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The change of variables formula on Wiener space

A.S. Üstünel and M. Zakai

Abstract

The transformations of measure induced by a not-necessarily adapted perturbation of

the identity is considered. Previous results are reviewed and recent results on absolute

continuity and related Radon-Nikodym densities are derived under conditions which are

‘as near as possible’ to the conditions of Federer’s area theorem in the finite dimensional
case.

I. Introduction

Let x E IRn and T a Cl map from IRn to The classical Jacobi formula yields

n03C1(x)g(Tx)|J(x)|dx = ng(x)  03C1(03B8)dx (1.1)

where J is the Jacobian determinant of T and p and g are bounded, positive and of com-

pact support. Consider now the formulation of the same result with the Lebesgue mea-

sure replaced by the standard Gaussian measure on IRn. Replacing, in (1.1), g(x) with

and setting

T(x) = x + f (x)

yields

E I = E g(x) ~ P(e) ( 1.2)L 
where E03C8(x) = n03C8(x)(203C0)-n/e-|x|2/3dx and

A(x) = exp - fi(x) . xi - 1 2  f2i(x) . (1.3)
i=i i

Equation (1.1) or (1.2) under the C~ condition may be considered as "the first year calculus

change of variables formula". The conditions under which (1.1) is valid have been consid-

erably extended by Federer [9] by replacing the Cl requirement on T with the requirement
that T be Lipschitz and more generally by the condition
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(A) JR n is the countable union of measurable sets such that the restriction of T to each

set is Lipschitz and then (1.2) holds in the sense that if one of the sides of (1.2) is

finite so is the other side and equality holds. Equation (1.1) or (1.2) under (A) may
be referred to as the "Federer change of variables formula" .

The extension of equation (1.2) to the infinite dimensional case was considered, first, by
Cameron and Martin in 1949 [4] and, since then, by many authors. The purpose of this

paper is twofold: to survey the results on this topic and to present an extension of (1.2) to

the abstract Wiener space under conditions which are "as near as currently possible" to the

Federer condition (A).
In the finite dimensional case the proof of Federer’s formula is by starting with (1.1)

under the C1 condition and applying the following result of Federer which is based on

Whitney’s extension theorem:

Theorem 1.1. ([9]) -~ is Lipschitz then for any E > 0 there exists a function

IRn ~ IRn which is C1 on IRn and satisfies LebnA~  E where AE C IRn and

AE = {~: : ~(~) ~ U {x 

Recall the Rademacher theorem which states that if 03C8 is Lipschitz on then exists

for Lebn a.a. x in and is bounded by the Lipschitz constant of ’If;. Note that each

of these two theorems characterizes the Lipschitz property of 03C8 and could be used as a (very

non-elegant) definition for this property.
Let (W, H, lc) be an abstract Wiener space. The notions of continuity, Lipschitz conti-

nuity and Cl which turn out to be relevant in the problem of transformation of measure are

as follows.

Definition 1.1. Let (W, H, be an abstract Wiener space, ~ a separable Hilbert space and

F(w) valued random variable, then

(a) F(w) is H-continuous if for almost all w, the map h H F(w + h) is continuous on H.

(b) F(w) is H-Lipschitz continuous with Lipschitz constant c if, for a.a. w

+ h) -  c|h|H

for all h e H.

(c) F(w) is H - C1 if for almost all w, the map h H F(w + h) is continuously a Fréchet

differentiable function of h E H. A related notion of locally (H - Cl) will be defined
later.
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As will be pointed out in section III, the results obtained till now for the change of

variables formula on abstract Wiener space can be considered as the infinite dimensional

extension of the "first-year calculus change of variables formula". The problem of extending
the Federer change of variables formula to the abstract Wiener case is delicate because an

extension of theorem 1.1 to infinite dimensions (with the Lebesgue measure replaced by
the Wiener measure) is not available. Several properties of Lipschitz functions have been

extended to the abstract Wiener space (e.g., [8, 19]) but not theorem 1.1. In order to

overcome (or bypass) this difficulty we will follow, here, the following path. Let us replace

(A) by (A):

(A) There exists a countable sequence of measurable sets Bk and Cl functions such

that =1 and T(x) = whenever x E Bk.

