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Some remarks about the joint law of Brownian motion and its supremum
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Introduction.
Let (Bt’t z 0) be a standard Il-dimensional Brownian motion starting from O,

and denote by St =sup B , t = 0, its one-sided supremum.

s=t
The aim of this Note is to give a simple proof, and equivalent formulations of
a striking remark due to Seshadri [7] (see also Lépingle [S]).
No novelty claim is made, but Seshadri's remark probably deserves to be more
widely known (see, e.g., Rogers-Satchell [6] for some consequences) ;
moreover, the arguments developed below are very different from those in (7],

which hinge on some "foliation" property of certain exponential families.

Theorem 1 (Seshadri) : Let t > O be fixed.
Then, the two variables St(St-Bt) and Bt are independent, and, moreover :

(law) t

€)) S(S,B) 2 5 e

where e is a standard exponential variable (i.e. : P(e € dt) = dt e_t).

Obviously, this result may be immediately derived from the well-known formula
for the joint law of (st'Bt)' which we present as follows :
(x*ry)2

172
2
2 F’(St € dx ; St-Bt € dy) = ;?} (x+y) exp[- T]dx dy.

However, we find it more interesting to derive the Theorem as a consequence of
some elementary considerations about the supremum of a Brownian bridge ; this
is done in Section 1.

In Section 2, we show how, using some algebraic relations between beta and
gamma variables, Seshadri’'s remark may be deduced from the uniform distri-

bution on [O,Rt = ZSt - Bt] of either St or St—Bt. Finally, in Section 3,
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we show how Denisov's path decomposition [1] of (Bu,u = 1) before and after

+« = sup B also allows to recover (1).
us=l

the unique time 6" (< 1) at which B6

1. The distribution of the suprema of Brownian bridges.

To start with, we give an easy, although helpful, criterion of independence

between a Brownian functional F and Bl.

Proposition : Let F : C[0,1] —— R be a continuous functional on the canoni-
cal space Cl0,1], endowed with the topology of uniform convergence on (0,1}

Then, the following properties are equivalent :

i) F(Bu.u =1) and Bl are independent ;

ii) The law of F(Bu +cu; u =1) does not depend on c, as c varies
in R ;

iii) The law of F(bu + Xu ; u =<1) does not depend on x, as X varies

in R, and (bu,u = 1) denotes the standard brownian bridge.

Proof : The equivalence between i) and ii) follows easily from the Cameron-

Martin relationship between the laws of (Bu.u =< 1) and (Bu +cu;usl).

The equivalence between i) and iii) follows from the well-known represen-

tation : Bu = bu + uBl , u =1 where (bu,u =< 1) is a Brownian bridge

independent from Bl. a

In order to prove the Theorem, we need only show, using the equivalence

between i) and iii) in the Proposition, that :

(law) 1 . _
(3)x SX(SX X) = 5 & where : Sx = ::[i)(bu + xu).
[For x =0, (3)  is the well-known fact that (So)2 (1aw) _21. e;

note also that (bu + xu,u = 1) is the brownian bridge O — x on the time-
interval [0,1]].

It is immediate that (3)x is equivalent to :

( 4)x S i} 5

2 172
(law) x [x . e] ]
X 2
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Using (b ,u < 1) (lgw) (1-u) B , u < 1], we obtain :
u u/l_u

B +tx B +x
(5)x S (law) s p(—-—-—~t ] (l_g_w) sup[ u ]

t=0

where, for the last equality in law, we have used the fact that (uBl ; ,u > 0)
u

is also a Brownian motion.

Thus, for any a > x, we have :

B +x
P(S_ < a) = P[sup u <a|l =P(Vu =0, B + x < a(l+u))
X uz0 1+u u

(6) = P[ sup (B -au) < a—x].
u
uz0

We now use the well-known

Lemma 1 : If (Mt’t = 0) is a continuous, IR’ valued martingale such that

M — 0 ,and M_ =1, then: sup M (lé—-W) /., , where U is uniform
t tow o 120 t 8)
on [0,1].

as well as the following consequence, which goes back to Doob.

