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The Multiplicity of Stochastic Processes
Yukuang Chiu

Department of Mathematics, 0112
University of California, San Diego
La Jolla, CA 92093-0112, USA

This paper studies the multiplicity of non-Gaussian, non-infinitely divisible and
non-stationary processes associated with the "chaos" space of N. Wiener [12], and for
each positive integer N and for N = oo, constructs a process of multiplicity N. The
examination of multiplicity of a process has been of interest to many authors such as
H. Cramer [2,3,4], T. Hida [5,6], K. Ito [7] and G. Kallianpur and V. Mandrekar [10].

Our approach here begins with a classical, well known theorem on a separable
Hilbert space.

Let Ut, (t E R) be a one parameter group of unitary operators acting on a separable
Hilbert space H, and let Ea be its spectral measure, i.e., ,

Ut = roo 

Then there exists a sequence { fn} of elements in H, which will be referred to as cyclic
vectors, such that the Hilbert space H can be Hellinger-Hahn [9] decomposed into a
direct sum 

’

Tt~l

where

Hn - 9 E L2(R, n)}
= linear span of {Ut fn; -~  t  oo},

which will be referred to as a cyclic subspace of H with f n, with the notation

= ~dE03BBfn~2,
we further have

aef d 1 » » ... ,

where » dv means that the measure is absolutely continuous with respect to
the measure dv. The type of the measure sequence is invariant with respect to
the choice of { fn}’s. This is to say that if H = is another decomposition
with H~, a cyclic subspace with cyclic vector f n, then

equivalence ), n = l, 2, ~ ~ ~ , ,

where _ ~dE03BBf’n~2.
Denote the support for by An. The integer m(A) = max{ n; a E An} is referred

to as the multiplicity of A, and the pair m}, the spectral type of Ut. The spectral
type of Ut is said to be 03C32014Lebesgue if is equivalent to Lebesgue measure and if
m(A) = oo; and that of Ut is said to be simple Lebesgue if is equivalent to Lebesgue
measure and if m(A) = 1.
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As a further consequence of Hellinger-Hahn decomposition, we have that if Ut and
Ut are one parameter groups of unitary operators acting on H and H’ respectively,
and if they are unitary equivalent, i.e., if there exists an isometry V of H onto H’
such that Ut = then the associated measure sequences and are

of the same type. Conversely, if these two sequences are of the same type, then we
can construct an isometry between H and H’ such that {Ut} and { Ut } are unitary
equivalent. In other words, the sequence is unitary invariant.

Example Define ~ to be the transform of L2(R)

9 . L2(R) _’ L2(R)
" 

F(.) -. F(. _ t).

Then Bt consists of a one parameter group of unitary operators on L2(R), and its
spectral type is simple Lebesgue.

To see this, let us write

(u) = 

eu, u  0

0, u>0 ’

Then

(03BB) :def 1 203C0 0-~euei03BBudu = 1 203C01 1+i03BB.
Since the Fourier transform is topologically isomorphic on L2(R) by Plancherel’s the-
orem [13], it follows that

linear span E R} = linear span E R} = L2(R).
Thus L2 (R) itself turns out to be a cyclic space with cyclic vector T. Now

( ~-~ eit03BBdE03BB)(u) = (u- t) = 1 203C0 ~-~e-i03BB(u-t)(03BB)d03BB,

~-~eit03BB~dE03BB~2 = ~-~eit03BB|(03BB)|2d03BB.

Hence

d (03BB) = ~dE03BB ~2 
= 

1 203C0 1 1+03BB2
d03BB.

This shows that the measure is equivalent to Lebesgue measure and m(a) - 1,
and consequently simple Lebesgue.

In the sequel, let Ut be the one parameter group of unitary operators induced by
Brownian motion flow Tt on L2(B) [5], i.e., the collection of all variables measurable
with respect to the 03C3-field generated by Brownian motion B with finite variances.
First, we look at the spectral type of Ut.

