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On martingales which are finite sums of
independent random variables with time
dependent coefficients

Jean Jacod
and
Victor Pérez-Abreu

1 Introduction

We consider the following problem: for a positive integer n > 1, let Uy,...,U, be n
independent, integrable, centered, non-degenerate random variables. We are looking
for conditions on a family of n cadlag functions fi, ..., f, on IRy with f;(0) = 0, under
which the following process:

X, = X; Fi()Ui (1)

is a martingale, with respect to its own filtration (F)¢>o.

This (apparently) simple problem has a general solution given in Section 1. How-
ever, the answer is not quite satisfactory, since for example it does not allow to
recognize whether there is a unique (up to the obvious multiplication by constants
and time-changes) set (f;) meeting our condition.

To get more insight, we specialize in Section 3 to the case where n = 2 and (for the
most interesting results) with U; and U, having the same law. In this very particular
situation we are able to give a complete description of all martingales of the form (1).
This description emphasizes the particular role played by the stable distributions.

For the case n > 3, we have been unable to provide any interesting result of the
same kind as for n = 2.

2 A general result

Here is a general theorem solving (in principle) our problem.

Theorem 1. The process X is a martingale if and only if it satisfies the following:

Condition [M]: There are an integer p, 0 < p < n, and deterministic times 0 =
To<Ti <..<T, <Tp41 = o0, and p linearly independent vectors a; = (a;‘)lgiSn in
IR" (when p > 1), such that, with Vo =0 and V; =3, ;.. aiU; for j > 1,
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(M1) (Vj)oj<p s a discrete-time martingale;
(M2) X = EISjSp ‘/jl[T]vTJ+l)(t)'

Before proving this theorem, we state some remarks on the conditions. First,
Condition (M2) implies that fi(t) = ZlSiSP a1z, 1,,,)(t), because of the following
property:

Qa;, ﬂi € H{, Za,-U,- = Zﬂ,’U; a.s. = oq;= ﬂ,‘ Ve. (2)
=1

=1

Second, Condition (M1) is obviously difficult to verify, except when p = 0 (it is
void) and p = 1 (it is obvious because V] is centered). Below we give an equivalent
condition based on the characteristic functions ; of U;. We recall that each function
; is C! with !(0) = 0. Then, when p > 2, (M1) is equivalent to the following:

Condition (M’1). For all1 </ <p—1 and all v; in IR,

n 1

> lai —a Za o) [T or (D afes) =0. 3)

i=1 =1 k#i =1

We observe that (3) is the same as  E((Vi41 — Vi) exp: Z;=1 v;V;) = 0. When the
@i’s do not vanish (so ¢; = expy; with ¢; of class C! and ¢/(0) = 0) this condition
is also equivalent to:

Condition (M”1). Forall1 <!/ <p-1 and all v; in R,

n

E “l+1 ay) Z (4)

=1

Proof. The sufficient condition is obvious. For the necessary condition, we suppose
that X is a martingale and let F(t) be the vector with components (fi(t))i<i<n.
Denote by E; the linear space spanned by (F(s) : s < t), let d; = dim(E;), T-, = —1,
T;=inf(t:dy > j)for0 <j<n,and Tpyy =00. Thus T_1 < 0=T, <T1 < ...<
T < Tp41 = oo for some 0 < p < n, and dy = 0.

Let 0 < ¢ < p with T; < Ti4; and consider s,t such that T; < s < t < Tj4;. Then
E; = F; is spanned by the linearly independent vectors F(sy), ..., F(s;) with s; < s
(if =0, then E, = E; = {0}). Therefore, X, and X; are o(X,,,..., X;,)-measurable
and thus F, = F, = 0(Xj,,..., X;,) (which is the trivial o-field when i = 0). The
martingale property E(X|F,) = X, yields X; = X; a.s., and (2) gives F(s) = F(¢).
It follows that F(.) is constant on (T}, Ti41) as well as on [T}, T}4,) by right-continuity.
Thus
T; < Tipa = d, =i Vre|[T,Ti). (5)

Infact 0 < T7 < ... < Tp; otherwise we would be in one of the following two situations:



64

a) 0 = T; < Tj4, for some 1 < j < p, and therefore dr, = do = 0, which contradicts
(5);

b) Tioy < T; = T; < Tj4q for ¢,j with 1 <7 < j < p, in which case d, =7 —1 on
[Ti-1,T;) by (3). This implies that dr, < ¢; being also impossible since dr, > j.

