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A DIFFERENTIABLE ISOMORPHISM BETWEEN
WIENER SPACE AND PATH GROUP

Shizan FANG and Jacques FRANCHI

Abstract: Given a compact Lie group G endowed with its left invariant Cartan
connection, we consider the path space P over G and its Wiener measure P. It
is known that there exists a differentiable measurable isomorphism I between
the classical Wiener space (W,u) and (P,P). See [A], [D], [S2], [PU], [G].

In this article , using the pull-back by I we establish the
De Rham-Hodge-Kodaira decomposition theorem on (A(P),P).

I. Introduction and Main Result

Ten years ago Shigekawa [S1] proved on an abstract Wiener space an
infinite dimensional analog of the de Rham-Hodge-Kodaira theorem. The key
point for that is to get an expression of the de Rham-Hodge-Kodaira operator
dd*+d*d acting on n-forms in terms of the Ornstein-Uhlenbeck operator V*V ,
expression that we may call Shigekawa identity. This expression in particular
supplies spectral gap and de Rham-Hodge-Kodaira decomposition.

Our first aim in the present article was to extend the Shigekawa identity
(and then the de Rham-Hodge-Kodaira theorem) to the path group over a compact
Lie group.

To reach this end, we use the pull back I* by the It6 map I. It is well
known that I realizes a measurable isomorphism between Wiener space (W,u) and
path group (P,P); now there is something more: having noticed the flatness of
P, we show that I* indeed supplies a _diffeomorphism between the differentiable
structures of the exterior algebras A(W) and A(P).

Take the group P of continuous paths over a compact (or compact x
[RN) Lie group G , endow it with its Wiener measure P (induced by the Brownian
motion on G), and consider its Cameron-Martin space H as its universal
tangent space; the exterior algebra A(P) is then the space of step
functions from P into A(H) .

Following [A], [D], [S2], we introduce on A(P) the Levi-Civita
connection V , that we show to be flat.

We define in a classical way Hilbert-Schmidt norm | | , covariant
derivative V , and coboundary d on A(P).

Let I denote the Itd map from the classical Wiener space (W,u) onto
(P,P) . We consider the pull back by I : I* pulls A(P) towards A(W) , and
we show that this I* is in fact an isomorphism between these two
differentiable (in the sense of Malliavin) structures.

More precisely, we get:

THEOREM We have for any w € A(P) and any z € H, p-a.s. :
P W
* = * .
a) XV, w) =V, (") ;

b) IV?w|oI = 1vwl*w| ;
c) I*Mdw) = d(I*w) and I*(d*w) = d*(I*w)

This allows for example to transport the Shigekawa identity ([S1]) on A(P):



55

Corollary We have on An(?) : dd*+d*d = V*V + n Id .

[FF2] gives a direct complete proof of Shigekawa’s identity on A(P),
different from Shigekawa’s proof (that is valid only on [RN), and not using I*.
In the loop group case, the Levi-Civita connection is no longer flat,
so there exists no differentiable isomorphism with the Wiener space.
A direct approach is worked out in [FF3], in the same vein as in [FF2].

[L] and [LR] also deal with connections, de Rham-Hodge-Kodaira operator
and Ornstein-Uhlenbeck operator, on path space and on free loop space, but
over a compact manifold and with different preoccupations.

II. Notations, and Flatness of the Path Group

Let G be a compact Lie group, with unit e and Lie algebra § = TeG ,
endowed with an Ad-invariant inner product < , > and its Lie bracket [ , ] .

Let P be the group of continuous paths with values in G, defined on
[0,1] and started from e ; let H be the corresponding Cameron-Martin space,
that is to say:

1. .
H={(h:[01]~9 | I<h(s),h(s)> ds < and h(0)=0} ;
° 1. .
we denote ( , ) the inner product of H : (hl,hz) = j <h1(s),h2(s)> ds , and
0
we identify h € H with (h,.) e H* .
Let W = 60([0,1],@ be the classical Wiener space, endowed with its

Wiener measure p. Denote I the one-to-one Itd application from W onto P,
defined by the following Stratonovitch stochastic differential equation :

dI(w)(s) = aw(s)I(w)(s) , for weW and se[0,1] .
The Wiener measure P on P is the law of I under p.
A functional F € Lw_(?,K) , taking its values in some Hilbert space

K, is said to be strongly differentiable when there exists DF belonging to
L~ (P,KeH) such that for all heH and ye? :

the derivative DhF(y) at O with respect to £ of F(a’eeh) exists in Lm_(?,K)
and equals (DF(y),h) .

