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§1. . Introduction. Let W °-- (W (s); s E R+ ) denote d-dimensional N-parameter
Brownian sheet. That is. W is a centered Gaussian process on Rd indexed by ~8+
such that ’

if i = j 
.

0, otherwise

We will write Vi for the i-th coordinate of the k-dimensional vector V and the norm
of v E ~k is l ~k=1 1/2’

In this article, we are concerned with some interesting sets which are avoided
by the path of W. In the language of Markov processes, such sets are said to be
polar. Let us begin with a result of OREY AND PRUITT [OP] on when singletons
are polar.

(1.1) Theorem. ([OP, Theorems 3.3, 3.4]) For any a E Rd,

1, if d  2N

P(W(t) = a, for some t E RN+) = .

0, if d ~ 2N

(1.2) Remark. When the Brownian sheet is non-critical, i.e., d ~ 2N, we provide
an elementary proof which can be easily extended to show the following: suppose
E C ad is compact and = 0 where NE(h) is the upper
(or lower) Kolmogorov entropy of E. Then E E, for some t E R+) = 0.
See TAYLOR [Tl] for definitions and properties.

The next result concerns k-multiple points. We say that W has k-multiple
points, if there exists k distinct times ti, ~ ~ ~ , tk, such that W (tl) _ ~ ~ ~ = W(tk).

(1.3) Theorem. The probability that W has k-multiple points is 1 or 0 according
as whether (d - 2N)k  d or (d - 2N)k > d.
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Clearly, the above leaves out the critical case, (d - 2iV)k = d. There does

not seem to be an elementary way to resolve this problem when (d - 21V) k = d.

However, the problem can be solved. See the forthcoming paper of SALISBURY AND

FITZSIMMONS [FS-2]
In Section ?. we prove Theorem (1.1) in the non-critical case. i.e.. when d ~ 2N.

Theorem (1.3) is proved in Section 3.

A historical account of these problems is in order. When 1’V = l, ~V is d-

dimensional Brownian motion and the above are amongst the results of DVORETSKY.

ERDOS AND KAKUTANI [DEK1,DEK2] and DVORETSKY, ERDOS, KAKUTANI AND
TAYLOR [DEKT]; see TAYLOR for a detailed account of this celebrated prob-
lem (as well as many other related developments). In this case, (i.e., when 1’V = 1).
much more can be done due to the Markovian structure of the underlying process.
For further advances in this area see, for example, BASS, BURDZY AND KHOSH-

NEVISAN [BBK], BASS AND KHOSHNEVISAN [BK], DYNKIN [D1,D2], FITZSIMMONS
AND SALISBURY [FS-I], HAWKES AND PRUITT [HaP], HENDRICKS [He], LE GALL
[LG], PERES [P], ROSEN [R1-R3], SALISBURY [S], SHIEH [Sh], TAYLOR [T1-T3],
VARADHAN [V], WERNER ~WJ and YOR [Y], to cite a small sample. When N > 1
and k  ~N, the existence of 2-multiple points was dicovered simultaneously and in-

dependently by EHM [E] and ROSEN [R2]; see ADLER and DYNKIN [D1,D2] for
improvements and other works. Similar methods to the ones mentioned above (i.e.,
local time techniques) can be used to show the existence of k-multiple points for

any k > 2 satisfying (d - 2N)k  d; cf. CHEN [C]. (In light of Theorem (1.1) above,
the condition d > 2N in [C] is superfluous for non-polarity.) For our purposes, the
crux of the argument is the proof of the non-existence of k-multiple points. The
need to solve this problem was brought to our attention by the review of FRISTEDT

[F].

ACKNOWLEDGEMENT. I wish to express my gratitude to R.J. Adler, T. Salisbury,
Z. Shi, S.J. Taylor and M. Yor.

