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The Multiplicity of Stochastic Processes

Yukuang Chiu
Department of Mathematics, 0112
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This paper studies the multiplicity of non-Gaussian, non-infinitely divisible and
non-stationary processes associated with the “chaos” space of N. Wiener [12], and for
each positive integer N and for N = oo, constructs a process of multiplicity N. The
examination of multiplicity of a process has been of interest to many authors such as
H. Cramér [2,3,4], T. Hida [5,6], K. It6 [7] and G. Kallianpur and V. Mandrekar [10].

Our approach here begins with a classical, well known theorem on a separable
Hilbert space.

Let Uz, (t € R) be a one parameter group of unitary operators acting on a separable
Hilbert space H, and let E, be its spectral measure, i.e.,

SR
U, = / ¢ E,,
—00

Then there exists a sequence {f,} of elements in H, which will be referred to as cyclic
vectors, such that the Hilbert space H can be Hellinger-Hahn [9] decomposed into a

direct sum
H=Y ®H,

n>1

where

H, { /_ : 9(\)dExfn; g € L*(R, un)}

= linear span of {U;fn; —00 < t < 00},
which will be referred to as a cyclic subspace of H with f,, with the notation

() = |ldE>full?,

we further have e
dp = dpy > dpy > -,

where du 3> dv means that the measure dy is absolutely continuous with respect to
the measure dv. The type of the measure sequence {du,} is invariant with respect to
the choice of {fn}'s. This is to say that if H = ¥,5, ®H/, is another decomposition
with HJ, a cyclic subspace with cyclic vector £, then

dpy ~ dy;( equivalence ), n =1,2,---,

where dy,(X) = ||dB |

Denote the support for dy, by An. The integer m(\) = maz{n; A € A, } is referred
to as the multiplicity of A, and the pair {du, m}, the spectral type of U,. The spectral
type of U, is said to be o—Lebesgue if dy is equivalent to Lebesgue measure and if
m(A) = oo; and that of U, is said to be simple Lebesgue if dy is equivalent to Lebesgue
measure and if m(\) = 1.
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As a further consequence of Hellinger-Hahn decomposition, we have that if U, and
U; are one parameter groups of unitary operators acting on H and H' respectively,
and if they are unitary equivalent, i.e., if there exists an isometry V of H onto H'
such that U; = VU,V~!, then the associated measure sequences {dy,} and {du/} are
of the same type. Conversely, if these two sequences are of the same type, then we
can construct an isometry between H and H' such that {U;} and {U/} are unitary
equivalent. In other words, the sequence {du,} is unitary invariant.

Example Define 6; to be the transform of L?(R)

o, DAR) — IXR)
¢ F() — F(--1t).
Then 6; consists of a one parameter group of unitary operators on L*(R), and its
spectral type is simple Lebesgue.
To see this, let us write

e, u<0
T(u) = 0 >0 -

Then
1

1 0 1
V27 /-ooe CVerl4iN
Since the Fourier transform is topologically isomorphic on L?(R) by Plancherel’s the-
orem [13], it follows that

#(\) = ueihugy

linear span {e'*'#()), t € R} = linear span {6,7(-), t € R} = L*(R).

Thus L2(R) itself turns out to be a cyclic space with cyclic vector 7. Now

(/—°° e“'\dE,\T) (’U,) = T(’u - t) = \/% /—: e—i)\(u—t),f—()\)dA’

00

[ B = [ e ro)Ran
—00 -0
Hence 11
dp(X) = |[dEx7)||* = PRI TAAS
This shows that the measure du is equivalent to Lebesgue measure and m(\) = 1,
and consequently simple Lebesgue.

In the sequel, let U; be the one parameter group of unitary operators induced by
Brownian motion flow T; on L%(B) [5], i.e., the collection of all variables measurable
with respect to the o-field generated by Brownian motion B with finite variances.
First, we look at the spectral type of Uj.

To begin with, let L*(B) = ¥52, ®H,, be the Wiener-Ité6 decomposition [8, 12]
of L*(B). It is well known that each H,, which consists of an Uj-invariant subspace,
is topologically isomorphic to v/n!L?(R") (via J-transformation [5]), where L2(R™)
denotes all the symmetric functions of L?(R"), and that each element in H, can be
expressed as an n-multiple Wiener integral. Without ambiguity, we still write U, to
be the restriction of U; on H,. We then have
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Theorem For each n > 2, the spectral type of U; on H, is o-Lebesgue.