Corollary : For a > 0, sup(B_ -au) (lgw) L €.
_— u 2a
u=0
Proof : Apply the Lemma to : Mu = exp(Za(Bu-au)). o

We then go back to (6) to end the proof of (4)x by writing :

2
1 1 X 2 _ X
P(Sx<a)=P[£c<a—x]=P(—ic<(a—-§) 4}

The proof of (4)x now follows. o

We now make a few comments on some of the assertions found above :

a) in the statement of the Proposition, the hypothesis that F is continuous

on C([0,1]) serves to ensure that the law of F(bu + xu,u = 1) does not

depend on x, for every X € R.
b) A sufficient condition for iii) to be satisfied is, of course, that :

F(bu + xu,u = 1) = G(bu,u =1),
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for some functional G independent of x. This is satisfied if F, as defined
on the canonical space C[0,1], where Xu(w) = w(u), u =1, is measurable

with respect to ¥ = tr(Xu - qu s u =<1}

But, Seshadri’s remark shows that this condition is only sufficient, and not

necessary to ensure that F(Bu,u =1) and Bl be independent.

Furthermore, from Theorem 1, one can construct many other r.v’'s which are
independent from B, . although they are not measurable with respect to

(b(u),u = 1). The following is a finite dimensional example :

take 0=t <t <..<t = t ; then, the vector
[¢) 1 k+1
(S(t.,t. )~ Bt.) (S(t.,t. )~ Bt. ); j = 0,....k, is independent from Bl.
J7 i+l J J g+l J+l
(We use the notation s(u,v) = sup Bs-)
uss=<v

This assertion follows from Theorem 1, used together with the independence of

the increments of B.

c) Different applications of the Lemma are given in [4), where the following

consequences are shown :

@ as) (law)
for a >0, J ds exp(BS - E—] = 2/Z ,
o a

where Za denotes a gamma variable with parameter a, i.e :

2 le gt

P(z, € d) = —15

2. Going from (ZSt—Bt) to St(St—Bt).

It is easily shown, using formula (2) for instance, that the joint law of
(St'st_Bt) is a consequence of the following subproducts of Pitman’s

def = - -
celebrated theorem : Rt = ZSt Bt = St + (St Bt)' t=0, isa
3-dimensional Bessel process, and, for every t, both St and (St—Bt) are
uniformly distributed on [O,Rt]. (More generally, this holds whenever t is
replaced by any stopping time T w.r. to the natural filtration of R).

Hence, we can write (2) in the random variables “algebraic" form :
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, _ (law) R
(@) (SpS¢B) = R (U1-L),

where U is uniform on [0,1], and independent from R, (1aw) vt |N(3)|. with
(3)
N

dependent N(O,1) variables.

a 3-dimensional Gaussian variable, the 3 components of which are in-

We are now in a position to give another proof of Theorem 1 as well as

other remarks of the same ilk

Theorem 2: (We keep the previous notation). Let t > O.

Define the 3 ‘“remainders” Py p; , and p; as follows :
_ IR S ) . _ n 2 v _ g2
Ry = (25(7B) =S  +p = (5:B) +py =B+ oy
Obviously, one has :

P, = (35,-B,)(S,-B,) ; P} = (35,-2B)S, i p, = 45,(S,-B,)-

Then, the following identities hold :

(law) 02w
=7 (s, B . )

(law) 2

(B..p

(law)
t’ t) -

(s; . P} tNLIND? + (N)?)

where N, N’ and N" are 3 independent N(0,1) variables.

Concerning the third pair (B:,pt) , more precisely, the r.v’'s Bt and
st(st-Bt) are independent.

which amount to :

2,y (law) _n 12 .y (law) 2 a2 w2
(St,pt) = ((St Bt) ,pt) =77 t(NY, (N)” + (NM)Y)

may be obtained by using the same arguments.

ii) Our proof will consist in using the identity in law :

. (law)
(7) (za,' zb) =

l-za,b)

za+b(za.b ;
where Za and Zb are two independent gamma variables, with respective para-
meters a and b, and Za b is a beta variable with parameters (a,b).

