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A characterization of Markov solutions for

stochastic differential equations with jumps

Anne Estrade

Introduction

It is well known that solutions of stochastic differential equations such as

1 , ( 1 )

where Z is a Levy process, are Markov processes. A converse result has been ob-
tained by Jacod and Protter [6] as follows : consider the stochastic differential

equations (l)x driven by the same semimartingale Z with initial conditions x and
never-vanishing coefficient f. . It is proved that, if the solutions X x of are time

homogeneous Markov processes with the same transition semigroup for all x, then
Z is a Levy process.

The present work is in the spirit of Jacod and Protter’s converse problem. ‘’Ve

obtain a converse result for stochastic differential equations with jumps between
manifolds. More precisely we will look at the equations studied by Cohen [4] for
which it is already known that solutions are Markov processes provided the driving
semimartingale is a Levy process.

The main interest of this paper is in the consequences of this converse result. In

fact we are able to establish a characterization of diffusions with jumps : usually,
diffusions are constructed as Markov solutions of stochastic differential equations.
What we prove here is that the only time homogeneous Markov processes obtained as
solutions of stochastic differential equations are those arising from equations driven
by Levy processes.

The method is an extension of [6]. The principle consists in "inverting" the
stochastic differential equation and writing the driving process as an additive func-
tional of the solution; the Markov property of the solution then yields the conclu-
sion. To invert the stochastic differential equation, some inverting assumptions are
required, similar to the "never-vanishing coefficient f" assumption in [6].

The paper is divided into two main sections. In section 1, we establish the
method to prove that the driving process is Levy. In section 2, we characterize the
diffusions with jumps, first in a manifold and then, as a special case, in Rd.

In the following (S~, .~’, P) will be a filtered probability space with a

right continuous filtration containing all P-zero measure sets of .~.
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1 A criterion to be a Levy process
Let M be a finite dimensional manifold and a collection of (Q, F, Ft, P)-
adapted cadlag semimartingales with values in M such that Xg = x for all x in
M.

Let (, , t) be the canonical space of càdlàg M-valued functions, equipped
with the canonical process X (Xt(cv) = co(t) , for t > 0 and w in S~) and the natural
filtration of X. We will also denote by the semigroup of translations
on Q (9t(c~)(.) = cv(t + .) , for t > 0 and cv in S~) and by Px the probability measure
on (S~, .~’) which is the law of Xx for all x in M.

Finally let Z be an Rd-valued cadlag semimartingale adapted to (~2, .~’, P)
with Zo = 0. We recall the usual definition of a Levy process.

Definition 1 A process Z on called a Levy process if it is a càdlàg
adapted process such that P(Zo = 0) = 1, and for all s, t > 0, the variable Zt+s - Zt
is independent from the (Zu 0  u  t) and has the same distribution as Zs.

We are now able to give the main result of this section.

Proposition 1 Assume that there exists an (~, ~’, process with
values in Rd such that 

-

(i) Vx EM, , Px(Ao = 0 and = At , Vs, t >_ 0) =1;
, P(Zt = 0) = 1. .

If the XX are time homogeneous Markov processes with transition semigroup inde-
pendent of x, then Z is a Levy process.

This proposition is very similar to the result in [6]. The generalization consits in
replacing the explicit formula giving Z in terms of X by a condition assuring that Z
is an additive functional of X. It is also close in spirit to theorem 6.27 of [2] where
the local characteristics of an additive semimartingale based on a Markov process
are described.

Proof of proposition 1 : : Take a bounded Borel function f on Rd and compute
for s, t > 0 and some x in M. Using the additive property (i)

of A and the Markov property of X on (Q, Px), we get

EX(f(At+s - _ ° = 

By (ii), the P-distribution of Z equals the P~-distribution of A, for all x in M.
Then we get

= 

This proves that under px, At+s - At is independent from :Ft and hence from
(Au ; ; 0  u  t), and has the same distribution as As. Finally, use (ii) again
and the proposition follows. Q
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2 Stochastic differential equations in manifolds

We will be concerned with stochastic differential equations driven by d-dimensional
cadlag semimartingales, whose solutions live in a d-dimensional manifold (Rd in-
cluded !). We will use the formalism introduced by Cohen and studied with respect
to Markov property in [4]. Such equations can also be studied with the formalism
of Kurtz, Pardoux and Protter in [5] but with restricted possibilities for the jumps
of the solution (at a jump time s, in [5] the Xs term is given as the end point of an
ordinary differential equation starting at Xs- with a coefficient linearly depending
on whereas in [4], Xs is given by any function of Xs- and 

2.1 Definitions and properties
Let us first recall some of Cohen’s results. In the following, M will be a smooth
manifold of dimension d.

