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Almost Sure Path Properties of Branching
Diffusion Processes

Y. Git, School of Mathematical Sciences, Bath University, Bath BA2 7AY, UK
ygl@maths.bath.ac.uk

Abstract

We consider a one-dimensional Branching Brownian Motion. We present a large devi-
ations result concerning the almost sure number of particles along any given path. We
then observe the implications of this result by studying Branching Integrated Brownian
Motion.

Key Words: Strassen Law, Large Deviations, Branching Diffusion Processes, Reac-
tion Diffusion Equations

1 Introduction

Branching Diffusion Processes (BDPs) have been studied extensively over the last
decades. The behaviour in expectation is well understood, but to study the almost
sure behaviour of a BDP, one must study the associated Reaction-Diffusion equation
using martingales theory. We refer the reader to [Neveu] for an excellent exposition on
the subject.
We analyse the almost-sure behaviour using large deviations techniques while concen-

trating on the study of a dyadic Branching Brownian Motion (BBM). We formulate
a large deviations principle for the almost sure rate of growth of particles along any
given path.

This work is divided into two sections.

. The derivation of the almost sure rate of growth function, measuring the number
of BBM-particles along any path.

. An example of how this derivation can be utilised.

We begin by studying the rate of growth of the expected number of particles along any
path of a BBM. The result follows directly from work by [Schilder] who first described
the large-deviation principle associated with the paths of a single particle. We com-
bine his result with a simple many-to-one picture to deduce the rate function for each

BBM-path. This provides the upper bound for the almost sure rate function. We then

pull together results by [Uchiyama] and [Chauvin] to prove the lower bound.

In the second section, we consider a system of breeding particles, whose velocity is

given by a Brownian Motion. We arrive at a two dimensional point-process on the

plane fo . We study the phase plane to discover that the behaviour

almost surely and in expectation is extremely different.
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The remainder of this introduction sets up the background with some definitions.

1.1 Constructing The Branching Brownian Motion Model
Let each Brownian particle wait an exponential time of rate 1 before dying while
giving birth to 1 + C offspring. We excluded the possibility of death so that 1 + C
is a Z+-valued random variable. We also impose that E(C log C)  oo. At birth,
the parent particle and its offspring share the same spatial position, but from then on,
each offspring follows an independent Brownian path. We follow Neveu’s construction.
A finite sequence i of numbers will label each particle, starting with the first particle
labelled 0. Each particle i has 1 + Ci descendants iO, il ... iCi. Let I = be
the space of labels. Let Ti be the lifetime of particle i (i E I) . . Particle i will thus be
born at time

k=n-1

Ti = ~ if 2 = ~1 ... ~n.
k=0

The T~ are assumed to be strictly positive random variables satisfying the non-explosion
condition: (I : t} is finite for all t. The trajectories of particles are continuous
maps Bt of the time intervals Ti + i] into R such that = Bi(Ti + i) for
every z ~ I and c  C~.
A point 03C9 E 0 is a collection (Tj, Ba, Ci : i E I} satisfying the above conditions. Let

= (I : Ti  t  T~ + T~} be the set of particles alive at time t. The filtration
E R+} on Q is generated by {Nt, i E There exists a unique

probability measure P on such that {Bi : i E I} is an independent family of
Brownian-motion processes with each Bi started at Ba(Ti), stopped after an exponential
time T~ of mean 1, and giving birth to C~ offspring at its time of death.
Although C need only satisfy E(C log C)  oo, we will restrict ourselves to the simple
dyadic Branching Brownian Motion where C = 2 almost surely. Our results fail if

E(C log C) = oo because result 3 is no longer valid.

1.2 Scaling The Branching Brownian Motion
At time T (now a fixed time), let us scale the BBM by a factor of T in both the space
and time coordinates. We get a branching process on the time-parameter set [0,1].
Specifically, for every i E NT, let xT E C°(~0,1~, R) - the space of continuous functions
from [0,1] to R - be the T-scaled path of particle i, defined as

x;(t) := .

