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Simple examples of non-generating Girsanov
processes

J.Feldman*and M.Smorodinsky
University of California, Berkeley and Tel-Aviv University

Let B(t), 0  t  oo be a Brownian motion on (S~, .~’, P) with Bo = 0. Let
 t  oo be its filtration, with ,~’(oo) _ .~’. We construct simple examples of

probability measures for which this filtration is not generated by the corre-
sponding Girsanov process, but is nevertheless generated by some process which is a
Brownian motion for the measure P’.

1. Introduction. Given a Brownian motion and P’ N P as above, the corresponding
Radon-Nikodym derivative may be written in the form

dP’/dP = exp{~003A6(t)dB(t) - (1/2)~0|03A6(t)|2dt},

where + is a process on [0, oo) adapted to the filtration of B and satisfying certain
other conditions which, in particular, cause the expression to make sense and have
expectation 1. This is the Cameron-Martin-Girsanov formula. ~(t) is uniquely de-
termined a.e. in t. While it is not easy to characterize exactly those processes +
which arise in this manner(See Kazamaki’s recent monograph [K]), we note that if
~ is adapted to the filtration of B, and ,~o (~~2(t)dt is bounded by a fixed constant,
then + arises in such a way. The associated Girsanov Process G defined by

G(t) = B(t) - iP(s)ds, 0  t  oo

is a Brownian motion with respect to the measure P’ ( "Girsanov ’s Theorem"). Let
~C(t), 0  t  oo be its filtration. Because + is adapted to the filtration of the original
Brownian motion, we have always Q(t) C for all t. A good reference for these
matters is [RY].

The question then arises, whether the Girsanov Process always generates the filtration
of B, i.e. whether g(t) = for all t in ~0, oo); note that this will follow for all
such t if it holds for t = oo. This question is of relevance for Stochastic Differential
Equations. In 1975 B.Tsirelson showed that the answer is no: in [T] he constructed
a P’ for which the Girsanov Process does not generate this filtration. For further
discussion of this important example see [Y].

An obvious next question, explicitly asked in [RY], is whether at least there is for

*Supported in part by NSF Grant #DMS 9113642.



248

every P’ ’" P some process which is a Brownian motion for P’ and whose filtration
coincides with that of the original Brownian motion. The answer again is no: in

[DFST] there are constructed measures P for which no such Brownian motion
for P’ exists, i.e for which the filtration ,~’(t), 0  t  oo is not Brownian with respect
to P’.

This leaves open the following question: can it happen that  t  oo is

Brownian for P’ but the corresponding Girsanov process does not generate the filtra-
tion of B? One would expect so, and this is what we show here:

Theorem: Given a Brownian motion B(t), 0  t  oo on (Q, 0, P), there exist

probability measures P’ N P for which the filtration of B is Brownian with respect to
P’ as well, but for which the corresponding Girsanov Process does not generate.

Our examples are simple, and the described properties are easy to demonstrate. What
about the P’ of Tsirelson’s 1975 example? We have not determined whether the filtra-
tion of B is Brownian for this P’. However, A.M.Vershik tells us he can show that it is.

It should be remarked that although this paper is in no way dependent on it, our
examples were motivated by considerations coming from the study of decreasing se-
quences of sigma fields, for which see [V]. We also note that questions of this type for
discrete time processes were studied by M.Rosenblatt [R] , and one of his constructions
there may be viewed as analogous to ours.

We thank Marc Yor for his careful reading and helpful suggestions.

2. A class of examples. Choose oo > ti > t2 > ~ ~ ~ -~ 0, and a sequence
al, ~ " ’ of positive numbers with tn+t)  oo; for example, any bounded
sequence will do. For a subset S of the reals, let ~s = -1 on Sand 1 elsewhere. Let
?i, 92, ~ ~ be measurable subsets of the reals, and 7~ = - B(tn+1)), I.e. -1
if B(tn) - B(tn+i) lies in Sn and 1 otherwise. Let ~(t) _ if tn+1  t  tn and
zero if tl  t. The following lemma is just a small calculation:

Lemma 1: fo bounded by a constant, in fact equals ~~ r tn+1),
so it defines a probability measure P’ N P with Radon-Nikodym derivative

c~> co

dP’/dP = - B(tn+1)) - ~1~2) ~, 
n=l rt=l

Denote by N(m, v) the normal distribution with mean m and variance v. The follow-
ing remarks follow from Lemma 1 and Girsanov’s Theorem.