Note that by theorem 1.1, condition (A) is equivalent to (A). Instead of extending equation
(1.2) under (A) to the abstract Wiener space we will extend (1.2) under (A) to this space.

In the next section we will summarize some results of stochastic analysis which are needed

in later sections. Previous results on the change of variables formula will be reviewed in

section III. This will represent the path from 1945 till recent years and can be considered

as the extension of the "first year calculus formula" to the infinite dimensional case. The

extension of Federer’s change of variables formula (under (A)) to the infinite dimensional
case will be formulated and proved in section IV and an example of a case where this result

is applicable while previous results are not, will be given.

II. Preliminaries

Let (W, H, ~c) be an abstract Wiener space. We start with a short summary of the

notations of the Malliavin calculus. For h E H* = H, the Wiener integral w(h) will also

be denoted (h, w), w E W. Let  be a real separable Hilbert space; smooth, *,-valued

functionals on (W, H, /~) are functionals of the form

N

1

with Ij and ~i E hi E W* C H. For smooth *,-valued functionals, define

and k = 2, 3, ... are defined recursively. For p > 1, kEN the Sobolev space is
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the completion of ~-valued smooth functionals with respect to the norm

k

~~ a ~ (~ ~~a ’ (2.1) >
i=o 

The gradient V : ® H) denotes the closure of V as defined for
smooth functionals under the norm of (2.1). The gradient ~a is considered as a mapping
from H to  and (Va)* will denote the adjoint of ~a and is a mapping from * to H.
The adjoint of V under the Wiener measure ~c is denoted by b and called the divergence or

the Skorohod integral or the Ito-Ramer integral (recall that it is defined by the "integration
by parts formula" = for smooth real valued G and H-valued u). Also
recall that if F is in for some p > l, then for a.e. w, VF(w) is a Hilbert-Schmidt

operator from H to H and for any smooth H-valued F and any complete orthonormal basis

of H, say {ei, i = l, 2, ~ ~ ~ } we have

cxJ

~F = 
H 

~ (2.2)
i=0

and the Ogawa integral, if it exists, is given by

00

~ ~ F = ~(F~ ei) H (ei, w) ~ . (2.3)
i=1

An ~-valued random variable F is said to be in IDp~~(~) if there exists a sequence

(An, Fn) where An are measurable subsets of W, UnAn = W almost surely, Fn E 
and for every n, Fn = F almost surely on An. It was shown in [10] that if F(w) is H valued
and H - C1, then F E 

Let K be a linear operator from H to H with discrete spectrum and let ai, i =1, 2, ~ ~ ~ be
the sequence of eigen-values of K repeated according to their multiplicity. The Carleman-
Fredholm determinant of K is defined as:

cxJ

det2(I + K) = + (2.4)
i=1

and the product is known to converge for Hilbert-Schmidt operators. For F E ~F

is Hilbert-Schmidt and define

AF(W) = det2(I + VF) ~~ F . (2.5)2

The following lemma will be needed in section IV:
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Lemma 2.1. Let Fl, F2, F3 belong to and let Tiw = w+Fi(w), z = 1, 2, 3. Assume

o TZ 1 « ~C and (ii) T3 = Ti o T2 (i. e. F3 = F2 + Fl o T2) . . Then

(a) I + ~F3 = [I + (~F1)(T2)](I + ~F2)
(b) F3 = (F1 o T2) . F2.

The proof is straightforward (cf. lemma 6.1 of [10] or lemma 1.5 of [11]) and uses the
fact that for T(w) = w + u(w)

(bF) o T = b(F o T) + (F o T, u)H + Trace ((vF) o T . vu . .

Remark: Recall that for any measurable set A on W there exists a a-compact modification

of A, i.e. there exists a o-compact set G such that G C A and ~c(G) = ~(A).

Following Kusuoka [10] we associate with every measurable subset A of W the following
random variable pA(w) which plays an important role in the construction of a class of
mollifiers:

Definition 2.1. Let A be a measurable subset of W, set

03C1A(w) = inf {~ h~H : w + h E A} (2.6)

and P A ( w) = oo if w ~ A + H.