Here, atT (i) denotes the unique ancestor of particle i at time tT. . Clearly all T-scaled
paths satisfy = 0. We let Co be the space of continuous paths started at 0
with the supremum norm ~x - z~ ] = Let Cl be the space of
paths which are also absolutely continuous with fo x2dt  ~. If D C C°, then let
MD(T) denote the set of particles at time T whose T-scaled path is in D. Also if
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DIB := {x E C°(~0, 8~, ?~) : ~z E D, x(t) = z(t) Vt E ~0, 8~}, let MD(T, 0) denote set
of particles whose T-scaled path is in up to time 0  1.

ED},

The function xIe E 0], ~Z) is x truncated at time 8.

2 Rate of Growth in Expectation
We denote the law of a standard Brownian Motion run until time 1 as Pl. We also
denote the law of an individual T-scaled path xi path by which is the same in

law as Pf defined in [Varadhan, Section 5]. The large deviation principle associated
with {P1/T : was first proved by [Schilder] with a rate function

I(x) :_ 2 f o ~ otherwise.

Of course, nothing stops us running the process only until time 0T where 0 E [0,1].
We get a slightly modified rate function I(x, 0) = 2 f B x2dt.

Let D be a subset of Co. By conditioning on the first birth, we arrive at a many-
to-one picture:

E(I MD(T~ 8)I ) = E 

whence

= E DI e)} ,
E DIe), 

.

55 B-I(x,9).

In fact, combining [Varadhan] and the many-to-one particle picture, the following result
is immediate:

Result 1. Let J(x, 8) : := 9 - I(x, o). If A and D are an open subset and a closed
subset of C0|03B8 respectively, then

sup J(x, 8), ,
T-oo xEA

sup J(x, 6).
T-~oo xED
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As a matter of convenience, for all 9 and for all sets B, we let

I (B, 8) := inf I(x, 8), ,

J(B, 8) := sup J(x, 8).
a:6B

We note that I is lower-semicontinuous while J is upper-semicontinuous in the sense
that limz~x I(z) > I (x) and limz~x J(z)  J(x).

3 Rate of Growth Almost-Surely
We wish to transform the result in probability to an almost sure result, so that for
some function K(x) to be determined later (which we might hope looks like J(x)), we
have almost surely;

lim sup K(x),
xEA

lim  supK(x).

We certainly expect j~(~) ~ J(x) for all x E Cl. We can improve this upper bound by
considering the following: Suppose that for some 9 E [0,1] we have J(D,9)  0. Then,
using result 1 and Chebychev inequality, we deduce that as T tends to infinity,

> 0)  exp~TJ(D, B)} -~ 0.

Intuitively, this implies that limT~~|MD(T, 8) | = 0, and consequently also limT~~|MD(T) | = 0
almost surely. This is a better indication as to how J "controls" K. It turns out that
this upper bound is actually tight and distinguishes exactly between the different rates
of growth. We now begin the rigorous study.

3.1 Upper Bound .

Lemma 1. Let D be a closed subset of Co. Then for every B E [0, 1], we have almost
surely:

lim sup T-1 log|MD(T, 8) | ~ J(D, 8).
T--~oo

Proof. Suppose that the result is false. Then there exists a 0 and an event W with
P(W ) > 0 such that, for every 03C9 E W, lim supT~~T-1log|MD(T,03B8 )| > J(D, 9).
Hence if

Wn := {w lim sup T-1 log|MD(T,03B8)| > J(D, 8) + n-1 },
T-roo

then P(Wn) > 0 for some n. It is now clear that
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’J(D, 9) + n-1

contradicting result 1.
D

In particular, we see that if for some 8  1 we have J(D,8)  0, then, almost
surely, limT~~|MD(T, 8) | = 0. Since xT E D implies that E we must also
have that limT~~|MD(T) | = 0 almost surely. This leads us to the following definition
and the upper bound result:

Definition (The Almost Sure Rate Function). Let 80 E [0,1] U be the last
time at which J(x, o) is non-negative, 80 := inf{8 E ~0,1~ : J(x, 9)  0}. . Define K(x, B)
as:

J(x,03B8) if 03B8 ~ 03B80,K(x,03B8) : = -~ otherwise
Result 2. Let 8 E [0,1] and let be closed. Then

limsupT-1 log ~  .

