York,1991.