We denote €(P) the space of cylindrical functions on P, that is to
say of functions of the form wﬂf(ar(sl),..,;y(sm)) , m being a variable
integer, f being c® from G into R, the sj’s being in [0,1] .

Note that a cylindrical function is strongly differentiable .

We extend the Lie bracket from § to H in setting for h and k in H
and se[0,1] : [h,kl(s) = [h(s),k(s)] = h(s)k(s)-k(s)h(s) .

Viewing H as the universal tangent space of P , we define an affine
connection V on H , following [A], [D], [S2] :

Definition 1 For y and z in H, let sz be the unique element in H

whose derivative (sz)' is [z,¥] .
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The following proposition of [FF1] will not be used in the sequel, but
explains why our theorem could be true.

Proposition 1 V is the Levi-Civita connection on P, and moreover it is flat;

that is to say : for h/k,y,z in H, we have :

a) (Vhy,z) = -(y,th) ie V preserves the metric ;
b) th - th = [h,k] ie the torsion is null ;
c) [Vh,Vk] = v[h,k] ie the curvature is null .

Proof a) is due to the skew-symmetry of ad( ) in § with respect to <, > ;

(th)'— (th)' = [h,k]-[k,h] = ([h,k])" shows b) ;
finally c) is due to the Jacobi identity:

(Vthz)'- (Vthz)'— (V[h,k]Z). = [h,[k,z]] + [k,[2,h]] + [2,[hk]] =0 . m

III. Exterior Algebra A(P)

X will denote either W or P, and for each neN A = A (X) will
n n

denote the space of step n-forms on X, that is to say the vector space spanned
by the elementary n-forms : F hlA"Ahn , where Fe€(X) is cylindrical and
h,..,h are in H.
1 n P

The Malliavin derivative Dh defined in II above is indeed Dh )
whereas D‘:F(w) will be the derivative at £€=0 of F(w+ch).

We now extend V=VX to A= AlX) := nEIN An , following Aida ([A]) :
Definition 2 For w € An and z,hl,..,hn in H, set :
n
a) d wh,..,h)=- = wh,..,V h,..,h);
z 1 n j=1 1 Zj n

b) Vw=Dw+ 3w , where D (F ha..Ah) = (D _F) hA..Ah .
Y4 z z z 1 n z 1 n

Remarks 1 For w € An , We Am , and zeH, we have :
a) VweA ;

z n
b) V_(wAw’) = (V_wlAw’ + wA(V ') ;

z z z

c) V.(F hAa.Ah) = (D F) hA..Ah + = F hA..AV.hA..Ah
z 1 n z 1 n =1 1 zZ ) n

=D

N =

d) For X=W , we have of course Vzhj= [z,hj]=0 , and hence V ‘Z .

Indeed, the verifications are straightforward from the definition; so
VZ is determined by definition 1, remark (1,b) , and : VZ=Dz on Ao .

We now introduce the gradient on A and the normalized Hilbert-Schmidt norms :
Definition 3 For w € An , Vw is the one element of An®IH defined by :

(Vo(z,..,z) , h) =Vowlz,.z) , forall hz,.,z inH.
1 n h 1 n 1 n
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Definition 4 3B being any Hilbertian basis of H and w being in An:

2

|m|2 =m7'% ¥ w(z,..,z )" and ]Vw|2 =Y |Vhw|2 .
Z,. .,zneB heB

Remark 2 This norm on A extends the norm of H, and we have:
———— n

n
2 2 )
|F hl/\../\hn| =F" ¥ elo)q (hj,ho_) = F" hA.Ah (h,..h ).
oey’n j=1 j

We now classically skew-symmetrize the gradient to get the coboundary :

