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Some Remarks on Pitman’s Theorem

BERNHARD RAUSCHER

NWF I - Mathematik, Universitat Regensburg
D-93040 Regensburg, Germany

Abstract - Pitman constructs as 2M-X where X is and Mt = suprt Xr.
Equivalently, X - 2J is when X is and Jt = inf r>t Xr. Now the fact that
X - 2J gives a local martingale may be extended to a general result for linear diffusions. In
particular, if X is a linear diffusion, we introduce a general class of nontrivial transforma-
tions cp such that Z = cp(X, J) is a local martingale.

In his fundamental paper [6] Pitman constructed BES3(0) as 2M - X where X is
BM1(0) and Mt = Xr using random walk approximations. This result im-
mediately leads to the path decompositions for BES3 obtained by Williams [16], so
it was of natural interest whether the path transformation 2M - X gives again a
diffusion when X is a linear diffusion and Mt = suprt Xr is defined as above. Yet,
this 2M - X property just holds for a few more types of diffusions including BM
with constant drift and may not be extended to a wider class of diffusions as was

proved in Rogers-Pitman [9], Rogers [8], see also Salminen [10].
Apart from diffusions on the real line, further generalizations of Pitman’s The-

orem in different directions were obtained by Tanaka [13], [14] for random walks,
Bertoin [1], [2] for certain Levy processes, and Biane [3] for the planar Brownian
motion in a cone. Recently, the case of a general class of diffusions was taken up
again by Saisho and Tanemura [11] using solutions of Skorokhod type SDEs with
globally Lipschitz continuous coefficients.

Now Pitman’s result amounts to the same as saying that X - 2J is a BM1(0)
when X is and Jt = infr>t Xr. In particular, the process X -2J is observed
to be a local martingale, and this fact was recently extended by Yor [17] to a general
result about diffusions on the real line, hereby using techniques from the theory of
enlargement of filtrations initiated by Jeulin [4], [5]. For instance, let (Xt)t>o be a
transient diffusion in ]0, oo[ which satisfies the Ito type SDE 

-

dX = d,Q + b(X) dt
where b : ]0, oo[ 2014~ R allows uniqueness in law for this equation. Further assume that
a scale function s can be chosen to satisfy s(~0, oo[) = ~-oo, 0~. Then, by Theorem
12.7 in Yor’s book [17], the process

Z=-1 s(X) + 
2 s(J)

is a local martingale where Jt = infr>t Xr. In the particular case of BESa, these
martingales were studied in depth by Takaoka [15] thus revealing some interesting
relations and differences to Brownian motion. In this paper, using elementary meth-
ods, we construct local martingales of the type Z = cp(X, J) for linear diffusions and
a whole class of transformations cp.
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Consider an open interval E = c2~ C 1~ with -oo  cl  c2  oo and let

~, b : E -~ R be continuous functions with a > 0. By E = E U c2} we denote
the two-point-compactification of E. Let (X, /~) denote a weak solution of the Ito
type SDE

(*) dX = ) d~ + b(X) dt
in the following sense: Both X and ,Q are adapted processes defined on a filtered
probability space (S~, ~, P; (~’t)~ satisfying the usual conditions such that ,Q is a
linear is an E-valued continuous adapted process, and such that for
any f E C~ (E) (compactly supported C2 functions on E)

d ,f (X ) _ (f ~~) (X ) d~ + (Lf ) (X ) dt
holds. Hereby, L = denotes the generator of X. Note that X is allowed
to launch from the boundary and hit the boundary in possibly finite life time

which gives a predictable stopping time. We suppose ( > 0. Clearly, the solutions
of the equation (*) become uncontrolled when reaching the boundary, yet there is
uniqueness in law up to the life time as may be proved by changing scale and speed.
Using the same method we obtain general existence of solutions when starting from
a point within E whereas coming in from the boundary requires the drift to be
enough singular there.

Further we pick a function s E with Ls = 0 and s’ > 0, called scale
function. We suppose s(E) = ~-oo, 0~ which enforces Xo  c2 a. s. and the process
X to be transient, namely Xt -~ c2 as t - (, a. s.