Definition 2 A map 03C8 : M x Rd ~ M is called a jump coefficient if
, ~(.c,0)=.r;

is C3 in a neighborhood of M x ~{0} in M x Rd.

Suppose we are given a d-dimensional cadlag semimartingale Z, a jump coefficient
~ according to the previous definition and a fixed point x 6 M. In [4], a meaning is
given to the following stochastic differential equation

dX = dZ) (2)

by the prescription that the process X is a solution of (2) if X is an M-valued

semimartingale such that, for any embedding of M in Rm, one has

b’a = l, ..., m Xt = x03B1 + t 0) dZs (3)

+ 1 2 t0 ~203C803B1 ~zi~zj(Xs, 0) d  Zic, Zjc >s

+ (03C803B1(Xs-,0394Zs) - X03B1s- - ~03C803B1~zi(Xs-,0)0394Zis)
In the following, the summation convention on repeated indices will be in force;
sums on i and j will run from 1 to d and sums on a and Q from 1 to m. Also Z~
will denote the continuous martingale part of any real semimartingale Z.

It is established in [4] that the equation (2) admits a unique, possibly exploding
solution Xx. Moreover, if Z is a Levy process then Xx is an homogeneous Markov
process with transition semigroup independent of x.

2.2 Converse result

To obtain a converse to this result, we need some inverting assumptions. The first
one deals with the jump coefficient ~ of the stochastic differential equation (2).
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Definition 3 A jump coefficient ~ is said to be invertible if for all x in M, the
differential at 0 of ~(x, .) : : z E Rd - ~(x, z) EM, which we denote by 0),
is an isomorphism from Rd onto TxM.

As promised, we now give a characterization of jump diffusions in manifolds.

Theorem 2 Let Z be a d-dimensional semimartingale, let ~ be an invertible jump
coefficient and, for all x in M, let Xx be the unique solution of the equation

0 0
Xo = x ~ dX = dZ).

Suppose that
~x~M, P((xt ,Xxt)~v03C8,~t > 0) = 1 (4)

where

~(x, y) E M x M ; there exists a unique z in Rd such that y = z)?.

Then, the X~ are time homogeneous Markov processes with the same transition
semigroup for all x in M if and only if Z is a Lévy process.

Proof : If Z is a Levy process we already know by prop.l of [4] that the Xx are
time homogeneous Markov processes. We will prove the converse result.

The procedure is to write Z as an additive functional of Xx in order to show
that the hypothesis of proposition 1 is valid and then the result follows immedia.tly.

For x E M, by definition 3, is an isomorphism from Rd onto Tx M;
denote by the inverse isomorphism and for (x, y) E denote by I‘(x, y) the
unique z in Rd such that y = z).

Recall the notations introduced in the first part concerning the canonical space S~
of all càdlàg M-valued functions. We choose as a candidate for our additive process
on (, , t, Px) the following :

At = t003A603B1(
s-)d 03B1s (5)

1 1 2 t003A6( s)od

2zz03C8(s,0)o(03A603B1(
s)~03A603B2( s))d  

03B1c,X03B2c >s

+ E- ~ r(Xs_, Xs) - 
st

for any embedding (x«)1«m of M into Rm.
Following [2] th.3.12, there exists a version of A such that (5) is valid for every
probability Px, x E M.

Take any x in M. An easy computation based on the stochastic differential
equation (2) solved by Xx yields

At(X x) = dZ$ + ~ (h(X$ , X~ ) - ~Zs)° st

= Zt
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since 0, AZ~ = This proves that the process A satisfies condition
of prop. 1.
On the other hand, ~4 is clearly additive and so also satisfies condition (x) of

prop. 1. ~

Before we study the geometrical aspect of the inverting assumptions, let us look
at the special case where the manifold M is the whole of Rd.