Since 0 < T; < ... < T, holds, we trivially have (M2) with a; = F(T}). Finally,
(M2) and the martingale property of X yield (M1). u]

3 The case n=2

Let ¢; be the characteristic function of U;, and when ¢; never vanishes we use the
notation (; = expt; without further comment. In this section we always assume
that n = 2.

Theorem 2. The process X is a martingale if and only if it has one of the following
two (mutually exclusive) representations:

a) For some «,f € IR, 51,5, € (0, 0]
X = alhls, 50)(t) + BUs1s, 00 (1) (6)
b) For some 0< Ty < T, < o0, a,d,v,y € IR with v # ~' and
?1(v)@a(v) + 1’1 (v)py(v) =0 Vv € IR, (7)
Xi = a(Uy + vU2) g, 00)(t) + &' (Ur 4+ 7' U2) Liz3,50) (1) (8)

Remark. Since the coefficients in (8) do not vanish, the form (8) is indeed symmetric
in (U, Us). When ¢, and ¢ do not vanish, (7) is equivalent to 91(v)++"95(yv) = 0,
which is the same as 9 (v) + %1&2(70) = 0, which in turn is equivalent to

p1(v) = @a(y0)"" Vo€ R. (9)

Proof. Sufficient condition: That (a) gives a martingale is obvious. Condition (b)
implies (M2) with a! = o, a? = a7, a} = & + a}, a2 = &’y + a? and then (7) gives

(M'1).

Necessary condition: We assume (M’1) and (M2). If T} = oo, then (a) holds with
a = f3=0and S; arbitrary. If T} < T, = oo, then (a) holds with a = al, 8 = a? and
Sl = 52 = Tl.

Suppose now that T; < T, < 0o. We have a; # 0, and since both (a) and (b) are
symmetric in (Uy, U,), without lost of generality we assume that a} # 0. Let a = a]
and 7 = a?/a and write a} = a} + §'. Then the linear independence between a; and
a, gives

82 448", (10)
while (M’1) is
B (v)pa(7v) + BPo1(v)py(1v) =0 Vv € IR. (11)
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We assume first that v = 0. Recalling that ¢;(0) = 1, ¢}(0) =
identically 0 in any neighborhood of 0 (because P(U; = 0) < 1), (1
that is, we have (a) with S, =Ty, S; = T», 8 = B2

Next, assume that v # 0. Then there exists § € IR* with ¢} () # 0, ¢1(6) # 0 and
©2(78) # 0. Suppose for the time being that }(78) = 0. Then (11) yields B! =0 and
since there is another 8 € IR* with 1(8') # 0 and p,(76') # 0, we also have 3 = 0,
which contradicts (10). Thus @}(78) # 0 and (10) and (11) yield 3* # 0 and 3 # 0.
Hence we have (b) with 4/ = 3%/3" and o' = 3" (note that 4 # 4’ follows from (10),
and (7) is the same as (11)). o

0 and ¢! is not
1) yields g = 0,

When U; and U, are arbitrary, it seems there is not much more to say. From now
on we concentrate on the case where U; =% Us, i.e. v1 = @2 = ¢. In this situation,
the existence of a martingale X of the form (b) above depends on the existence of
constants v,v' € IR* with v # +' and

@' (v)p(rv) +Y'p(v)p'(yv) =0 Vv e R (12)

Let D denote the set of all ¥ € IR* for which (12) holds for some 7' € IR* with
4" # ~. If ¥ € D there is a unique 7' = 6(7) satisfying (12), because we have seen
before that for each 4 # 0 there is v € IR with ¢(v) # 0 and ¢'(yv) # 0.