Clearly, pA (w) = 0 if w e A, moreover [10], pA (w) is a measurable random variable and:

(i) If A c B then pA(w) > pB (w).

(ii) 03C1A(w + h)| ~~ h~H.

(iii) An ~ A implies 03C1An (w) ~ 03C1A(w).

(iv) If G is a-compact and cp E CrOR) (compact support) then cp(pG (w) ) E IDp,I for all p
and

~~03C6(03C1G(w)) ~H ~ ~ 03C6’ ~~.1{03C6’(03C1G)~0} (2.7)

~ ~ 03C6’ ~~.

(v) Let Z = {w : : pA(w)  oo}. It is straightforward to see that, A C Z, and that, if

w E Z, then so does w + h, for any h E H. Consequently, the distributional derivative

(cf. e.g. [1] or [16]) ~1Z = 0, hence 1Z is almost surely a constant. Consequently

/z(Z) = 1 if /~(~) > 0.
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III. Review of previous results

In this section we present a short guided tour in the research on the change of variables

formula along the "main" or "central" research path in the last 45 years, other directions

will be mentioned very briefly later. Let /~ be the classical Wiener measure on Co([0,1]),

and f. = fo with fo  oo denote the elements of the Cameron Martin space.

For any w E Co ( ~0, l~ ) set

(Tw). = w. + (3.1)

= w + f(w) ,

where f (w) is an H-valued measurable random variable and T is said to be the shift induced

by f on the Wiener space . Let T*/~ denote the measure defined on Co([0,1])

= 
. (3.2)

Otherwise stated, for any bounded measurable function on Co[0,1], ° T~ = 

The first problem associated with the ’change of variables formula’ is whether is

absolutely continuous with respect to /~ (or equivalent to ~c) and to calculate the associated

Radon Nikodym derivative L(w)

dT*  d
(w) = L(w) .

A related, but not equivalent, problem is the following: A measure v is said to be a Girsanov

measure associated with T if T*v = ~c, i.e., = ~c(A) or Ev[g o T] = namely,
Tw is Wiener under v. If such v exists and v « ~c, we will denote by 

where we denote the density as the absolute value of some random variable A since the

random variable A itself plays an important role in the degree theory on the Wiener space

(cf. [21]). Note that if T is (left) invertible

= ° T]

and

v = (T_1)*I~.

The case of T as defined by equation 3.1 where f is non-random was first considered by
Cameron and Martin in 1944. This was followed in 1945 with a treatment of the case where

f is linearly dependent on wand in 1949 with the case where f may depend non-linearly
on w [4].
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A short outline of the case where f (w) is finite dimensional is as follows. Let ei, i = l, ... 

be a complete orthonormal base on H (ei = fo fo = and w(ei) =

fal Assume that

n

(Tw)t = Wt + L w(en))ei(t)
1

As is well known the Wiener process w(t) has the representation

cxJ

w(t) = ~ .

1

where ~i = w(ei). Therefore we have in this case

00 n

(Tw)t = L w(ez)ei(t) + L w(en)) (3.3)
1 1

and only the first n-coordinates participate in the transformation. Consequently, from

equations (1.2) and (1.3) and assuming that T is bijective, it follows that

E GoT] = (3.4)

where

A(w) = det + . "

.exp (-03C8i(w(e1),...,w(en)).w(ei)-1 203C82i). (3.5)

Hence

E IAIJ = v(A)

is the Girsanov measure. Note that the first sum in the exponent is an Ogawa integral (cf.
equation (2.3)). Denoting

f(.) = 0f’s(w)ds = 03C8i(w(e1),. .. ,w(en)). ei(.)

and denoting by Ai the eigenvalues of the (n x n) matrix equation (3.5) can be
rewritten as

(w) = (1 + 03BBi)exp - 03B4  f - 1 2 10 f2s(w)ds (3.6)
~ -~ ~0

= / o f s (w)ds (3.7)
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where detl(IH + V/) is the Fredholm determinant of (IH + ~z(w(el), ~ ~ ~, 

i.e., the Fredholm determinant of (IH + 0 .