T~oo xED

3.2 Lower Bound

We shall prove the lower bound in stages. We first consider open sets around linear
functions, then open sets around piecewise-linear functions, and finally arbitrary open
sets. We use the following definition of an open e-neighbourhood:

A(x, E) := {z E Co : -  E} _ {z E Co sup z(t) (  E~.
t

Lemma 2. Let x(t) = ~t be a linear function with 0  ~ ~ For every E > 0, we
have almost surely,

1- 

Our proof relies on work by [Uchiyama] with slight modifications using change of
measure by [Warren]. Their result involves the convergence of expressions of the the
form . We consider a special case of their result,
when g(x) = to deduce the following:

Result 3. Let a ~  Let = {i E NT : :AT  Bi(T)  ~T + 1 }
represent the particles at time T with spacial position between aT and aT + 1. . Then,
almost surely,

lim | ~ constant x Z03BB(~),

where is a strictly positive random variable.
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Before we prove lemma 2, please note that this result is true for an arbitrary birth
process C as long as E(C log C)  oo. It is for this reason that we imposed this
condition on the birth process.

Proof of Lemma 2. Consider the total number of particles at time T > 1 /~ in the
interval [AT, (A + ~)T ~ . Result 3 clearly implies that almost surely

lim T-1 log |N[03BBT,(03BB+03B4)T]|~1- 1 203BB2.

Next, define the closed sets

D5 := {z e Co B A (x, E) : z(0) = 0, z(1) E [A, A + b~}.

If 03B4 = 0 then I(Do) is minimised by the piecewise-linear path z(0) = 0, z(2) -
2a+E, z(1) = A and so I(D) = 2a2+2E2. By definition, a lower semicontinuous function
satisfies limz~x I (z) > I (x). Since I is lower-semicontinuous I(D03B4) > I (Do), so
that for a sufficiently small b, we can ensure that > 

We now use the upper-bound (result 2) with the knowledge that Da is closed to deduce
that, almost surely,

lim sup T-1 log|MD03B4(T) |  1- 1 2 03BB2.
T-~-oo

Since (T ) C (T ) U MDa (T ) the lemma is complete.
D

We now wish to glue together several linear functions.

Definition. Let x be a piece-wise linear function. We say x satisfies the lower bound
condition until time 81 > 0, if for all E > 0, almost surely

Suppose x satisfies the lower bound condition until 61. If from 81 until B2, x is a
linear function satisfying x = A, then we wish to show that x satisfies the lower bound
condition until 82 . We first assume |03BB|  We will run the process until time

03B81T, arriving at 81 ) particles. We will then run Bl ) independent
copies from time 8lT to time 82T, and add them all together. We require the following
two definitions. The first simply introduces the change in the rate function over the
interval ~el, e2~. The second defines a random variable, very much like for
each i E N(olT ) which simply counts the offspring of i whose T-scaled paths follow x
closely over the interval [03B81, 03B82]. Formally,

J(x, 81, 92) := 82 - el - 2 x2(t)dt,

(T, el, e2) : " -

{j E N(e2T) : a(j) = i, = x~ (91)) - (x(t) - x(81))I  E for all t E e2~} .
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It is a simple matter to verify that since all particles are independent, Mz all share the
same law and that .

(T, 92) ~ 
iem 

MA(~~, 2 E) (T, 81, 02). .

Also apparent is the additivity of the rate function:

e2) = 81) + ela e2)~ ,

Lemma 3. Let x E Cl be piecewise-linear satisf ying the lower bound condition up until
time 81. . Let x = a on (e1,82~, with ~a~  ~. Then, for every E > 0,

lim inf T-1 log |MA(x,~)(T, 62 ) | ~ J(x, 92 ) .’ -

Proof. . Let b > 0 be arbitrary. We use the Strong Law of Large Numbers. From

previous discussion, we have

(~’~ e2) ~ ~ e (‘~(~’82) 2~)T ~ (T ~ 8z ) (

> e-(J(~~Bl )-~)T ~ MA(~, 2 ~) (T, 91 ) ( ...
~ 

)I ~ E) (T, 81 ~ 82 ) j
~~’~~~ 

The i.i.d. random variables 
( 1 (T 81, 62)~ ] inside the summation

tend almost surely to infinity as T tends to infinity (using lemma 2). We average over
an independent random number ol ) ] of particles, but this random variable
tends to infinity almost surely as T tends to infinity, so that the SLLN still holds. By
the induction hypothesis, x satisfies the lower bound condition until time 81, and thus
the random variable e-(J(x,el )-b)T MA(~? 2 ~) (T, 91 ) also tends almost surely to infinity.
We conclude that the RHS (and hence the LHS) tends to infinity almost surely as T
tends to infinity, and hence, almost surely,