Theorem 3. a) If U, is symmetric about 0, then one of the following three cases
is satisfied:

(Cs-1) D ={-1,1}. o

(Cs-2) D={r",—r":n€Z} forsome r>1 and p ncver vanishes.

(Cs-3) D = IR". This is the case if and only if Uy is stable with index p € (1,2],
ie. @(u) =€ for some a > 0.

b) If U, is not symmetric about 0, we are in one of the following five situations:

(Ca-1) D= {1}.

(Ca-2) D = {-1,1}. This is the case if and only if v = pe", where p and n
are real-valued, n(0) = 0, and n is constant on each open interval on which p (or
@) does not vanish (necessarily ¢ vanishes somewhere, and 1 is not identically 0,
otherwise we would be in the symmetric case).

(Ca-3) D={r":n€ Z} forsomer>1 and ¢ never vanishes.

(Ca-4) D= {r*,—r"*'/2:n € Z} for somer >1 and ¢ never vanishes.

(Ca-5) D = (0,00). This is the case if and only if U, is asymmetric strictly
stable with index p € (1.2), i.e., @(u) = e-olulPQ+bsign(®)  for some a > 0, b # 0,
8] < tan(z5=;).

c) There is a constant 0 € (1,2] such that &(v) = —v/|7|® (so &(1) = -1, and
§(-=1)=1 if =1 € D), and 6 =p in cases (Cs-3) and (Ca-5).

Therefore the martingales X of the form (8) are indeed represented as

Xe = aUs +1U2) 15 ) (D) + @ (U = YU/ Iy ) 7,000 (1), (13)
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where a,0’ € R*, 0 < Ty < Ty < o0, and v € D.

Remark.  There are of course examples of variables satisfying (Cs-1) or (Cs-3) in
the symmetrical case, (Ca-1) in the asymmetrical case. We presume that (Cs-2) and
(Ca-3) are not empty, and believe that (Ca-2) is empty (but we have been unable to
prove these facts).

Before giving the proof of Theorem 3 we present some useful lemmas. First we
note that v =1 and 7' = —1 always satisfy (12), so 1 € D and (1) = —1.

Lemma 4. We have —1 € D if and only if ¢ = pe", where p and 5 are
real-valued and n(0) =0 and 7 is constant on each open interval on which p (or
) does not vanish. Moreover, §(—1)=1.

Proof. Let (z,y) be a maximal interval on which ¢ does not vanish, so x does not
vanish either on (—y, —z) (we may have (z,y) = IR, of course). We can write ¢ = e¥
with ¢ of class C' on (z,y) and (—y,—z), and since ¢)(—v) = 4(v) the property
—1 € D and (12) yield

P(v) =49 (v) Vo€ (z,y)
Since 7' € IR", we deduce that v'(v) € IR and thus ¥/ = 1 (because 3 cannot be
identically 0). Therefore, if vy € (x,y), we have ¥(v)—(vo) € R for all v € (x,y)
and hence ¢ = pe” with 5(v) = n(vo) € R for all v € (x,y). The converse is obvious.O

Lemma 5. Let v € IR® with |y|# 1. Then v € D if and only if ¢ does not
vanish, and satisfies for some C(v) >0
e(v) = p(70)™ Wwe R (14)

Moreover,

a) Reyp(v)<0 forall ve IR

b) 6(y) =—1C(y).

c) Forall ne€ Z we have y* € D and C(y") = C(y)".

d) -y €D ifand only if ¢ is real-valued, and then C(—v) = C(5).

Proof. The sufficient condition is obvious, as well as (b).