Many papers were written in the period from 1949 till 1974 devoted to proving the

validity of equation (3.4) with A as given by (3.7) for the infinite dimensional classical and
abstract Wiener spaces. Two difficulties stood in the way of such an extension. The first

being the fact that the Fredholm determinant of (IH + I() where .F~ is a Hilbert-Schmidt

operator on H, may not exist since deti(l + .K) _ + a%) where ai are the eigenvalues
of I( and the product may not converge or the convergence may depend on the order of

ai. In order to assure the existence of the Fredholm determinant of (IH + K), K has to
be of trace class and this is a strong restriction. The second serious difficulty is the Ogawa

integral appearing in the exponent since this integral is not a closable operation and strong
conditions are needed in order to assume its existence.

It was Ramer who pointed out in his 1974 paper [13] that equation (3.7) is the ’wrong’
prototype. Following the 1965 paper of L. Shepp [14], dealing with the absolute continuity of
Gaussian measures with respect to the Wiener measure, Ramer noticed that the right pro-

totype for the change of variables formula induced by a bijective transformation is obtained

by first rewriting (3.5), (3.6) as

(3.8)
Note that what is achieved by multiplying and dividing by exp - L ai is, (a) the Fred-

holm determinant becomes a Carleman-Fredholm determinant which exists for all Hilbert-

Schmidt operators and (b) since L ~a is the trace of the n x n matrix the first two

sums in the exponent of (3.8) can be written as a Skorohod or Ito-Ramer integral since by
(2.2):

A( w) = det2(1 + ~ f ) ~ exp - ~ ~z ~ w( ei) + trace a~i~ax~ - 1 2~ 1b?) (3.9)

hence it can be written in short as

A = det2(1 + (3.10)

where the elements deti and b o f are replaced by det2 and b f which exists under consid-

erably weaker assumptions. Note that Ramer’s paper appeared in 1974, Skorohod’s paper

introducing the Skorohod integral appeared in 1975, the Malliavin calculus made its appear-
ance in 1975 but the fact that the Skorohod integral is the dual to the gradient was shown

by Gaveau and Trauber in 1982. Ramer’s paper showed very convincingly that the right
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the end of what may be called "the romantic period" and starts "the modern period" of

research on this subject. The results of Ramer required some strong continuity assumptions,
his work was considerably improved by Kusuoka [10]. The main result of Kusuoka is the

following:

Theorem 3.1. ((10~) : : Let F(w) E H - C1. Further assume that Tw = w + F(w) is

bijective and (IH + VF) is a.s. invertible, then

’ 

.

The results of [10] were generalized by Üstünel and Zakai [18] in two directions; first,
the shifts T = w + F(w) were not required to be invertible and the condition that F(w) be
H - C1 was replaced by the following weaker condition.

Definition 3.1. Art H-valued random variable is said to be (H - C1)loc if there exists a

random variable q(w) > 0 a.s. such that the map h H F(w + h) is continuously Fréchet

differentiable for all h E H satisfying ~h~  q(w).

It was shown in [18] that if F is (H - C1)loc then F E IDloc~,1(H). The result of [18] is
the following

Theorem 3.2. Let F : W ~ H be an H - map, Tw = w + F(w). . Let M denote the

set

M = {w : det2(IH + VF(w)) # 0}

or, what is the same, M is the set on which IH + VF is invertible. Then there exists a

measurable partition of (Mn; n = 1, 2, ~ ~ ~ ) of M and a sequence of shi f ts (Tn; n = 1, 2, ~ ~ ~ ) )
with Tnw = w + Fn(w), Fn E for some p > 1 such that, for each n, Tn = T almost

surely on Mn and Tn : W - W is bijective. Moreover

E~9 ° >

for any g E Cb (W). . Consequently

(i) For almost all w, the cardinal of the set T-1{w} n M, denoted by N(w, M) is at most
countably infinite.

(ii) For any g, p E Cb (W ), we have

E[g o = E[g .N(w, M)~ 

and

= E 9(w) ’ . ~ P(e) ~E[g(Tw)p(w)IAIJ = E BETm {w}f1M P(f))].
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(iii) ( |M) T-1 = T*( |M) «  with

dT*( |M) d (w) = 1 |F(03B8)|
.