To prove this, we introduce a unitary isometry V; of U;. Since spectral type is
unitary invariant, the investigation of spectral type of U; may be reduced to a search
for that of V;. Now let us put

L2, = L*((u1,ug, .. . un) E R uy Sup < oo S uy)

and define C:
c. L*(R™) - VnlL2,
F(ulau21""un) - F(uﬂ(l))u'lr(ﬂ);-"’ur(ﬂ))y
where 7 is a permutation of {1,2,---,n} such that u,q) < Un2) < ..., < Ug(n).
Obviously C defines an isometric mapping from L2(R") to v/nlL2,. Further let
1 1 1 1
n n n n
-1 1 0 0
A, = .. e e
0 0 1 0
0 0 -1 1
and define &:
£ L2, — LYRx R
F(uy,ug,...uy) — G(v,v2,...,%),
where R = [0, 00) and
n Uu
v u
2 | _ A, .2
Up Up

Then again we verify that £ defines an isometric mapping from L?,; to Lo(R x R}™").
Hence if et
V.iE(E-C- I (E-C-T),
then {V;, t € R} consists of a one parameter group of unitary operators on
L*(R x R%™1). As a matter of fact, with the diagram

H, i Vnl L*(R)
E-C- TJ: c

nl L} (Rx R¥1) «  nl L2,

: £
in mind, we see that if

€07 0 T bl

then
(1) Ui — nlGv —t,v,...,v,)

(2) = n! (ViG)(v1,v2,...,Vn).
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To see the spectral type of V; on L*(R x R}™!), we decompose L2(R x R%1) into
a direct sum by means of a complete orthonormal basis {7,; n > 0} of L*(R,):

3) LRxRY) = Y ®Lg, i,

k2,:+kn 20

where
Lkz,u-,k,. = {f('Ul) ® nkg(v2) Q- ® Mk, (Un); f € LQ(R)L

and ® means tensor product. Such 7},s may be taken, for example as the Laguerre
functions. Apparently, the subspace Ly,,..x, of L*(R x R?™*) by (1) and (2) is Vi
invariant, and the spectral type of V; on each Ly,..x., as seen in the example, is
simple Lebesgue. Combining this with (3), we have proven that the spectral type of
V; on L*(R x R%7!) is o-Lebesgue.

Here, let us note that if we put

Kz, eu(8) = (€ - C- T) 71 (v1 — )y (02) - - M (V)

then X, ...x,(t) may be expressed as a stochastic integral
t Un
Xk, ke (t) = / dB(un)/ Mo (Un — Un—1)dB(Un_1) X ... X
~00 —00

u3 u2 +...+
/_oo ks (U3 — uz)dB(uz) x /_m T('ul—n—u" — )Mk, (U2 — u1)dB(uy).

Hence if we put
Hu(Xigyobn) = (€ -C - T) Ly, ..o,
then

H, = Z @Hn(ng,-»,k,,)-
kz’.‘.,knzo

This is the decomposition of H, corresponding to that of L?(R x Rr1).
Further, if we notice that the expectations in H,, correspond to the multiple inte-
grations in L2(R x R%™!), then we can immediately compute, for example

B[(Xep ot ) = Xt = [ (rlu— ) = r(u— 5)) ",

and
(4) E[Xkg,osen () Xtz e (8)] = %e"t-ﬂ,

In the case where n = 2, which is of particular interest, we will write

Xa.(t) = /_; dB(us) /:: 7'(u1 -;—uz — )0 (ug — u1)dB(uy).

We now focus on the multiplicity of a process X (t) € Ha:
def
X(t) & 3 P Xae),
n=0

where F(t) on R is an absolutely continuous function with (i) 0 < F(t) < 6 < 1.



211

Theorem If F(t) further satisfies the conditions (i¢) the derivative F’ of F is in
L*(R); (43) for any open interval (a,b),

b 2
/ Fdt = +o0,

then the multiplicity of X (¢) is infinity.

The proof will be done by constructing another process Y (¢) which is both canon-
ically represented by Brownian motion and has the same reproducing kernel Hilbert
space as that of X(t). Consequently, the determination of the multiplicity for process
X (t) may be reduced to that for Y (t).

Before constructing Y'(t), let us first find a process T'(t) such that T'(t) can be
canonically represented by Brownian motion, and that T'(¢) shares the same covariance
with X,(t). Since the covariance of X,(t) is given by (4), it follows from N. Wiener [11]
that such a process must be Ornstein-Uhlenbeck process

T(t) = [ _ e~*"YdB(u).