Remark 2: The random variables yi y2, ~ ~ ~ defined by

y,~ = G(tn) - = B(tn) - 
form an independent sequence of random variables with respect to P’, yn having dis-
tribution N(0, tn - tn+t).
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Remark 3: The sequence of random variables zi x2, ~ ~ defined by

xn = B(tn) - B(tn+1)

forms, with respect to P’, a Markov stochastic process; the conditional measure
is either N(bn, tn - tn+1) or N(-bn, tn - tn+1), depending on whether xn+1

is in Sn+1 or not, where bn = an (tn - The total distribution of zn, call it is

just their average, weighted by 1 - Let us further define

= G(t) - U  t  oo,

where n(t) = min~n : tn  t~, and let be the sigma-field generated by y(t), tn 
t C ~ Then the following stronger Markov relation holds: zn is P’ conditionally
independent of V ~n given yn.

3. Proof of Theorem.

Lemma 4: For each nonatomic probability measure tc on the real line and each
b > 0 there exists a measurable subset S of the real line, in fact a countable union
of intervals, with tc(S) = 1/2, and a.e. symmetric about zero, so that for each real
number r~ exactly one of the two numbers 11 + - b lies in S.

Proof: Let I (n) be the half-open interval ~(n -1)b, (n + 1)b),and for 0 _ r  b
let J(n, r) be the half-open interval [nb - r, nb + r). Let S(r) be the union of the sets
J(4n + 2, r) and I (4n) n J(4n, r)~ over all integers n. This set is a.e. symmetric: the
only differences between S(r) and -S(r) occur at end points of the constituent inter-
vals. The sets S(0) and S(b) form a partition of the real line, so = 1.
The map r - is continuous, so there is some r in (0, b) with ta(S(r)) =1/2.
Setting S = S(r), we are done.

Now choose the sets Sn by setting b = bn in Lemma 4 and tc equal to the (1/2,1/2)
average of N(bn, tn - tn+1 ) and N(-bn, tn - tn+1). Then E Sn] will be 1/2 for
each n. Each value 11 of yn could have come from either of the two values 11 + bn or
r~ - bn for xn; and Sn has been so chosen that for each rt exactly one of these lies in
Sn. Additionally, each Sn is a.e. symmetric about zero. We proceed to prove that the
Girsanov process constructed by means of this sequence of sets does not generate the
filtration of B.

Denote by E’(~~~) conditional expectation with respect to P’. Then 
03C32) = 1 or -1 with equal P’ probability. Integrating out x2 gives 

0 a.e. Repeating this argument inductively with y2, ..., yn; on+1) gives with
probability one:

~(Tl~l,~...~n)==0
for all integers n > 0. It follows from the Markov relation in Remark 3 that 

y2, ...), so Ql is P’ independent of But Ql is measurable with respect
to 0(ti). So is not all of 0(ti).
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Next we show that there is a process B’(t), 0  t  oo which is a Brownian mo-
tion under P’ and whose filtration is precisely that of B. First introduce the random
variables yn = and y’(t) = Then put

B’(t) = y’(t) + y’i = t003C3n(s)+1dy(s).

i=n(t) 
°

It is clear that B’ is a Brownian motion with respect to P’.
Let x(t) = B(t) - B(tn(t)). To prove our claim it suffices to show that x(t) is 
measurable for all t > 0, where ,~’’(t), 0  t  oo is the filtration generated by B’.

We claim that for any t > 0, x(t) is a.e a function of the variables y’(t), 
For if takes on the value r~ then either:

(1) = -1, so = -~ and .rn()+i = -~ + bn, or

(2) O’n(t)+2 = 1, so = 7y, and = ~ - bn.

Thus completely determines Since is a.e. symmetric, 
determines with probability one the distribution of xn(t), so and together
determine with probability one. But clearly the pair (y’(t) determines x(t)
with probability one. This completes the proof of the theorem.

Remark 5: Even without the symmetry assumption on the sets Si 5’2," ’ the process
B’ generates the filtration of B, but the argument is a little more involved.
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