Theorem 3.2 was proved in [18] using the decomposition technique developed in [10] and

the following result

Theorem 3.3. ([18]) Let F : W -~ H be a measurable map belonging to lDp,1(H) for
some p > 1. Assume that there exist constants c, d (with c > 1) such that for almost every

wEW

II oF(w) II- c  1

and

II  o0

where II . II denotes the operator norm and ( . I 2=II ’ I H®H denotes the Hilbert-Schmidt (or
H ® H) norm (in other words, for almost all w E W, Ij F(w + h) - F(w) II H c I h IIH for

all h E H where c is a constant, c  1 and E H ® H)). Then:

(a) Almost surely w e T(w) = w + F(w) is bijective.

(b) the measures  and are mutually absolutely continuous.

(c) Elf ° T . |F|]
for all bounded and measurable f on Wand in particular E( AF = l.

Theorem 3.3 extends previous results ([10, 2, 3]) and its proof is based on the result of [15]

(cf. also [16]) that VF implies that E exp ÀIFI2  oo for all A  1/2d2.
A result similar to that of theorem 3.3 for the case where Tw is a monotone shift

((T(w + h) - T (w)), h)H > 0 a.s. has recently been derived in (20~.
At the beginning of this section we referred to the problem of the change of variables

formula for Tw = w + F(w) as the ’central model’. Another direction of active research,
considered here, is the following: Assume that F(w) is parameterized by some parameter

a E [0,1], Taw = w+Fa(w), where Fa=o(w) = 0 and To is considered as a flow ( (5, 3,17, 7~).
The reader must have noticed that we have not mentioned the celebrated Girsanov, or

Cameron-Martin-Maruyama-Girsanov, theorem. This is not because of lack of respect to this

result, it would be difficult to overestimate the importance of this theorem. The Girsanov

theorem and its extension to martingale setup play a most important role in both the theory

(e.g., weak solutions to stochastic differential equations and extending to semimartingales

the results known for quasimartingales) and to applications (e.g. non linear filtering and
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stochastic control theory) of stochastic processes. The success of the Girsanov theorem

was perhaps an important spur for the derivation of analogous results for the non-adapted
case. The reason for not mentioning it here was that the techniques are quite different. For

some considerations related to or motivated by Girsanov theorem and, in particular, for an

explanation why the multiplicity N(w, H) and det2 do not appear in the Girsanov theorem,
cf. [12] and [22].

IV. The change of variables formula

Theorem 4.1. Let F E ~p~i (H) for some p > l. Suppose that there exists a sequence of

measurable sets Bm such that ~ (UBm) =1, and a sequence of random H valued

functions Fm such that

1Bm (w) (F(w) - Fm(w)) = 0 a.s.

Let M = {w : det2(IH + OF) ~ 0}. . Then:

(i) The cardinal of the set T~1{w} ~ M, denoted N(w, M) is, at most countably infinite.

(ii) For any positive measurable bounded real random variables p and g

E[03C1(Tw)g(w) . |F|] = E P(w) g(e)

in the sense that if one side is finite, so is the other side and equality holds.

(iii) T*(~~M) « ~ and

(w) = ~ A 1 8 j’ 

The proof of this theorem follows along the same lines as the proof of theorem 3.2 i.e.

the decomposition technique developed in [10] and theorem 3.3, it will be given after the

following example which presents a case which is covered by theorem 4.1 but is not covered

by previous results.

Let rn denote the rationals in (0,1) arranged in some order and = Set

cxJ

= ~ 2 n~(x - rn) .

rt=i

The function ~(a:) is Lipschitz with Lipschitz constant 1 and is non differentiable on all the

rationals x in [0,1]. Let ei, i =1, 2, ~ ~ ~ be a complete orthonormal base on H and set

cxJ

F(w) = ~ 2-2B(be2) ~ ei (4.1)
i=1
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then F(w + h) is Lipschitz in h. Note first that even the case where F(w) = ~((~ei) - el is

not covered by the results of the previous section, however it can be deduced from the finite

dimensional Federer formula (1.1) or (1.2). Returning to F(w) as defined by (4.1), let E~,,

E > 0 and e. Let an denote a subset of (-oo, oo) in which 0(.) is C1 and Lebesgue
measure of an is bounded by en. Therefore F(w) is H - C1 on {tu : 03B4ei E an, i E N} and
the conditions of theorem (4.1) are satisfied.

