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CLOSED SETS SUPPORTING
A CONTINUOUS DIVERGENT MARTINGALE

by M. Émery1

Let (Xt)tO be a continuous martingale with values in a finite-dimensional afline
space E. We shall call X divergent if almost surely limt~~ Xt does not exist
in E. For which subsets F of E does there exist in E a divergent, continuous
martingale with values in F? Unable to answer this question in general, we shall
restrict ourselves to the case when F is closed; this note is devoted to giving a non-
probabilistic characterization of the closed subsets of E that contain a divergent,
continuous martingale.

When dim E = 1, no strict subset of E can contain a divergent, continuous
martingale, but E itself does; this case is trivial and the problem is interesting for
dim E > 2 only (if at all! ) . ..

As we are interested in continuous martingales only, the adjective ’continuous’
will be omitted and all martingales will be implicitely assumed continuous. By time-
change, considering continuous local martingales instead of martingales would make
no difference.

Our statements will involve only the affine structure on E (and the associated
topology); but in some proofs, E will be endowed with an additional Euclidean
structure: the distance will be denoted by d, the open balls will be called B(x, r),
the closed ones B (x, r), the spheres S(x, r), orthogonality will be used, etc.

1. Prominent points and humpless kernel of a closed set

If X is a topological space and if A c B c X, iB A and 8BA will respectively
denote the interior and the boundary of A in the topological space B (endowed with
the topology inherited from X, of course). One always has (A =) i x A C iB A, for
ix A is an open subset of X included in A, hence also an open subset of B included
in A. The reverse inclusion may fail (for instance when A = B and A is not open).

LEMMA 1. - Let A, Band C be three subsets of a topological space.
a) If A c B, one has aA(AnC) C aB(BnC).
b) If A C BnC and if A is both open and closed in BnC, then 8BA c 8C.

PROOF. - a) Let x e aA(AnC). If V is a neighbourhood of x in B, VnA is a
neighbourhood of x in A and must meet AnC and A~Cc; a fortiori, V itself meets
BnC and As V is arbitrary, x is in 8B(BnG).

1. This note originates from enjoyable conversations with Chris Burdzy.
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b) Calling X the ambient topological space, a) yields

~B(B~C) c ~X(X~C) = ac; ;

so it suffices to verify that aBA C aB(BnC). Setting D = BnC and taking B as
the new ambient topological space, it now suffices to verify that if A is a closed and
open subset of D, then aA C 8D.

Let x E aA. We must show that any neighbourhood V of x meets both D and D~.
We already know that it meets A, hence also D; it remains to see that it meets D~.
Consider first the case when x E A. Write A = DnO with 0 open; VnO is a

neighbourhood of x, so it meets A~ = D~UO~, hence also D~, and we are done. Now
the other case: x ~ A. Write A as DnF with F closed; from A C F one gets 8A C F
and x E F; since x does not belong to A = DnF, it must be in D~, and V meets
D~ at point x..

DEFINITIONS. - Let F be a closed subset of the affine space E and x a point of
F. One says that x is a prominent point of F if there exist an hyperplane
H in E not containing ~ and a compact K included in F, containing x and with
boundary aFK included in H.

The set of all points of F that are not prominent points of F will be called the
non-prominence of F and abbreviated np(F).

Very roughly, x is a prominent point of F if a plane blade can cut off a bounded
part of F containing x.
We shall see below (Lemma 5) a seemingly stronger but equivalent definition of

the prominent points of a closed set: generality is not restricted by demanding, in
the above definition, that the compact K be also open in the closed set FnD, where
D is the closed half-space with boundary H and containing x.

The figure below shows a closed set Fi in the plane (in gray; it consists of a half-
plane, minus a square, plus a disk and a triangle) and its non-prominence np(Fi).
The prominent points of Fi are the points of the triangle minus its base and the
points of the disk minus its horizontal diameter. This can be checked directly from
the definitions, or, more easily, by using Proposition 4 a) below. Notice on this
exemple that the requirement H ~ x in the definition of prominent points cannot
be weakened to x ~ aFK: the points of the horizontal diameter of the disk are not
prominent, but would become so after this modification (take K = the disk, so that
K consists of two points).
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If F is compact, all its points are prominent and np(F) is empty (take K = F,
so the boundary aFK is empty, and call H any hyperplane not meeting F).
More generally, for the same reason, every compact open in F (for instance, every
connected component of F that is isolated in F and bounded) consists of prominent
points of F.