2.3 The vectorial case

We now take M = R~ and choose f C such that /(.r) E GL(d) , Vz 6
Rd. We define a jump coefficient ’Ø as follows :

~,~)=~(~,~,1)

where

(~(.c, 2r, M))oui = 

is the (possibly exploding) unique solution of the ordinary differential equation

= ~ ; I = /(~)).~ (6)

Since d.s~(.c,0) = is an invertible jump coefficient and the stochastic differ-
ential equation (2) becomes :

V~=l,...,d Xfl = (7)

+ ~(~(X,.,A~)-~-~(X~)AZ;). .
5t

It is of the type introduced by Kurtz, Pardoux and Protter in [5]. To be able to
apply theorem 2, we must verify the condition (4). A sufficient condition for this is :

3F e such that V.c 6 Rd, = (/(.c))~. (8)
In fact, if (8) holds, at every jump time s, there will be exactly one z in R~ such
that Xxs = 03C8(Xxs-, z), which is given by z = 0394Zs = F(Xxs) - F(Xxs-).
Remarks :

a) In the one-dimensional case, condition (8) reduces to "V:c 6 0" since

existence of a primitive F of 1// is then assured.
b) One can use the definition of a closed 1-form (see [1] p.207) to give the following
equivalent form of condition (8), where denotes the inverse matrix of /(.c) : :

~i, 03B1, 03B2 ~ {1,..,d}, ~x ~ Rd, ~gi03B1(x) ~x03B2 = ~gi03B2(x) ~x03B1.
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2.4 Comments on the inverting assumptions
As a conclusion let us comment about the inverting assumptions we have required.
First of all, we give an example.

An example of invertible jump coefficient. Suppose there exist (L1, ..., Ld)
vector fields on M such that for all x in M, is a basis of TxM. Define
the map 03C8 by

z) = 
i

where Expx denotes the exponential mapping at x. Then 1/; is clearly a jump coef-
ficient as defined in definition 2. Moreover, for all x in M, the differential of ~(x, .)
at 0 is given by

0).h = ~ hzLi(x)
i

and therefore is an isomorphism. According to definition 3, ~ is an invertible jump
coefficient. Next we look at condition (4) of theorem 2.

Condition (4) is a "usual" condition. Let us recall a paper with M.Pontier [7]
where the horizontal lift of a cadlag manifold valued semimartingale is defined. This
lift exists provided the semimartingale X satisfies some hypothesis (H) very similar
to condition (4).
(H) : with probability one, there exists one and only one geodesic curve between Xt-
and Xt for 0.
Note that this hypothesis is stronger than that given in [7], but it is actually the
right one. We have just become aware of this error in [7]. However all the results
theirein are valid under the correct hypothesis (H).

Let us also mention that in [3] another horizontal lift is defined for all cadlag
manifold valued semimartingale without any hypothesis (H). However, as we will
see, we cannot deal here without condition (4).

Condition (4) is essential for th.2. We give an example where (4) is not fulfilled
and theorem 2 does not apply.

Let M be the unit circle : : M = {ei~ ; 8 E (o, 2~r(} and take for jump coefficient
~ : (x, z) E M x R ~ z) = 

Let (Tn)n1 be a sequence of random exponential times and, independently,
be a sequence of independent random variables with the same Poisson dis-

tribution. We define the processes Z and Z by

Zt = 03A3 1Tn~t Yn
n>1

Zt = 03A3 1Tn~t (Yn + 
n>1

Process Z is a Levy process (actually a compound Poisson process) whereas Z is
not a Levy process (the variables (Yn are neither independent nor are
they identically distributed). ’
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Now let XX be the solution of

X0 = x; dX = dZ). (9)

By the definition of Z and 03C8, it is clear that Xf = x But, since 03C0Zt E
one also has Xf = x This proves that Xx is the solution of (9) where Z

has been replaced by Z, and since Z is Levy, Xx is a Markov process with transition
semigroup independent of x. Hence we obtain a Markov solution of a stochastic
differential equation driven by a non-Levy process.

Of course, the assumption (4) of th.2 is not valid since is empty !
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