Definition S For w € An and zo,..,zn in H, set :
n -~
_ 1y
dw(zo,..,zn) = .ZO (-1) szw(zo,..,zj,..,zn) R
j=

where zJ means that z is absent .
J

Remark 3 Using proposition (1,b), we easily get :

n

= 1 A
dw(zo,..,zn) = ¥y (-1) Dz'w(zo,..,zj,..,zn) +
j=0 J
i+ A~ A
Y -0 olz,z1z ,..,2,..2.,.,2 ) .
0=1<j%n U I} i § n
Lemma 2 For any w € A and any Hilbertian basis B of H: dw = ¥ hAVhw
heB
Proof Remarking that for h,hl,..,hn,zo,..,zn in H :
n ~
= 1) .
hAhlA..Ahn(Zo,..,Zn) = j)_:o (-1) h(zj) hl/\../\hn(zo,..,zj,..,zn) , we get :
n ) N
do(z,..,z) = ¥ Y1 (hz) Vwz,..,z,.,z)= ¥ bV w(z,.,z)=
0 n heB j=o i "h 7o j n heB h™ o n

Let 1-\:l be the completion of An with respect to the norm

r
"wllz = E[ r |ka|2] , for reN , and set A= ) AT
) k=0 neN "

Remark 4 Vh , V, d clearly extend continuously to AT for reN* .

Dh and Vh still make sense for h depending on w , for example h e l_\(: .

Corollary 1 For w € I_\:1 and w'e 7\::1 , we have dw € I_\r: and
_— n
d(wAw’) = (dw)Aw’ +n(-1)n wA(dw’) , whence

d(F hA..Ah ) = DFAhA.Ah - F T (-1} h A..A(dh)A..AR .
1 n 1 n j=1 1 J n

Proof d(waw’) = Y} hAVh(wAw') = Y hA(Vhw)Aw’ + ¥ hAwAVhw'
heB heB heB
(by remark (1,b)) = (dwaw’ + (-1)" WA ¥ haV, ' .m

heB h
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IV. The isomorphism I* between A(P) and A(W)

Lemma 3 (Malliavin [M],[MM]) For heH, we have :

t .
D‘;lvl(w)(t) = I(w)(t) IAd[I(w)(s)_l]h(s)ds in L7 (W) .
0

dr'r) =-1%1 1" + 1% =-1'aw 1 +I'%6w + edn)l
£ £ € 4 €

= el''dh I, , whence a’ DY:I)' = Ad0)h by derivation at £=0.m

We now introduce our pull back by I :

Definition 6
a) For heM and weW : Th(w) = 1(w)“D‘guw) , or : (Th(w)" = Ad((w) ™) ;
b) For weA (P) and h,..,h in H : (I*w)(h,..,h ) = (woI)(Th,..,Th ) .
n 1 n 1 n 1 n
Remarks 5

a) Th maps W into H, and I* maps An(?) into l_\n(W) :
definition (6,b) agrees with the usual one in finite dimensions.
b) (Thl,fhz) = (h1’h2) p-a.s. for all h1’h2 inH: T is an isometry.
c) I* is invertible from An(fP) onto An(W).
d) I*h(k) = (h,Tk) = (I'h,k) p-a.s. for all h,k in H , whence
*h = Th = J-.Ad[l(.)]l; , p-a.s. for all h in M.
0

e) I*F hlA..Ahn) = Fol (I*hl)/\../\(l*hn) , whence I*(wAw') = (I*w)A(T*w’).
P W .
Lemma 4 a) I*(Vzh) = Vl*z("h) w-a.s. , for all z,h in H ;
b) |*w| = |w|el p-a.s. , for each w in A(P) .
Proof a) We use remarks (1,d),(5,d), definition 6 and lemma 3 to get :
@¥r*h) = DY (Ad(Dh) = OV DRI - iV D1
z z z z

= 121" - (21 = AdDITzh] = ADE B p-a.s.
Iz

whence V", I*h = J Ad(v n) = +v%h)
1*z o z z
b) For w=F hlA"Ahn , we have after remark 2 and remark (5,b,d) :

n n
|*0|® = F%1 T e(0) [ (I*h,I*h ) = F%I T e(0) j(h b )
ce¥ j=1 I j a'e?n j=1 3 Y
n

[w|zoI u-a.s..m

In finite dimensions the pull back of Levi-Civita connection by an
isometry classically is still Levi-Civita connection. Lemma 4 in fact shows
that we have the same situation in our infinite dimensional setting. The
following proposition proves that this invariance property extends to n-forms.
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Proposition 2 I*(Vf:w) = V‘;J,Z(I*w) p-a.s. , for all z in H and w in A(P) .