To begin with, let L2(B) _ be the Wiener-Ito decomposition [8, 12]
of It is well known that each ?-~n, which consists of an Ut-invariant subspace,
is topologically isomorphic to (via 3-transformation [5]), where L2(Rn)
denotes all the symmetric functions of and that each element in can be

expressed as an n-multiple Wiener integral. Without ambiguity, we still write Ut to
be the restriction of Ut on We then have
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Theorem For each n ~ 2, the spectral type of Ut on Hn is 03C3-Lebesgue.
To prove this, we introduce a unitary isometry V of Ut. Since spectral type is

unitary invariant, the investigation of spectral type of Ut may be reduced to a search
for that of V . Now let us put

Ln~ = u2, ... Un) E Rn; U2  ...  Un)

and define C:

c: L2(Rn) ~ 

F(u1, u2, ... , un) ~ F(u03C0(1), u03C0(2), ... , 

where x is a permutation of ~l, 2, ~ ~ ~ , n} such that ~ u~~2)  ... ,  u~(n).
Obviously C defines an isometric mapping from L2(Rn) to Further let

/ 1 1 ... 1 1 B
n n n n

- 1 1 ... 0 0

An = ...............

0 0 ... 1 0

and define E:

~. : 
-~ L2(R x R+ 1 )

° 

F(ul, u2, ... un) -~ G(vl, v2, ... , vn),
where R+ = 0, oo ) and

v1 u1
v2 

, 
uz

Vn 7 Un /
Then again we verify that £ defines an isometric mapping from L2nc to L2 (R x R+ 1 ).
Hence if

Vt:def(~.C.J)-1 Ut (~.C.J),
then E R} consists of a one parameter group of unitary operators on
L2(R x R+ 1). As a matter of fact, with the diagram

y
n! L2(Rn)

~.C.J : 

n! 
I 
x Rn-1+) - 

! c 

nc

in mind, we see that if

-~ n! L2(R x 
° 

cp --~ n! ! G(vl, v2, ... , vn),
then

(1) n! G(y - t, v2, ... , vn)
(2) = n! (vG)(vn v2, ... , vn).
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To see the spectral type of % on L2(R x R+ 1 ), we decompose L2(R x R+ 1 ) into
a direct sum by means of a complete orthonormal basis > 0~ of L2(R+):

(3) 2 x = ~ ®"~2~...,k")

where

Lk2,...~kn = {f (vl) ® ~k2(v2) ® ... ® f E 
and ® means tensor product. Such may be taken, for example as the Laguerre
functions. Apparently, the subspace Lk2,...,kn of L2(R x by (1) and (2) is Vt
invariant, and the spectral type of Vt on each Lk2,...,~n, as seen in the example, is
simple Lebesgue. Combining this with (3), we have proven that the spectral type of
V on L2(R x R+ 1) is 03C3-Lebesgue.

Here, let us note that if we put

Xkz,...,kn (t) _ (~ ~ C - t)~k2 (v2) ... ?’Ikn (vn))
then Xk2,...,kn (t) may be expressed as a stochastic integral

Xk2,...,kn(t) = t-~dB(un) un-~~kn(un-un-1)dB(un-1)  ... 

f ~k3(u3-u2)dB(u2) x u2-~ Tl 
u1 +...+un n - t)~k2(u2 - u1)dB(u1).

Hence if we put
_ (~ ~ C ~ ,7) 1 Lka,...,kn 

then

’..‘n = ~ °

This is the decomposition of corresponding to that of L2(R x R+ 1 ) .
Further, if we notice that the expectations in Hn correspond to the multiple inte-

grations in L2(R x R+ 1), then we can immediately compute, for example

E[(Xk2,...,kn(t) - Xk2,...,kn(s)) 2] = max{t,s}-~((u - t) - (u - s))2du,

and 
1

(4) (S)~ _ .

In the case where n = 2, which is of particular interest, we will write

Xn(t) = t-~dB(u2) u2-~(( 2 - t)~n(u2-u1)dB(u1) .

We now focus on the multiplicity of a process X(t) E x2:

X(t) def ~ n=0
where F(t) on R is an absolutely continuous function with (i) 0  F(t)  6  1.
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Theorem If F(t) further satisfies the conditions (ii) the derivative F’ of F is in
L1 (R); (iii) for any open interval (a,b), ,

b F’2dt = +00,
then the multiplicity of X(t) is infinity.