lim inf T-1 log |MA(x,~)(T, 82) | ~ J(x, 92) - 2S.-

Letting ~ ~, 0 concludes the proof.
0

We turn our attention to the case where x satisfies the lower bound condition until
time ol , while between 81 and B2, the gradient x = a > We of course insist on

J(x, 92) > 0.
Heuristics: The following proof is in principle the same as that of lemma 3 above. We
run the process until time 91 arriving (using lemma 2) at an almost sure MA(x,E)(T, ol )
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particles. We then run independent copies on [81T,82T]. 
’

We replace the almost sure number of particles 81, 92) produced by an in-
dependent copy, with Bl, 82), the probability of an independent copy with
xTi(03B81) = x(81), still remaining close to x by time 82T. Formally, we define

~ e~ ~ e2 ) := P e~ ~ eZ ) I > 0)
These probabilities are identical for all i, and are equal to the probability of finding a
particle started at 0, at an 6-neighbourhood of y = at at time (82 - 91 )T . [Chauvin]
showed that the probability of the right-most particle starting at 0 ascending to level
AT at time T decays at the rate 1- Z a2. We will need to modify her result slightly to
prove that lim infT~~ PiA(x,~(T, Bl, 82) > J(x, 81, 92). This will be done by a method
analogous to the one used in lemma 2.

We think of copies, each performing an independent trial, with probability
of success see that since J(x, 01) + J(x, 81, 82) = J(x, 82) > 0, the
expected number of particles succeeding, increases exponentially. Using an estimate
on the Binomial distribution, we show that the probability that the growth rate is less
than J(x, 82) - b, decays exponentially for all J > 0. Finally, this result is true only
in probability. To get an almost sure result, we have to use some sort of Borel-Cantelli
Lemma. Basically, we show that if we had a particle inside A(x, r) at time t, for some
r  f. Then the particle was inside A(x, E) for some interval before t. This allows us
to divide time into countably many intervals, and use BCL.

We state and prove the three supporting lemmas.

Lemma 4. Let x E Ci be a piece-wise linear function. We claim that for every E > 0,
there exists r > 0, such that, for all sufficiently large T, if E A(x, r), then xT E
A(x, E) f or all T E ~T -1, T ~ .

Proof. We define the look-back transformation for all T  T:

LT z(t) ~= 
: A(x, r) ~ A(LT x, and limT~~ supT-1T ~LTx - x ~ = 0. We let r = 4 E.

Pick T sufficiently large such that ~/~  rand T 1  2. We deduce
that for such T sufficiently large,

r) C A(x, 3r) c A(x, E) for all T E [T - 1, T~. .

o

Result 4 (Right-Most Particle At The Subcritical Region - Chauvin). . ’Let a >
~/2 and let RT be the position of the right-most particle of a dyadic Branching Brownian
Motion at time T. . Then

lim infT-1log P(RT > AT) = 1 - 1 2 03BB2
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Corollary 1. Let y(t) = At where ~ > Then for all r > 0

lim inf T-1 log P (|MA(y,s)(T)|> 0)~ 1-1 203BB2.

It follows that if x = A on [03B81, 03B82], then for all r > 0

lim infT-1log 91, e2) > J(x, Bl, e2). .’

Proof. Define the closed set D := {z E Co 1 A(y, r) : z(1) > a2}. It is easy to show
that J(D)  1- 1 203BB2 and hence

lim sup T-1 log P(|MD(T)| > 0)  1- 

Since P(RT > AT)  P ( ~ MD (T ) ~ > 0) + ~ > 0), the result follows. 0

Finally, an estimate on the binomial distribution B(n, p). .

Lemma 5. Let a  1. . Then P (B(n, p)  pna)  e-npa.