§2. The Proof of Theorem (1.1) in the non-critical case. Without loss of
much generality, let us only consider the case a = 0. When d  2N, there exists

a non-trivial measure which lives on {s E R~f : : W(s) = 0}; see ADLER [A1] and
EHM [E]. Consequently, P( 3s E R~ : W(s) = 0) = 1. For the sake of completion,
we will give a simple Fourier analytic proof of this fact (when N = 1, this method

appears in KAHANE [K], Chapters 16 and 18). Fix a closed cube I C and

consider the occupation measure, I{W(s) E A}ds. The Fourier transform
P of v is v(~) exp (t~ ’ ~ W (s))ds, where ~ E 1~d and . denotes the Euclidean dot
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product. Note that

= E exp (it ’ . (W(s) - W(t)))ds dt
= IIexp(-~03BE~2 203C32(s,t))ds dt,

where 03C32(s, t) 03A0Nj=1 sj + IT;:1 tj - 2 tj) for s, t E Define, 03C32 0
= Then by a change of variables.

In(1) exP ( 
- ~03BE~203C32 ° 03C0(u, v)/2) exp + vj) du dv.

For E In(I), let S = { 1  j  N : ~cj  vj }. Recalling that I C {o, x)w is a
fixed closed cube, consider,

a2 0 7r(u, v) = exp (L exp exp L vj +
jES j~Sc j~Sc

+ exp ( L Vj) [exp exp L ~]
j~Sc jES jES

= fl - exp ~ + fl - exp )
jES

N

~ 
j=1

where co depends only on d, N and the size of I. Therefore, for some ci depending
on d, N and the size of I,

E|v(03BE)|2 ~ ln(I)ln(I) exp(-c0~03BE~203A3j|uj-vj| 2) e03A3j(uj+vj)du dv

exp ( - |wj|/2)dw,

where scaling, it follows that for some c2 (which
depends only on d, N and the size of I),

~~v{~)~2 _ ~2(II~I~-2N + 1).

Since d  2N, this implies that E  oo. In particular, with probability
one, E By Parseval’s identity, almost surely, « d,~ and the

density is a.s. in Writing the density as ~1, it follows that v(A) _

fA lxIdx. Note that El0I = fl > 0. Therefore, 11 > 0 with
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positive probability. Since the "measure" I ’-~ ~ J is supported in 1 ({o} ), with
positive probability, I n ~"~({0}) ~ 0. An application of Kolmogorov’s 0-1 law
shows that V‘ 1 ( {o}) ~ 0. a.s..

It remains to investigate the case d > 2~V: our proof is motivated by the work
of [Ka].

By taking 77 2014>- 0. we see that it suffices to show that for any 17 E (0.1).

(2.1) ~t E ~~, ~-1Jw : : lV ( t) = 0) = 0.

For any 5 > 0 cover ~~, by closed non-overlapping boxes, B~(~),1  j  n(~),
of side 6*. It is easy to see that there exist suitable constants K; = N), i =1, ?,

such that

(2.2) 

Define the random process N by

n(e)
°-- ~ I~ 3s E : W ( s) = 0~,
~=i

where I{~ ~ ~ } is 1 or 0 according to whether or not the event between the braces
occurs. Recall the uniform modulus of continuity of W (cf. OREY AND PRUITT

[OP] or the proof of ADLER [A2, p.8], for example):

(2.3) lim sup max sup  K3,

where K3 = K3(~, d, N) E (o, oo). It follows that for all ~ small enough, N(e) 
where M is defined by the following:

n(e)
°-- I{ ds E : 

~=i

To finish the proof of the theorem, it suffices to show that with probability one,

lim inf M(e) = 0.
E-IO

We will achieve this by proving that

(2.4) lim EM(e) = 0.

Note that

I{ vs E B; (~) : 2K3 ~ },
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where bj (~ ) is the center of Bj (E), say. Hence.

E:~1(~)  ~  

For s E ~+ and a E ~d. let denote the Gaussian density of W (s) at a. From
the properties of Gaussian densities, there exist some K4 = ~V, d) so that

sup sup c~s (a)  K4.
aE=cd 

Hence, using (2.2), we see that there exists some K5 = such that

 

Since d > 2N, (2.4) and hence the result follow. D

§3. The Proof of Theorem (1.3). When d  2.V, Theorem (1.3) follows from

Theorem (1.1). Suppose d > 2N. When (d - 2N)k  d, the existence of k-multiple

points follows immediately from CHEN [C]. Equivalently, one can show (as we did
for Theorem 1.1) that uniformly in £ > 0, E where is

given by,

I1...IkI{W(s1)~A}I{~W(s1)-W(sj)~~~}ds1...dsk,
and I j is the box [2j, 2j + I]N, 1  j  k. We will omit the details.