Associated with X we consider the continuous increasing process Jt = infr>t Xr
valued in E, representing the absolute minimum of X past time t. Here, Xr = 
In order to get both X and J adapted, we introduce the filtration (~t) defined as
the usual augmentation = Jr : r  t), t > 0. Then the main result is as
follows.

THEOREM. Let X denote a solution of the equation (*) with positive life time ( and
scale function s as described above. Pick  E C1 (E) and consider 03C6: E x E ~ R,

03C6(x, y) = (s2 ’ s’) (y) - 
1 s(x) (s2( s)’ s’ (y).

Then the process Z = J) is a local martingale with respect to (t) on ]0, ([.

We postpone the proof. Note that on ]0, ([ both the processes X and J take their
values in E, hence Z is defined. The assertion of the theorem is to be understood
in the sense of Sharpe [12] as follows. Let S2o denote the set where Zo = limt~o Zt
exists in R. Then there is a sequence (Rn ) of (t)-stopping times with 0  Rn  (,
Rn B 0, and {Rn = 0} C no such that is a local martingale over
(~Rn+t), for each n. The reason for this technical statement is that X may start
from the boundary Ci and then Zo is not defined. Nevertheless, conditionally on S~o,
the process (Zt)ot~ gives a local martingale over (~t) in the usual sense, cf. ~12~.

Before entering the proof of our theorem we present some corollaries and discuss
the connections with the previous results mentioned above.
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First of all, taking  = -1/s2 and  = 1 in the theorem, we obtain Yor’s result
as well as a multiplicative version thereof.

COROLLARY 1. Both the processes

_ 

1 2 s2(J)
s(X ) s(J) ’ ’s(X) )

are local martingales with respect to (t) on ]0, ([.

Considering Z = -1/s(X) + 2/s(J) it is easily seen that limt~0 Zt exists a. s. in R,
hence the process Z is a local martingale even on the left-closed interval [0, ([ with
quadratic variation

(Z, Z~ _ (s‘~/s2)2(X) dt .
Thus, we may integrate (s2/s‘~) (X) with respect to Z and the process

B = 

is a BM on [0, ([ which will be referred to in the next corollary. We further introduce
the ’dual’ coefficients a* = a and b* = b + a2 s’ / s so that L* = 2 (~*)2D2 + b*D =
s-1 Ls. Then s* _ -1/s serves as a scale function for L* and b = b* + (r*)~(~*)~/s*
which shows the dual character of this construction.

COROLLARY 2. On ]0, ([ we have d(X - 2J) = o~* (X dB + b* (X) dt .

Proof This is an application of Ito’s formula to cp(x) = s-1(-1/x) and the ]0,oo[-
valued semimartingale -1/s(X) = Z-2/s(J) on ]0, ([ where Z = -1/s(X ) +2/s(J)
as in Corollary 1. Hereby, the function s-1 denotes the inverse of s. Note that the
measure dJ is carried by the set {t : Xt = Jt~. 0

Now, if X is a BES3(0), we obtain X - 2J = B which is Pitman’s Theorem.
More generally, let X be a Bessel process of index v > 0 on ]0, oo[ starting from 0,
then the corollary says

Xt = Bt + 2Jt + (-03BD + 1 2) t0 dr Xr

which is also stated in Corollary 12.7.1 in Yor’s book [17].
Further, if both a* and b* are constant functions, the process X - 2J is a diffu-

sion again which goes with [8]. But due to [9], in case of a* or b* being nonconstant,
X - 2J is not a diffusion any longer which may be at least heuristically apparent
by the corollary.

The contents of the corollary are also closely related to the results of Saisho
and Tanemura [11]. Namely, putting Y = X - J and K = J, the corollary may be
stated as

where Y is adapted, continuous, nonnegative and K is adapted, continuous, and
nondecreasing with dK = 1{0} (Y) dK. We further know from the beginning that
the process X = Y + K is a diffusion with generator L. This is in accord with the
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main part of [11] where it is proved, in the particular case of both a* and b* being
globally Lipschitz continuous functions on R, that the above SDE of Skorokhod type
can be solved uniquely by a pair (Y, K) and that the process Y + K is a diffusion
with generator L.