Proof. For x E ~0,1J we know that = (q + Since B(n, p)  npa if and

only if > we deduce that

P  pna)  x-npa(q + 

Picking x = a ( 1- p) / ( 1- pa) which minimises the above expression we deduce that

log P (B(n, p)  pna)  -n ~pa log a + (1- pa) log(1- pa) - (1- pa) log(1- p) } ,

N -n {pa log a - (1- pa)pa + (1- pa)p} ,
N -np ~a log a + (1- a)(1- pa)} ,
^’ -np~

 -npa.

a

Let us now state and prove the main lemma.

Lemma 6. Let x E Ci be piece-wise linear satisfying the lower bound condition until
time 81. . Let x = ~ on ~61, 82~, with a > but with J(x, 92) > 0. Then, for every
E>0,

lim inf T-1 log |MA(x,~) (T, 03B82)| > J(x, 82).-
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Proof. . Pick r  E as in lemma 4. At integer times Tm := m define the following events:

Um := {w E S~ :  

vm := {w I B2) I  e~J~x’82~-3b)Tm 1,
Since x satisfies the lower bound condition until time 01 , we know that almost surely,
Um will not occur. To work out the probability of Vm we use lemma 5 with the values
n > p > and a = We take n to represent the
number of particles which stayed within A(x, 2r) up to time 03B81Tm. Since we are not

in Um we know that n is large (i.e. n > We take p to represent the

probability for each of these particles that we could find a descendent in A(x, r) by
time 02Tm. This probability is greater than PiA(x,1 2r)(T,03B81,03B82) which was evaluated in
corollary 1.
We deduce that decays exponentially, and using BCL, Vm does not occur almost
surely. Thus, almost surely,

lim inf T-1m log |MA(x,r)(Tm)|~J(x,03B82)- 303B4.

We now use lemma 4 to deduce that for all m and for all T E Tm]

J(x, 92) - 3b.’

a

Corollary 2. Let x E Cl be a piecewise-linear function such that K(x) > 0. Then,
for every E > 0,

K(x). .-

Proof. Clearly, x(0)  Since A(x, E) is open, there is no problem of finding a
piecewise-linear function in A(x, E) with ,z(0)  Now, proceed to piece together
each linear segment of z using the previous lemmas. Please note that we avoided the
case where K(x) = 0.

o

We now have the lower bound result for the almost sure rate function. We ignored the
case where K(x) = 0 because if A is any open set, and x E A satisfies K(x) = 0, then
for some 0  a  1 we have c~c ~ A and > 0.

Theorem 1. . Let A be an open subset in Co. . Then, almost surely,

supK(x). .

Proof. Since the piecewise-linear functions are dense in Co and I (x) is lower-semicontinuous
in the supremum topology, the result follows directly from the above corollary. D
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To conclude, we state and sketch-prove a more general result.
Consider a BBM with a birth process C satisfying E(C) = We assume that
E(C log C)  ~. Let each particle die at an exponential rate r The breeding
rate r ~ 0 is assumed to be a continuous function. For every x E Ci, the adjusted
expectation rate function is defined as:

J(x,03B8) :=03B80 r(x) -1 2x2dt.

As before, let 00 := inf{ 8 : J(x, 9)  0}. Also let the almost sure rate function K be
defined as

K(x,03B8):=J(x,03B8) if 03B8~03B80,-~ otherwise.
Theorem 2. Let A, D be open and closed sets in Co. Then

 J(D) ,

> J(A).

Also, almost surely,

lim sup T-1 log|MD(T) |  K (D),
-

K (A) .-

Proof: Almost-sure lower bound. We prove the lower bound for an open neighbourhood
of a piece-wise linear function x. Take D, a partition of [0,1]. D := {0 = to  tl ... 
tn = 1}. Over the interval along the path {x(t) : tz  t  the process
"observes" breeding at a rate greater or equal to Thus,
using the lower bound lemmas 2, 3 and 5, almost surely,

lim inf T-1 log|MA(T)| ~  03A3(ti+1- ti) inf r(x(t)) - 0

Since x is piece-wise continuous, by taking the supremum over all partitions we get the
result. We cheated slightly, as we are only allowed to consider partitions which satisfy
for all j  n,