The proof will be done by constructing another process Y(t) which is both canon-
ically represented by Brownian motion and has the same reproducing kernel Hilbert
space as that of X(t). Consequently, the determination of the multiplicity for process
X(t) may be reduced to that for Y(t).

Before constructing Y(t), let us first find a process T (t) such that T (t) can be
canonically represented by Brownian motion, and that T(t) shares the same covariance
with Xn(t). Since the covariance of Xn (t) is given by (4), it follows from N. Wiener ~11~
that such a process must be Ornstein-Uhlenbeck process

T(t) = t 
Let us prepare a sequence of independent Brownian motions on R: Bo, Bl, B2, ...,

and let 

Yn(t) = / 
Then a process Y(t) defined as

oo

Y(t) _ ~ F(t)nYn(t)
n=0

shares the same reproducing kernel Hilbert space as that of X(t). Hence the multi-
plicity of Y(t) equals that of X (t).

To say that the multiplicity of Y(t) is infinity, it suffices to show by T. Hida [5,6]
that the representation of Y(t) is canonical, i.e., fix T E R, for n = 0, 1, 2, ..., take
fn E T]) such that

03A3T-~|fn(t)|2dt  ~
n=0 -oo

and letand let 

= / /’min(~,T’) gn(t) = 
-00 

e-(t-u) fn(u)du.

We then have to show that if
oo

ho(t) := ~ = 0,
, 

n=0

then fn = 0 in L2((-o0, T]), n = 0,1, 2, ~ ~ . For this purpose, let
oo

hk(t) = ~ n(n - 1) ...~(n _ ~ ~> ~
n=k
00

_ ~ ~(n _ 1) ... (n _ ~ ~..1)F(t)n-kg~(t)~ ~ > 1
n=k
00

lo(t) 
n=0
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It is clear that for all k,

E hk(t) E C(R),
where and C(R) denote all the locally L2 integrable functions and all the
continuous functions on R respectively. It then follows, by mathematical induction
and hypotheses on F that

h’a(t) = la(t) + F’(t)hl(t) = 0 ~ hl(t) = 0
h‘ 1 (t) = ll(t) + F’ (t) h2 (t) = 0 ~ h2 (t) = 0

.........

h’k(t) = lk(t) + F t) hk+1 (t) = o ~ hk+1 (t = o
.........

In matrix form,
go (t) 0

91 (t) ) 0

At . : _ . : ,
9n(t) o
..

..

..

where
1 F t F t 2 F t 3 ... (O) F’(~)n ......

0 1 2F(t) 3F(t)2 ... ......

0 0 1 3F(t) ... 2 F(t)n-2 ......

At = 0 0 0 1 ... n 3 F(t)n-3 ...... ,
........................

............... ......

0 0 0 0 ~~~ 1 ......

........................

On the other hand, if we let

1 _F(t) F(t)2 _F(t)3 ... (_1)n o F(t)n ......

0 1 -2F(t) 3F(t)2 ... (_1)n-1 i F(t)n-1 ......

0 0 1 -3F(t) ... (_1)n-2 2 F(t)n-2 ......

Bt = 0 0 ~ 1 ... (_1)n-3 3 F(~)n-3 ......
........................

............... _ ( n ) ~’(~) ......

0 0 0 0 ~~~ 1 ......

........................

then BtAt = AtBt turns out to be an infinite unit matrix. This results in gn(t) = 0
and hence f n = 0, n = 0,1, 2, ~ ~ ~ . The proof of the theorem is thus completed.

As a consequence of the approach, we may easily prove that for each positive
integer N, the multiplicity of a process defined as

N-1

X(t) _ ~ F(t)n Xn(t)
n=o
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is exactly N.
The argument for this follows if, in the proof, we define Y ( t) as

N- I

Y(t) = £ 
n=0

and At as

I F(t) F(t)2 F(t)~ ... 

0 1 2F(t) 3F(t)2 ... 

0 0 1 3F(t) ... 
At = 0 0 0 1 ... (N-1 3)F(t)N-4

..................