Suppose, next, that (d - 2N)k > d. Let r~ E (0,1) be very small and fixed; also

fix disjoint boxes Cl, ~ ~ ~ Ck such that C~ C ~r~, 1  i - k and that if i ~ j,

Cj) > r~, where d denotes the usual Euclidean (that is, ~2) distance on It

suffices to show the following:

(3.1) P( ~1  j  k, 3t~ E Cj: = ... = = Q.

Fix any such 7y E (0,1) C ~r~, r~-1 J N . For any c > 0 and j E ~ 1, ~ ~ ~ , k ~,
cover Cj with disjoint boxes B~, j (~) of side F, 1  i  Note that there exists

some K6 = K6(r~, N) such that

(3.2) max nj (E)  
jk

Define,

°-- £ ... ~ I{ p  k, 3tp E : = ... = 

i1=1 i2=1 ik=1
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From (2.3). a little thought shows that for all E- small enough, Nk(~) ~ Mk(~), where

) is given by

nklE)

.~Ik(~) ‘~ L ... ~ I{ p  k : " sup _ 2Ks ,-.-, ln(1/~)}.
t~ 1 Zk 1 

As in §2. Theorem (1.3) follows once we show the following:

(3.3) lim = 0.

Let bi.j(e) denote the center of say. Note that is bounded above by

n 1 (E) nk (E)

L ... L p p  k 2K3 .

il=1 

However, by the construction of Cl, ~ ~ ~ , Ck, we see that for any 1  j  k, condi-
tional on ~W(bi.?_l,j_1(~)), ~ ~ ~, is a vector of independent
normal random variables. Moreover, the (conditional) variance of any of the compo-
nents of is bounded below by for some K7 = K7(N). By iteration,
and since normal distributions are unimodal, the mode being at the mean , we see
that

E ln(1/E) d(k-1)/2
j=1

 (3.=~)

by (3.2). Here, K8 = K$ (r~, d) and K9 °-- Ks’ Kg. . Recall that we have (d - 2N) k > d.
Equivalently, we have d(k - 1) > 2Nk. From (3.4) we obtain (3.3) and hence the
result. 0

REFERENCES.

[A1] R.J. ADLER (1981). The Geometry of Random Fields, Wiley, London
[A2] R.J. ADLER (1990). An Introduction to Continuity, Extrema, and Related
Topics for General Gaussian Processes, Institute of Mathematical Statistics Lecture

Notes2014Monograph Series, Vol. 12

[BBK] R.F. BASS, K. BURDZY AND D. KHOSHNEVISAN (1994). Intersection local
time for points of infinite multiplicity, Ann. Prob., 22, 566-625

[BK] R.F. BASS AND D. KHOSHNEVISAN (1993). Intersection local times and

Tanaka formulas, Ann. Inst. Henri Poincaré: Prob. et Stat., 29, 419-451



196

[BG] R. BLUMENTHAL AND R.K. GETOOR (1968). Markov Processes and Potential
Theory. Academic Press. New York

[C] X. CHEN (1994). Hausdorff dimension of multiple points of the (N.d) Wiener
process, Indiana Univ. Math. J.. 43(1), 55-60

[DEK1] A. DVORETSKY, P. ERDÖS AND S. KAKUTANI (1950). Double points of
paths of Brownian motion in n-space, Acta. Sci. Math. (Szeged), 12. 74-81

[DEK2] A. DVORETSKY, P. ERDÖS AND S. KAKUTANI (1954). Multiple points of
Brownian motion in the plane, Bull. Res. Council Israel Section F, 3, 364-371