REMARK. - The definition of prominent points seems to involve the reference space
E, via the constraint that H must be a hyperplane. But actually it does not: if E’
is an affine sub-space of E and F a closed subset of E’, the prominent points of F
are the same, whether defined with respect to E or E’. Indeed, every hyperplane H
of E’ is the trace on E’ of some hyperplane H of E; conversely, if a hyperplane H of
E does not contain a given point of E’ (here, the prominent point), HnE’ is either
empty or a hyperplane of E’.

LEMMA 2. - Let F be a closed subset of E. The set np(F) is closed too.
PROOF. - Let x be a prominent point of F ; there exist a hyperplane H and a
compact K such that and aFK C H. One has x ~ ~FK, whence

x E iF K. All points of F close enough to x are also in the open subset H~n iF K
of F, hence they are also prominent. So the set of all prominent points of F is open
in F, and np(F) is closed in F, hence also closed in E..

Fi in the preceding picture is such that np(Fi) has no prominent point. This is
not a general rule: the figure below shows a closed set F2 made of all the edges of
an infinite hexagonal lattice except one (call this one e); np(F2) consists of all the
edges except the neighbours of e, and the set of all prominent points of np(F2) is
the union of all the edges that are second-order neighbours of e.

LEMMA 3. - Let F and G be two closed subsets of E such that F C G. Every
point of F prominent for G is also prominent for F, and np(G).
PROOF. - Let x be a point of F prominent for G. There exist a compact K such
that x G and a hyperplane H of E such that x ~ Hand 8GK C H. The
set FnK is a compact of F containing x; according to Lemma 1 a), its boundary
verifies 8F(FnK) c 8G(GnK) = aGK C H. Hence x is a prominent point of F.
The first statement is proved, the inclusion follows..
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DEFINITION. - A closed subset of E is humpless if it has no prominent point.

LEMME 4. - Let F be a set 01 hump less closed subsets of E and G = U F the
union of this set. The closure G of G is humpless. FE.~

PROOF. - The prominent points of G form an open subset of G (Lemma 2). If
this open set were not empty, it would meet G, for G is dense in G; hence there
would exist some F E .~’ containing some prominent point x of G; x would also be
a prominent point of F (Lemma 3); this would contradict the humplessness of F.
So G has no prominent point..

PROPOSITION 1 and DEFINITION. - Let F be a closed subset of E. All humpless
closed subsets of F are included in one of them.

This biggest hump less closed subset of F will be called the hump less kernel of F
and denoted by F.
PROOF. - Apply Lemma 4 to the closure of the union of all humpless closed subsets
of F..

Proposition 1 can also be proved by transfinite induction, using only the fact that the
mapping np from the set of all closed subsets of E to itself is a derivation (that is, it is

increasing, and it verifies np(F) C F for all F). This makes it easy to construct, for every
ordinal a, the transfinite iterate npa (F); the so-obtained transfinite sequence is decreasing,
hence stationary, and it is not difficult to see that its limit is the biggest fixed point of np
included in F.

Such a transfinite induction is not necessary here, and ordinary induction will suffice:
Proposition 2 will show that the limit is reached at or before the first infinite ordinal.

REMARK. - One has always F C np(F). In other words, no prominent point of F
can belong to the humpless kernel F; indeed, according to Lemma 3, such a point
should be prominent for F too, but this is impossible since F is humpless. Hence
the humpless kernel is made of non prominent points only. 

’

But the reverse inclusion is false: F may have points that are neither prominent,
nor in the humpless kernel F. Consider for instance F2 drawn on the preceding page;
the iterate np’~ (F2 ) is obtained by deleting from F2 all the edges that are neighbours
of order  n of the edge e; this can be checked by induction using Proposition 4 b).
Consequently, the humpless kernel F2, included in each iterate is empty,
though np(F2) is not.