Dl*z(Fol)(w) =j§lajf(l(w)(sl),.-,I(w)(sm))(DI,ZI(w)(sj))

m
=Y ajf(I(w)(sl),..,I(w)(sm))(I(w)(sj)z(sj)) by remark (5,d) and lemma 3
j=1
= (D_Fl)oeI(w) ;
z

then for w =F h1A“Ahn we have by remarks (1,c) and (5,e) and lemma 4 :

n
(V2 w) = (D_F)ol (I*h )A..A(I*h ) + Fel ¥ (I*h )A..AI*(V>h)A..A(I*h )
z z 1 n =1 1 zZj n

n
W
° * * ° »* * »*
Dl*z(F DI hl)A..A(I hn) + Fol j{jl(l hl)A../\VI*Z(I hj)A..A(I hn)
\"/
I*z(

VW* (FoI (I*h )A..A(I*h )) =V *w) .=
1*z 1 n

We can now precise in which sense I* really is a differentiable
isomorphism from A(P) onto A(W) :

THEOREM  For each w in A(P) , we have p-a.s. :

a) [V?w| ol = |vw1*w| i b) I*dw = dI*w ; c¢) I*d*w = d*T*w .

Proof We fix an Hilbertian basis B of H , and use the fact that, after remark

(5,b,d), I*B is p-a.s. an Hilbertian basis of H also .

a) |V w|%I=§ |V723w|201 = 7 |I"‘V72)m|2 by definition 4 and lemma (4,b)
zeB zeB
_ W12 - oW (2 s sl
=7 IVI*ZI w|® = |V T*| by proposition 2 and definition 4 ;
zeB
b) I*dw = I*( ¥ 2/\\772)(.)) =Y (I*z)A(I*V:w) by lemma 2 and remark (5,e)
zeB zeB
= Y (I*Z)A(V‘?’*Zl*w) = dI*w by proposition 2 and lemma 2 ;
zeB

¢) E((dw’,0)) = I (I*dw’, %) du = I (dI*0’,I*0) du = J' (I*w’,d*I*w) du
w w w

= E((’,1* 'd*1*w)) for any @' in A(P) .m

2

Corollary 2 d® = 0 = d**

on A(P) .
Remark that this is not immediate, since d and d* are not local on A(P).

Corollary 3 The (Shigekawa) identity of [S1] : dd* + d*d = V*V + n Id

is valid on An(fP) , for any nin N .

E(|d*0|?) + E(|dw|?) - E(|V0|?) - n E(|0]?) =
=J’ (u*d*w|2 + |1*dw|® - |vr*0|? - n |I*w|2] dp
w
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= [|d"*l"‘w|2 + |dI"‘m|2 - |VI“‘w'2 -n |I*w|z] du
w

J [(dd*+d*d—V*V—nId)I*w , I*w] du
w

0 by [S1] , whence the result by polarization.m

See [FF2] for another proof of this, not using [S1] nor I* , very
different from Shigekawa’s proof and valid directly on A(P).
Corollary 4 The De Rham-Hodge-Kodaira operator on A(P) : o = dd* + d*d
is hypoelliptic and selfadjoint on A(P) , with eigenvalues = n on A(P) ;
moreover for any wel_\z(?) : ow=06¢dw=d* =006 we Ao(?) is crclmstant )
and for any n in N* we have on l_\:(.‘P) equivalence between closedness and

exactness, and the De Rham decomposition : /_\:(?) = Im(d) @ Im(d*) .

Remark 6 It is also possible to consider an other It6 application, defined
by: dJ(w) = J(w)dw ; the results are the sames, once the definitions of D? and

7 are modified as follows: DfF(y) = %F(e-‘:ha') oo and (Gh)'= -Ad()h .
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