[DEKT] A. DVORETSKY, P. ERDÖS, S. KAKUTANI AND S.J. TAYLOR (1957).
Triple points of Brownian motion in 3-space. Proc. Camb. Phil. Soc., 53, 856-862

[D1] E.B. DYNKIN (1988). Self-intersection gauge for random walks and for Brow-
nian motion, Ann. Prob., 16, 1-57

[D2] E.B. DYNKIN (1985). Random fields associated with multiple points of Brow-
nian motion, J. Funct. Anal., 62, 397-434

[E] W. EHM (1981). Sample function properties of multiparameter stable processes,
Zeit. Wahr. verw. Geb., 56, 195-228

[E1] S.N. EVANS (1987) Multiple points in the sample paths of a Lévy process,
Prob. Th. Rel. Fields, 76, 359-367

[E2] S.N. EVANS (1987) Potential theory for a family of several Markov processes,
Ann. Inst. Henri Poincaré: Prob. et Stat., 23, 499-530

[FS-1] P.J. FITZSIMMONS AND T.S. SALISBURY (1989). Capacity and energy for

multi-parameter Markov processes, Ann. Inst. Henri Poincaré: Prob. et Stat., 25,
325-350

[FS-2] P.J. FITZSIMMONS AND T.S. SALISBURY Forthcoming Manuscript.

[F] B. FRISTEDT (1995). Math. Reviews, review 95b:60100, February 1995 issue

[HaP] J. HAWKES AND W.E. PRUITT (1974). Uniform dimension results for pro-
cesses with independent increments, Zeit. Wahr. verw. Geb., 28, 277-288

[H] W.J. HENDRICKS (1974). Multiple points for transient symmetric Lévy pro-

cesses, Zeit. Wahr. verw. Geb. 49, 13-21

[K] J.P. KAHANE (1985). Some Random Series of Functions, Cambridge Univ.

Press, Cambridge, U.K.

[Ka] R. KAUFMAN (1969). Une propriété métrique du mouvement brownien, C.R.
Acad. Sci. Paris, Sér. A, 268, 727-728

[LG] J.F. LEGALL (1990). Some Properties of Planar Brownian Motion, Ecole d’été
de Probabilités de St-Flour XX, LNM 1527, 111-235

[OP] S. OREY AND W.E. PRUITT (1973). Sample functions of the N-parameter
Wiener process, Ann. Prob., 1, 138-163



197

[P] Y. PERES (1995). Intersection-equivalence of Brownian paths and certain

branching processes, Comm. Math. Phys. (To appear)
[R1] J. ROSEN (1995). Joint continuity of renormalized intersection local times.

Preprint

[R2] J. ROSEN (1984). Stochastic integrals and intersections of Brownian sheet.

Unpublished manuscript

[R3] J. ROSEN (1984). Self-intersections of random fields, Ann. Prob., 12. 108-119

[S] T.S. SALISBURY (1995). Energy. and intersections of Markov chains, Proceedings
of the IMA Workshop on Random Discrete Structures (To appear)
[Sh] N.-R. SHIEH (1991). White noise analysis and Tanaka formulae for intersections
of planar Brownian motion, Nagoya Math. J., 122, 1-17

[T1] S.J. TAYLOR (1986). The measure theory of random fractals. Math. Proc.

Camb. Phil. Soc., 100. 383-406

[T2] S.J. TAYLOR (19 ). Multiple points for the sample paths of a transient stable

process, J. Math. Mech., 16, 1229-1246

[T3] S.J. TAYLOR (1966). Multiple points for the sample paths of the symmetric
stable process, Zeit. Wahr. verw. Geb., 5, 247-264

[V] S.R.S. VARADHAN (1969). Appendix to "Euclidean Quantum Field Theory",
by K. Symanzik. In Local Quantum Theory (ed.: R. Jost). Academic Press, New
York

[W] W. WERNER (1993). Sur les singularités des temps locaux d’intersection du
mouvement brownien plan, Ann. Inst. Henri. Poincaré: Prob. et Stat., 29, 391-418

[Y] M. YOR (1985). Compléments aux formules de Tanaka-Rosen, Sém. de Prob.
XIX, LNM 1123, 332-349