,~ ~(tz+1- t~) inf r(x(t)) > 

Since K(x,03B8) > 0 for all 8, it can be shown that this constraint does not matter.
o
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4 Application: Branching Integrated Brownian Mo-
tion

4.1 An Integrated Brownian Motion
We take a Brownian path and use it to describe the velocity of a particle. The position
is then defined as

Y(t) = Y(o) + / B(s)ds. ’

We assume Y(0) = 0 for simplicity. Y(t) is an integral with respect to a continuous
path and is therefore a differentiable finite-variation process. It is also Gaussian and
its variance is given by

2E (t0 Brdr tr Bsds) = 2 t0 tr rdsdr = 1 3t3
We will proceed to show using current methods that there must be a difference between
the behaviour in expectation and almost surely. We will do so by considering the wave-
front speeds. We will then give the full phase-plane picture using the new techniques
which we have developed.

4.2 The Expectation Wavefront
If we let = ~i E Nt : Y (t) > x} by conditioning on the first birth we find the
following many-to-one picture holds:

= > Ut) N et exp( - 2~3 t)~ ,
and we deduce the expectation wavefront travels at the speed t2 2/3 in the sense that

lim ut t2 = 2/3. (1)

4.3 The Almost-Sure Wavefront

[Neveu] observed that almost surely Rt, the rightmost particle of a branching Brownian
Motion satisfies lim supt~~ Rt - -oo. Because supi~Nt Y (t)  fo Rsds by
integrating the bound on Rt we get an instant upper bound the almost-sure
wavefront speed.

lim sup vt t2 ~ 2. (2)

Before proving that equality holds in equation 2 we want to point out that the almost-
sure wavefront speed is below the expectation wavefront speed already in the first order
of magnitude! A more comprehensive explanation of this phenomenon will be offered
when we study the phase plane.
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Theorem 3. Let vt denote the rightmost particle’s position of a branching Integrated
Brownian Motion. Then, almost surely,

lim vt t2 = 1/2t-oo t

Proof (Lower Bound). We look at the Branching Brownian Motion. We follow [Neveu]
and define Zs to be the number of particles which first among their ancestors crossed
the line x = s - at.

Zs = ~ E I : ~t E + Bi (t) > s - at, Vt  T~ Ba(i~ (t)  s - 

Definition (Infinitesimal Generator Function of a Galton-Watson Process).
Consider a Markovian birth-death process Z : R+ -~ N representing the number of par-
ticles alive. Each particle lives for an exponential time of rate a and gives particle to
n E .~+~ particles with probability an. The infinitesimal generator function is then
defined as

a(x) = a{ 03A3 anxn - x}. (3)
Z+~

Note that a(1) = 0 while limx~1 a(x) _ On 0  x  1, a(x) is convex and
has a unique root a(a) = 0 with a(x)  0 on (~,1). If ao = 0 then a = 0. If a is also

continuous at 1, then the solution of the equation

on (0,1)

has a unique (modulo translation) monotone decreasing solution ~ : R -~ (o,1).
Result 5 (Neveu, Proposition 3). For each a > ~ the integer valued process
(Zs, s > 0) is a Galton-Walton process without extinction whose infinitesimal gen-
erating function a is given by

a = on (o,1)

where : ?Z ~ (o,1) is the solution of Kolmogorov’s equation

2 yr - ~~r = ~ - ~2. . (~)

We now consider what happens if 0  03BB  Zs can still be defined as a birth-
death process. Since a Brownian Motion almost surely hits the downward sloping line
x(t) = s - at we see that Zs is without extinction. Reproducing proof we
arrive at Kolmogorov’s equation. From differential equations theory we know that
Kolmogorov’s equation 4 does not have a monotone solution on (o,1). Looking at
definition 3 this implies that a possesses a discontinuity at 1 which means a~ > 0 so that
the process explodes almost surely. We let T(w) denote the explosion time. Spatially
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this corresponds to there being, at all times, a particle below the line x = T(w) - At
whose all ancestors have also been below that line. (If after some time T, there is no
such particle, then  NT  oo). Integrating the Brownian Path of this particle and
its unique ancestors we deduce that almost surely Vt(w) > 2at2 - T(w)t and hence,
almost surely,

lim inf v2 > a/2.
We now let A t v’2 to complete the proof. D

The Phase Plane Picture

We use the projection from the BBM to the Branching point process, to project the
space of paths of BBM to the phase plane. We deduce a large deviations principle for
the phase plane, both in expectation and almost surely. We find the two rate functions
to be different, and the difference explains the different wavefront speeds we observed
earlier. 