Conversely, assume that y € D. Let (—z, ) be the maximal interval on which
does not vanish. We have ¢ = ¥ with ¢ of class C'! on (—z,z). For simplicity we set
¥» = Rey, and we have ¢.(u) = —oco as |u| T z if 2 < co. On (—x,x), (12) yields
#(0) +7¥(0) =0, so $(v) + Li(qv) = 0, since :(0) = 0.

If |vy] > 1 and ¢ < oo, then |y, (v)] = l’l—IHt/',('yv)] — o0 as |v| T z/]l,
contradicting the fact that ¢ is continuous on (—z,r). Similarly, if |y| > 1 and
T < oo, |P.(yv)] = |59 (v)] — oo as |v] Tz, bringing up the same contradiction;

therefore r = oo, and  does not vanish. It follows that » = e¥ everywhere and, with
CHv) ="/
¥(v) = C(1(rv) Vo€ R, (15)
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that is, we have (14). Since U, is non-degenerate, ' is not identically 0 and thus
C(v) # 0. Note also that (c) is obvious from (14).

We always have that ¥, < 0 and that i, is even. Assume that ¥,(v) = 0 for some
v > 0. Then (15) and (c) imply ¥.(v|y|*) = 0 for all n € Z. It follows that the
characteristic fonction of the symmetrized random variable U/ = U; — U, equals 1 for
all v|y|*, n € Z, so U is supported by {2kx/v|y|* : k € Z}, for all n € Z, which
implies that U = 0 a.s., contradicting again the non-degeneracy assumption. Thus
(a) holds and (15) yields C(v) >0

Finally, it only remains to prove (d). If y is real-valued, it is even and (14) is
satisfied with —y and C(—v) = C(v). Suppose conversely that —y € D, then (15)
gives ¥(v) = C(y)¢(—7v), while —y € D yields 9(v) = C(—7)¥(—7v). Comparing
the real parts of these two equalities and using (a) we obtain C(—v) = C(7). Then
¥ =1 and ¢ is real-valued. 0

Lemma 6. With D, = DN IR,, one of the following three cases is satisfied:
(C+1) Dy ={1}.
(C+2) Dy={r":n€ Z} forsome r>1.
(C+3) D+ = B:_.

Moreover, we are in case (Cy3) if and only if either p(u) = eell for some a >0
or p(u) = eelulf+ibsion(u))  for some a >0, p € (1,2), |b] < tan( 2(2 )

Proof. Due to the fact that 1 € D and to Lemma 5, if we are not in case (C;1),
Dy contains at least a v > 0, 7 # 1, and then = ¢¥ satisfies (14). Indeed, Dy is
the set of all ¥ > 0 such that (15) holds for some C'(y) > 0. Then D, is clearly a
multiplicative group, therefore it is closed since % is continuous and thus it is of the
form (C;2) or (C,3).

Assuming (C43), for each v > 0 there is C'(v) > 0 such that, if f denotes either
the real or the imaginary part of ', we have f(0) = 0 and

flv)=C(y)f(yv) Yo 2>0.

Then f is either identically 0, or everywhere positive, or everywhere negative, on
(0,00). In the last two cases, g(u) = log|f(e*)/f(1)| satisfies g(u + logy) =
g(u)+ g(logy) forallu € R, v >0, i.e.. g(u+u')=g(u)+g(v) forall u,u’ € IR.
Since g is continuous, we obtain g(u) = Ku. Thus, in all cases we have f(v) = gv* for
some 7, p € IR, and furthermore v*C(y) = 1 for all ¥ > 0 (hence p is the same for both
the real and imaginary parts of 1»). We then deduce that ¢(v) = (a+:¢3)v” for some
a,B,p € IR, if v > 0. By (a) of Lemma 5 we have a < 0 and since ¥(—v) = m
we also have ¥(v) = (a — if)[v|* for v < 0. Then o(v) = —a|v|?(1 + ibsign(v))
for a > 0, b € IR, p € IR. Conversely, each such v satisfies (15) for all ¥ > 0, with
C(y1) = v7*, implying Dy = IR;.