We shall use (7) for a =1, and b = 1/2 , in the following form :
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if U is uniform on (0,1}, then V = 1-2U is uniform on [-1,1], and

moreover :

au(-u) = 1-v2 12wl 2
Ly

Consequently, from (4’), we deduce :

1]

2
(s,(s,-B,).B,) = (R; UU-U), RU - R (1-U))

2
Rt
[(4—) 4U(1-U), Rt(ZU—l)]

1]

2

[(:E) a-vA, —RtV].

"

To finish the proof, we take t =1, and we obtain :
(8) R—f 1-v? R—f vi| Uaw) (7 2 z. (1-z
2 2 - 3/ <11/ Y
2 2 2
where on the r.h.s, the beta and gamma variables are assumed to be indepen-

dent.

Finally, reading (7) from right to left, the joint law found in (8) is that of
(21’21/ ) , which ends the proof. o
2

3. Karatzas-Shreve trivariate identity and Denisov’s decomposition.

3.1. Using Lévy's equivalence theorem :

(1aw)

(St,St—Bt ; t=0) (Lt'lBtl ; t = 0),

where (Lt't = 0) denotes the local time of (Bt‘t = 0) at O, one may
immediately translate Theorem 1 as follows :
fix t > O ; then, LtBt is a bilateral exponential variable, which is

independent of L, - IBtl.

3.2. Another relation between the joint laws of (Bl..Ll) and (Bl,Sl) was
noticed by Karatzas and Shreve ([3], p. 425, Remark 3.12) :

+ 1 -, 1 +, (law)
(9 (B, +5L .B +5L ,A) =

+
2 (Sl'sl—Bl'eo)'
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1

where Ao = J ds l(BS>O) and 90 is the unique time t <1 at which Bt
0]

equals Sl.

This trivariate identity is shown in [2] to be a particular consequence of
Bertoin’s rearrangement of positive and negative excursions for Brownian
motion (with or without drift).

Karatzas and Shreve [4] also explained (9) via a Sparre-Andersen type trans-
formation.

We now remark that, using (9), Theorem 1 may be translated as follows :

+ 1 - 1 ..
(131 +5 Ll) (Bl +ts5 Lx) is independent of Bn

’

or, equivalently :

1 1 P
(10) 5L (]Bll + 35 L) is independent of B,

Now, using again Lévy’s equivalence theorem recalled in 3.1 above, (10) is

equivalent to :
1 i s
(1) Sl((Sl B) + 5 S,) is independent of (Sl—Bl) ,

which is precisely the result in Theorem 2 concerning the "second remainder".

3.3. Finally, we also remark that Denisov’s path decomposition [1] of

(Bu,u = 1) before and after time 9; also yields at least a part of Theorem

1, in particular the identity in law (1).
Indeed, from [1], one deduces :
(S,,5,B.6.) Uaw) iz m, VA m’,A)

where A, ml and m’l are independent, A is arc sine distributed, and

) (lgw) m.l (lgW) ‘/'2:‘

(law)

Hence, Sl(Sl-Bl) (A(1-A)4 cc')l/z, where on the r.h.s., A, ¢ and ¢’

are independent.

(law)

Since A cosz(e), with @ wuniform on [0,2n(, it follows that :
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A(1-A) (lgw) ;i— A, hence :

law) 172
(12) S(5,B)) U2W) () ey
Next, we shall use

Lemma 2 : For any r > 0, the following identity in law holds :
_—

1 (law) 172
(» —Z ., =z z z_ .. )

27 2r r,l/2 x‘+l/2 Nl/2
and, in particular :
(14) %e (law) (A ee.)uz,

where on the r.h. sides, the three r.v’s are independent.

2 (law)
Zp =04 ZMI/2 Z

(see [9], p. 112, Lemma 8.1.).

Then, (13) follows as a consequence of (7). Finally, (14) follows from (13),

f = .
or r l/2 o

Now, from (12) and (14), we recover the identity in law (1).
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