In order to prove theorem 4.1 we prepare the following:

Proposition 4.1. Under the assumptions of the theorem, there exists a measurable partition

Mm,n m, n =1, 2, ~ ~ ~, o f M and shi f ts Tm,nw = w + Fm,n, Fn E for some p > 0 and

such that for each m and n, = T on a.s. and the Tm~n : W -~ Ware bijective.
Moreover

E = E ~ (4.2)

for all bounded and measurable p and g.

Proof of the proposition: (cf. p. 495 of [18]] for a heuristic outline of the proof):
Let ei, = 1,2," - be a complete orthonormal basis of H. 1  i, j  n~

be a real valued n x n matrix such that IIRn + A is invertible. Set Taw = w + Fa (w) where

n

F03BB(w) _ 03A3 03BBi,j . 03B4ej . ei

i,j=1 
’

and note that = 03BBi,jej ~ ei is deterministic,  and Ta is bijective.

Let ,(À) be the inverse of the operator norm of + À)-1 and define

A(m, n, v, a) = w : w E Bm, qm(w) > 4, , sup ~~ Fm(w + h) - Fa(w + h) - v ~ a~(~)L n n

and sup ~~ + h) - ,j
where a is a constant to be chosen below and qm is a random variable which is the radius

of the set of H - C1-property of Fm. Let G(m, n, v, a) be a 03C3-compact modification of

A(m, n, v, a)flM. Let PA(W) be as defined by equation (2.6) and let p E  1,

1 for Ixl  i, cp(x) = 0, for |x| > 2/3 and ~03C6’~~~ 4. Assume, now, that

v and the elements of A are rational and A is non-singular. The collection of such four-

tuples (m, n, v, a) ) is countable and G(m, n, v, 03BB) will be denoted by Gv , v = 1, 2,.... Set

Fv(w) = v + Fa (w) - v] + and note that for w E Gv, pG~ (w) = 0
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and Fv (w) = F(w). On the other hand, setting

Tv (w) = w + Fv(w), ,

w + Fa(w)

w + v~

Tv (w) = w + v

it is easily verified that Tv o Tc o Ta = Tv. Now, Ta and Tv are bijective and from the

definition of Gv for a  1~3 ~~ V Fc(w) ~~2 1. Therefore by theorem 3.3, Tc is also bijective
and consequently Tv is bijective. Moreover, since Ta, Tv and T~ induce equivalent
transformations of measure.

Now, let i = 1,2,3 be measurable transformation of W to W, Ti ~c « ~ and

= E~f~

then

E ~g ° T3 ° T2 ° Tl ’ ~3 ° T2 ° Tl ’ ~2 ° Tl ] - E ~g(T3 ° 

= E ~9(T3w)~13(w)~ ]
= 

Therefore

E9(w) = Fv (Tc ° Taw) ’ (w).

By a direct calculation using

det2(1 + a)(1 + b) = det2(I + a) det2(7 + b) exp -trace (ab)

and for Tw = w + f (w)

(6G(w) o Tw = 6G(Tw) - (G(Tw), f )H - trace ((VG o Tw) . V f) , ,

we get that

° T03BBw) ° (w) = 

(for details cf. lemma 6.1 of [10] or the lemma of [11]) and (4.2) follows. 0

Proof of theorem 4.1: Since Um,nMm,n = M we may assume without loss of generality
that Mm,n are disjoint and

= {B E M : T (8) = w}

= 
.

m,n
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Since the shifts are bijective, the cardinality of the above set is at most countably infinite.

Now

E E1Mm,n(w)03C1(w)g(Tm,nw). IArrt,nU)I
m,n

- ~ 
m,n 

’ 

Applying equation (4.2) yields

E = 03A3 E1Tm,nMm,n(w)03C1(T-1m,nw)g(w)
m,n

= E [g(w)  03C1(03B8)]

which proves (it) and (iii) follows by a similar argument (cf. [18]). D
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