’

4.4 Scaling The Process
As before, at a fixed time T, let us scale the branching Brownian Motion by a factor
of T in both the space and time coordinates. We get a branching process on [0,1]. For
every i E NT let xT E C° ([0, 1], R) and yT E C0([0,1], ?Z) be defined as

xTi(t) := 1 TBa(i)(tT),

yTi(t):= 
t0 

xTi(s)ds = 1 T2 Ya(i) (tT).

We define the projection map II : : C° ~ R2 as

II(z) := (z(1), 10 z(t)dt)
which is clearly continuous in norm. For every we let MD (T ) denote
the particles at time T whose path is in D. For every D C ?~2 we define let IIMD (T )
to be .

ED},
nMD(T) := {z e NT 03A0zTi ~ D}.

We must apologise to the reader for the slight change of notations which is about to
occur. From now on, we will use z E Ci to denote a path of a BBM. x and y will now
represent the coordinates in the phase plane.
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4.5 The Expectation Picture
The Expectation large deviations result tells us that if D C R2 is closed and A C R2
is open then

lim sup 1 T log E|03A0MD(T)| ~ sup J(z) = sup sup J(z) ,

lim inf 1 T log E|03A0MA(T)| ~ sup J(z) = sup sup J(z). .

We recall that J(z) = J(z, 1) is the expectation rate function for a Branching Brownian
Motion

J(z, 03B8) := 03B8-1 203B80z2(t)dt.

For every (x, y) E R2 we define IIJ(x, y) := sup{J(z) : IIz = (x, y)} and use Calculus
of Variation with Lagrange Multiplier optimising procedure (see section 4.7) to find
that there is a unique z maximising IIJ(x, y):

z(t) = 3(x - 2y)t2 + 2(3y - x)t.

Accordingly, IIJ(x, y) = J(z) =1-2x2-6(y-2x)2. We immediately have the following
result.

Result 6. Let D be closed and let A C R2 be open. Then

lim sup 1 T log  sup IIJ(x, y),
(x,y)ED

lim inf 1 T log E|03A0MA(T)| > sup IIJ(x, y).
(x,y)EA

Before carrying on please take time to consider how natural this formula is. For

particles whose Brownian position at time T is xT we know that their rate function is
given by 1- 2x2. Conditioning on their final position we know that the particles have
the law of a Brownian Motion with drift x so that most of these particles arrive in a
straight line = xt yielding = 2x. Some of them will deviate from that path
and are penalised by the amount 6(y - !x)2.
Corollary 3. Let ut be the expectation wavefront speed. Then

lim ut t2 = 2/3.
Proof. The boundary of the region {(x, y) : 0} defines the expectation
wavefront. In particular, maximising y subject to IIJ(x, y) > 0, we find x = 3/2 and
y = ~/2/3. Since y = the result follows.

o
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4.6 The Almost-Sure Picture

We know from the large deviation result that almost surely .

sup K(z) = sup sup K(z) ,
z~03A0-1D (x,y)ED 

lim inf 1 T log |03A0MA(T)| ~ sup K(z) = sup sup K(z). .

Here K(z) = K(z, 1), is the almost-sure rate function for a Branching Brownian Mo-
tion. If 00 := inf {03B8 E [0,1] :  0} the K is defined as

J(z,03B8) 003B8~03B8
K(z,03B8):=  -~ 03B80~03B8~ 1

Finding IIK(x, y) := sup{K(z) : IIz = (x, y)} is more involved as in addition to
IIz = (x, y), we also impose that J(z, e) > 0 for all 0 E [0, 1], but see section 4.8. We
find that for the half-plane {y ~ 2x} the following holds.
Let a, ,0, ~y E R2 be defined as

a = (~~ 1/~)~ ~ _ (-1/~~ ~)~ ‘Y = °

Let f, g, h be the functions defined as

f(x) = 3x + 3~~ 9(x) = 2x + h(x) = 2x.