Further, we recall the first part of Williams’ result on path decomposition of
diffusions [16] which fits into the result of the corollary. Suppose Xo = e E E, then
there is a. s. a unique time T  ( with XT = Jo and, conditionally on Jo = c, the

process is a diffusion with generator L* on ~c, c2~.
We finally remark that the theorem may be related to a result of Azema and

Yor, cf. Revuz-Yor [7] Chap. VI, §4. Indeed, considering the particular case of X a
BES3(0) on ]0, oo[ with s(x) _ -1/x reveals to be a local martin-

gale. Consequently, by Pitman’s Theorem, the process ~c’ (S) + (25 - B) (~i )’ (S) _
(-~cs)(S) - (S - B) (-~s)’(S) is a local martingale where B denotes a BM1(0) and
8t = supr~t Br’

Now we turn to the proof of the theorem which is prepared by three lemmas.

LEMMA 1. Consider the kernel K in E defined by

K(e,.) = { -s(e) s’(t)s(t)-21|c1,e[(t) dt for e ~ E }.03B4e for e = ci

Then K(Xo(’ ), ’ ) is a conditional distribution for Jo = inft~~ Xt given ~o.

Proof. For every x E E we need to show P{Jo  = E ~K(Xo, for

all A E ~o with P(A) > 0. This may further be reduced to proving P{Jo  x} _
E ~K (Xo, x~)~ where Xo > x a. s. But, using the optional stopping theorem, we
easily compute

P{J0 ~x} = E[s(X0)] s(x) = E[K(X0,[c1,x])],

where the last equation stems from K(e, = for all e E ]x,c2]. []

LEMMA 2. Let T  ( be a time with Xr  y a.s. for some y E E.

Then, for any z E E, the random variable is integrable and the equation

s(z)~ = a.s.

holds.

Proof. Since the pair (XT+t"Q?+t) over is a solution to (*), too, we may
assume T = 0 without loss of generality. On {Jo > z} we clearly have z  Jo 

a. s., hence all integrands in the sequel are integrable and we get

E = E ) ~ J o) °
-

1 s(X0)
E [ (s2( s)’ s’ (J0)1{J0>z}|F0 ].

By virtue of Lemma 1 these conditional expectations may be explicitely computed:

E[(s2 ’ s’)(J0)1{j0>z}|F0 ] = -s(X0)1{X0>z}]z,X0[(s2 ’ s’.s’ s2)(t)dt
= -s(X0) [ (X0) - (z)]1{X0>z} .
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So we finally get to

E[Z01{J0>z}|F0| = -s(X0)[ (X0) - (z)] 1{X0>z}
+ 1 s(X0) s( X0)[( s )( X0) - ( s) (z)]1{X0>z}

= (z)[s(X0)-s(z)]1{X0>z}

which is the desired result. 0

LEMMA 3. Let R  p  T  S  ( be stopping times with respect to (~’t) such
that  y a.s. on {S > R} for some y E E. Then, for any z E E, both

and are integrable and
= a. s.

holds.

Proof. We may assume p = 0 and S > R a.s. without loss of generality. On {Jo > z~
we have z  Jo  Jr  Xr  y a. s., hence and are integrable.
Next we put Tz = inf{t > 0 : Xt  z} and compute step by step

= 

= s(z)~ (~o~ ]
= s(z)~ 

~s(Xo) - s(z)~

where in the last but one equation we made use of the fact that 
is a bounded martingale with respect to (~’t). 0

Proof (of the theorem). To begin with, we fix points x  e  y in E and consider
the first entry times R = inf{t : Xt > e} and S = inf {t > R : Xt > y}. Then the
map T = S clearly is a stopping time with respect to (~R+t), and we shall
prove that the process is a martingale over (~R+t). Namely, we have

 y a.s. on {S > R} and for any t > 0, putting T = (R + t) ~ S, the random
variable

= 

is integrable by Lemma 3. The same lemma, for any z E E, r  t and considering
the times p = (R + r) A S, T = (R + t) A S, yields

1{JP>x} ~p] - 
= 

Xt>x} E 

- ] a.s. .

But, using Jf = infr>t Xf A Jp, we have ~p = ~p V a(Jp) C ~P V a(Jp), hence

J
= I a.s.

which is the assertion on the martingale property.
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Now letting x B ci and y ~’ c2 the process (ZR+t) is seen to be a local martingale
over (R+t), and the proof is completed by letting e B ci. 0
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