It remains to examine under which conditions on (a,b, p) the function p = €¥
with ¢ as above is a characteristic function. Observe that for all @, o’ > 0 we have
Y(aw)+Y(a'v) = P(a’v) with o’’” = a?+a’. Then, if it is the case, the corresponding
distribution will be strictly stable, with a first moment equal to 0. As is well known,
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this will be the case if and only if either p = 2 and b = 0 (normal case), or p € (1,2)
a

and |b] < tan( 53 )-

Proof of Theorem 3. a) When [/} is symmetric, so is D, and (Cs-1) = (C4i).
Therefore Lemma 5 yields that one of (Cs-1), (Cs-2) or (Cs-3) is satisfied. Moreover,
(Cs-2) implies that ¢ never vanishes (by Lemma 5), and (Cs-3) holds if and only if
o(v) = e7?" (because here y is real-valued).

b) Now we suppose that U; is not symmetric. It suffices to prove that if D # {1},
then we are in one of the cases (Ca-i) for i=2,3,4,5.

First, by Lemma 4, —1 € D if and only if the necessary and sufficient condition
in (Ca-2) is satisfied. Then ¢ vanishes somewhere, and D contains no v with |y| # 1
by Lemma 5. Thus —1 € D if and only if (Ca-2) holds.

Next, suppose that we are not in any of the cases (Ca-1) and (Ca-2). If D = Dy,
we are then in cases (Ca-3) or (Ca-3) by Lemma 5. Otherwise there exists v > 0
with v # 1 and —y € D. Then 42 € D and 4% # 1 and by Lemma 5 either (C2)
or (C+3) holds. However, under (C;3) we also have v € D, hence Lemma 5(d)
contradicts the assumption that Uj is non-symmetric and indeed we have (C42) with
some 7 > 1. It then follows that 42 = r* for some k € IN*, while Lemma 5(c) gives
C(r") = C(r)" and C(v) = C(r)¥/?. Furthermore if k¥ were even we would have
r*¥/? € D and —r*/? = —y € D, again a contradiction by Lemma 5(d), so k = 2p + 1
with p € Z and v = rP*'/2, In order to obtain (Ca-4), it thus remains to prove that
—r"*1/2 ¢ D for all n € Z. For this, a repeated use of (15) yields

(o) = Cr" (o) = C(r"?)C(N)p(=yr"Pv) = Cr) 2 (=r™1%),

and the result follows.

¢) Since (1) = —1 and 6(—1) = 1 (Lemma 4), (c) is obvious in cases (Cs-1), (Ca-
1) and (Ca-2). Also, (c) with § = p follows from Lemma 5(b) and from a comparison
between (14) and the explicit form of ¢ in cases (Cs-3) and (Ca-5).

Under (Ca-4) we have seen that C'(r") = C™ and C'(—r"t1/2) = C™1/2 where C' =
C(r). Thus, for all y € D, C(y) = Clo8hD/log(") — |4|=¢ with § = —log(C)/log(r)
(so 6(7) = —v/|7|%). The same holds for (Cs-2) and (Ca-3). Now (15) yields ¢'(v) =
Cry'(rv), hence ¥'(r~"v) = (Cr)"Y’'(v) and since ¢¥’'(0) = 0 and ¥’(v) # 0 for some
v # 0 we must have Cr < 1 and thus 8 > 1.

Suppose that § > 2, i.e. A:=Cr? <1. Then ¢'(r~"v)/(r "v) = A™'(v)/v and
if jw| < r~" there is m > n and v € (1/r,1] with w = vr~™ or w = —vr~™. Therefore
SUP|<r—n [P (w) /W] < A" supy, cju<1 [¥'(v)]- Tt follows that ¢ is differentiable at 0,
with ¢”(0) = 0. Hence U is square-integrable, with variance 0, which contradicts
once more the non-degeneracy assumption and therefore § < 2. [m]
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