Let us prepare a sequence of independent Brownian motions on R: By, By, By, - - -,
and let

t
Ya(t) = /_ 4B, (u).
Then a process Y (¢) defined as

Y(t) = 3 FEYalt)

n=0
shares the same reproducing kernel Hilbert space as that of X (¢). Hence the multi-
plicity of Y'(¢) equals that of X(t).
To say that the multiplicity of Y (¢) is infinity, it suffices to show by T. Hida [5,6]
that the representation of Y(t) is canonical, i.e., fix T € R, for n =0, 1,2, - -, take
fn € L*((—00,T]) such that

00 T

>[Im0t < o

n=0"Y~®
and let &)

gnl(t) = / " e 0 £ (u)du.
We then have to show that if
o o]
ho(t) :=>_ F(t)"gn(t) =0,
. n=0

then f, = 0 in L?((—00,T]), n=0,1,2,---. For this purpose, let

o0

ha(t) = Son(m—1)--(n—k+ 1)) gat), k> 1
n==k

L) = Sonn—1)--(n—k+DF@)" g0, k> 1

W) = 3 P o).

n=0

Il
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It is clear that for all &,
L(t) € Li,o(R), hi(t) € C(R),

where L (R) and C(R) denote all the locally L? integrable functions and all the
continuous functions on R respectively. It then follows, by mathematical induction
and hypotheses on F' that

Ko(t) =lo(t) + F(t)m(t) =0 = hy(t) =

0
Bo(t)=L(t)+ F (t)ha(t) =0 => ho(t)=0

hlk(t) = lk(t) + F.’I(t)hk.,.l(t) =0 = hk+1(.t)' =0

In matrix form,

90(t) 0
a1(t) 0
Al i =],
gn(t) 0
where
1 Ft) F®? F@? - (5)F@)"
0 1 2F(t) 3F(t)?* --- (})F@)~!
0 0 1 3F(t) ") F(t)"?
A=|0 0 0o 1 " Pt
0 0 0 0 1
On the other hand, if we let
1 —F@) F@? -F@#)® - (-)(*)F@"
0 1 =2F(@t) B3F(t)* --- (1) Y(7)F(¢)~?
0 0 1 =3F(t) --- (=) 2(3)F(@E)"2 -
B=| 0 0 0 1 e (D3N R - ,
e _(n’_ll)p(t) ......
0 0 0 0 1

then B;A; = A;B; turns out to be an infinite unit matrix. This results in g,(t) = 0
and hence f, =0,2=0,1,2,---. The proof of the theorem is thus completed.

As a consequence of the approach, we may easily prove that for each positive
integer N, the multiplicity of a process defined as

X(®)= Y FOrXa)

n=0
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is exactly N.
The argument for this follows if, in the proof, we define Y (t) as

Y() =3 FOBat)

n=0
and A; as
1 F(t) F@t)? F@3 --- No-l F(t)N-1
0 1 2F(t) 3F(t)? --- N1_l F(t)N-2
0 0 1 3F(t) --- N2—1 F(t)N'3
A= o0 o 0 1 N3—1 F(t)N-
and B, as
1 —F(t) F(@)? -F(@¢)? (=1)N-1(N=1) )N~
0 1 —2F(t) 3F(t)? ... (=1)N-2 N Y pgN-2
0 0 1 =3F(t) --- (-1) N-3 N 1 F(t)N—3
B, = 0 0 0 1 (- 1)N-4 N 1 F(t)N‘4
0 0 0 0 e 1

Finally, we need to demonstrate the existence of the function F. The construction will
be done by using the Monotone Convergence Theorem.

Notation: Let f(t) be a function locally symmetric at ¢ = = and let N(z) denote
the local support of f at = and |N(z)| denote the Lebesgue measure of the support
N(z).

We first proceed to construct a sequence of functions s, (t),n=1,2,-- as follows.

s1(t): (z) symmetric about y-axis, (i1) locally symmetricatt = 2, n = 1 2, a.nd
IN(3)| < 3%, and (ii5) 0 < Ineg) sa(t)dt <15 and Ine ) 83(t)dt = +o00,n = 1, 2
sz(t) (%) symmetnc about y-axis, (i) locally symmetrlc att =%, n=135,-
and |N(—;)| < 1, and (44) 0 < fN( ) S2(t)dt < <1 2—m and fN(n)sz(t)dt +oo,n =
1,2,---. In general, for k£ > 3, we 51m1la.rly construct si(t) as si(t): (i) symmetric
abont y-axis, (i) locally symmetnc at t = 7, n =1,3,5,---, and |[N(%)| < 7,
and (4it) 0 < fN(n)sk(t)dt < 355 and fN(n)sk(t)dt +oo,n=1,2,---.

Now, let us cons1der the sum

&mﬁgﬂm

Since we obviously have
0<Si(t) <S(t)<---,
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and
00 =)
0<lim [~ Sty <y 2*6=6,
n—oo J_ o =

it follows from the Monotone Convergence Theorem that
def ..
S(t) := lim S, (t)

exists for almost all t. Now define function F' as

t

F(t) = / 5 (w)du.

—00

We may easily verify that the function F satisfies the conditions as in the theorem.
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