......... ’ ...... ( §§£)) F(t)
0 0 0 0 ... I

and Bt as

I -F(t) F(t)~ -F(t)~ ... (- l l’~-~ 
0 1 -2F(t) 3F(t)~ ... (-ll’~-~ 
0 0 1 -3F(t) ... (-1)N-3(N-1 2)F(t)N-3

Bt = 0 0 0 1 ... (- l )N-4 (N-1 3) F(t)N-4 .

..................

° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ~ (§§-§) F(t)
0 0 0 0 ... I

Finally, we need to demonstrate the existence of the function F. The construction will
be done by using the Monotone Convergence Theorem.

Notation: Let f(t) be a function locally symmetric at t = z and let N(z) denote
the local support of f at z and )N(z) | denote the Lebesgue measure of the support
N(Z) .

We first proceed to construct a sequence of functions sn(t), n = 1, 2, ... as follows.
si (t) : (I) symmetric about y-axis, (it) locally symmetric at t = ? , n = 1 , 2, ... and

I  ik , and (iii) 0  JN,> s1(t)dt  ) + and N(n 2) s21(t)dt = +~, n = 1 , 2, ... ;
s2(t): (I) symmetric about y-axis, (it) locally symmetric at t = fi, n = 1, 3, 5, ... ,
and  §, and (iii) 0   1 203B423+n and = n =

1, 2, .... In general, for k > 3, we similarly construct sk(t) as sk(t): (I) symmetric
about y-axis, (it) locally symmetric at t = fi, n = 1, 3, 5, ... , and ]N(fi) )  1 2k+1,
and (iii) 0   ) ~ $+~ and = n = 1 2 ...

Now, let us consider the sum 

Sn(t) # f Sk(t).
k=I

Since we obviously have
0  Si(t)  52(t)  ... ,
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and

0  lim / Sn(t)dt  ~ = ~,
n-’°° -oo 

it follows from the Monotone Convergence Theorem that

S(t) def lim Sn(t)

exists for almost all t. Now define function F as

F(t) = t-~ S(u)du.
We may easily verify that the function F satisfies the conditions as in the theorem.

Acknowledgements

I thank Prof..T. Hida of Nagoya University, Japan for his academic supervision.
As his 70th birthday anniversary draws close, I wish him in good health. I thank
Drs Fred Wright and Chuck Berry at University of California, San Diego for their
encouragement and support.

References

[1] N. Aronszajn, Theory of reproducing kernels. Trans. Amer. Math. Soc. Vol. 68,
337-404 (1950).

[2] H. Cramér, Stochastic Processes as Curves in Hilbert Space. Theory Probability
Appl., 9(2), 169-179 (1964).

[3] H. Cramér, A Contribution to the Multiplicity Theory of Stochastic Processes.
Proc. Fifth Berkeley Symp. Stat. Appl. Probability, II, 215-221 (1965).

[4] H. Cramér, Structural and Statistical Problems for a Class of Stochastic Pro-
cesses. The First Samuel Stanley Wilks Lecture at Princeton University, March
17 1970, 1-30 (1971).

[5] T. Hida, Brownian Motion. Springer-Verlag (1980).

[6] T. Hida, Canonical Representations of Gaussian Processes and Their Applica-
tions. mem. College Sci., Univ. Kyoto, A33 (1), 109-155 (1960).

[7] K. Itô, Spectral Type of The Shift Transformation of Differential Processes With
Stationary Increments. Trans. Amer. Math. Soc., Vol. 81, No. 2, 253-263 (1956).

[8] K. Itô, Multiple Wiener integral. J. Math. Soc. Japan 3, 157-169 (1951).

[9] S. Itô, On Hellinger-Hahn’s Theorem. (In Japanese) Sugaku, vol. 5, no. 2, 90-91
(1953).



215

[10] G. Kallianpur and V. Mandrekar, On the Connection between Multiplicity The-
ory and O. Hanner’s Time Domain Analysis of Weakly Stationary Stochastic
Processes. Univ. North Carolina Monograph Ser. Probability Stat., No. 3, 385-
396 (1970).

[11] N. Wiener, Time Series. M.I.T. (1949).

[12] N. Wiener, Nonlinear Problems in Random Theory. M.I.T. (1958).

[13] N. Wiener, The Fourier Integral and Certain of Its Applications. Dover Publica-
tions. INC., New York (1958).