Note that f links a to ,Q, the function g links $ to 03B3 while clearly h links 03B3 and a. So
that they form a region Di (also see diagram)

Dl = (x~ y) : x E Y E f (x) ~ 9(x)~ °

In addition let _ ~ - x)2 be another function linking a and ,~ and let
D2 be the region enclosed by l(x) and f (x) .

D2 = (x~ y) : x E y E l(x)~ .

We find that in Di (and by symmetry in -Di too) the almost-sure behaviour and the
behaviour in expectation agree so that the z which maximises the expectation satisfies
K(z) = J(z) and so IIK = IIJ. Inside D2 we find that the z maximising is given by

z(t) ={2 0 ~ t~03B82- (t-03B8) 03B8~t~1
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with

?=1-3(~-~)/(~-~),

9( 2 ~-x ) 3 I(~ y)
We conclude that for (x, y) e D2

03A0K(x,y)=2(2=x) (1-2 9(2-x)2/(1-2y)).

Otherwise we find IIK(x, y) = -oo. We now do the same analysis for the other half
plane {y  Zx} and get the almost-sure result.

Result 7. Let D C R2 be closed and let A C R2 be open. Then

lim sup 1 T log |03A0MD(T)| ~ sup ,

T-too 
’

lim inf 1 T log > sup IIK (x, y) .
(x,y)EA

Corollary 4. Let vt be the almost-sure wavefront speed, then

lim vt t2 = 1/2.

Proof. . The boundary of the region Dl U D2 = { (x, y) : IIK(x, y) > 0} defines the
almost-sure wavefront. In particular, maximising y subject to y) ~ 0, we find
that ~ ~~_~ = 0 and the supremum is attained at x = ~ and y = Since

y = the result follows.
a

Optimisation of The Rate Functions
In this section we explain briefly how the optimisations for y) and IIK(x, y) were
derived.

4.7 The Expectation Rate Function

If (x, y) E R2 we wish to maximise {J(z) : II(z) = (x, y)}. Alternatively, we minimise
~ fo z2 subject to the constraint z(0) = 0, z(1) = x, fo z(t)dt = y. Using Lagrange
multiplier we get the unconstrained problem of minimising F.

F(z, ,z, t) = 10 2z2 - 03BB(y - z)dt.
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From Calculus of Variations we have = 0 from which we get that ~ =
constant and so z(t) = Substituting J~ 2~ = y we arrive at the optimal
path in expectations

z = 3(~ - 2~ + 2(3?/ - ~,

from which we deduce that

J(z) = 1 - , / 1 - ~ - 6(y - ~)’.

4.8 The Almost-Sure Rate Function

Throughout, we assume that ~ ~ jz. When y we use the symmetry 2014~/) =
?/). Clearly if the z which optimises {J(~) : = (z, ~/)} also has K(z) = J(z)

we are done. This amounts to ensuring  ~/2 and we find that if (~, y) ~ Di, this
is indeed the case.

Outside Di, although we can not follow the same optimising procedure, some points
are clear. Keeping ~ fixed, as y increases MJ and n~ are decreasing in y. To maximise
y while keeping J constant, we must have 2 as a non increasing function. From the
in-expectation optimisation procedure, another way of maximising y while keeping J
constant is by ensuring 2 is piece-wise linear. Conditioning on the first time 0 when
~  B/2 we find that on [~, I], the in-expectation optimisation is also valid almost surely
so that z must be of the form

~-~ ~2-~.0) ~~i
which we integrate to get

2t 0 ~ t ~ 03B8z(t) = { 2t- 1 2 (t- 03B8)2 03B8~t ~ 1

and finally we deduce that

10 zdt = 1 2 - 1 6 (1- 03B8)3.

We substitute boundary conditions = x and  z = y to complete the analysis.
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4.9 The Phase Plane Diagram
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A Final Note

Since submitting this manuscript, we discovered a book by P. Revesz (Random walks
of infinitely many particles, 1994). He considered a split-at-integer-times Branching
Brownian Motion and showed the space of paths to be the closure of {f : J( f ) > 0}
without counting the actual growth rate along each path. His result is similar in nature
although the methods he used are different.