LEMMA 5. - Let x be a prominent point of a closed set F. There exist a closed
half-space D such that x E D, and a compact open subset K of FnD, such that
xEK and ~~ c 8D.

PROOF. - By hypothesis there exist a hyperplane H ~ x and a compact L
such that x e L c F and ~FL C H. Let H’ be a hyperplane parallel to
H and separating x and H ; call D the closed half-space with boundary H’
and containing x. K = LnD is a compact containing x. Lemma 1 a) gives
~F~DK = C = aFL c H; but ~F~DK is a subset
of FnD, hence also of D, which does not meet H. Consequently, 8pnDK = ~, and
the compact K of FnD is also open in FnD. Last, inclusion ~FK C 8D follows

immediately from Lemma 1 b) ..
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LEMMA 6. - Let be a decreasing sequence of closed subsets of E; call F~
the limit of this sequence.

a) If K~ is a compact open subset of then for every n large enough there
exists a compact open subset Kn of Fn such that Kn D Koo.

b) Each prominent point of F~ is a prominent point of all Fn ’s but finitely many.
c) The closed sets np(Fn) form a decreasing sequence with limit 

PROOF. - a) There exists an open subset U of E such that Koo = Foo n U; there
exists a compact L such that Koo C ~ c L c U. The compacts Fn n 8L are
decreasing with limit F~~~L = = K~~~L = ~; so,
for n large enough, Fn n 8L is empty and Fn n L = Fn n L is a compact and open
subset of Fn containing Koo.

b) Let x be a prominent point of Foo. Lemma 5 gives a closed half-space D
such that x E D and a compact K open in F~~D such that x E K. Apply a) to
the decreasing closed sets FnnD with limit for n large enough, there is a
compact Kn open in Fn~D and containing K, hence also x; Lemma 1 b) yields the
inclusion ~FnKn C 8D, showing that x is a prominent point of these Fn’s.

c) Inclusions c np(Fn) and C (~n np(Fn) are straightforward
from Lemma 3. Conversely, a point belonging to all the np(Fn)’s is in each Fn hence
in Foo; but it cannot be prominent in Foo because of b); so it belongs to 

PROPOSITION 2. - Let F be closed in E. The decreasing sequence of iterates
npn(F) of F converges to the humpless kernel F of F.
PROOF. - Decreasingness comes from Lemma 3; call Foo the limit nn 
Applied to Fn = npn(F), Lemma 6 c) entails that tends to whence

= Foo and Foo is a humpless closed set contained in F. If G is any humpless
closed set included in F, Lemma 3 implies npn (G) C np’~ (F), that is, G C npn(F)
since G is a fixed point of np. As a result, G C Foo; this shows that Foo is the biggest
humpless closed set contained in F, that is, Foo = F. t

2. The case when E is a plane

The case when dim E = 1 is trivial: the only humpless closed sets are E and ~ and
one has np(F) and np(E) = E = E. The simplest non-trivial
examples occur when dim E = 2; this section is devoted to describing the non-
prominence and the humpless kernel of a planar closed set. But some statements
extend to higher dimensions as well; so when we assume E is a plane, we shall
mention it explicitely.

Summarized in Proposition 4, the results are quite intuitive; scribbling a few
sketchy pictures will convince you much more pleasantly than reading the pedestrian
but tedious proofs given below. Experts have shown me how some homological
considerations could have saved paper and ink; but I prefer walking the way rather
than taking readers in a jet I can hardly pilot. In any case, this section will not be
used in the sequel.
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In two dimensions, the mapping F H np(F) becomes easier to describe when
passing to complementaries and dealing with open sets instead of closed ones. If
0 is open in E, we shall call rip(0) the complementary of the closed set np(OC).
Lemmas 2 and 3 and Propositions 1 and 2 say that np(0) is open and contains 0,
that np is an increasing mapping from the set of open subsets of E to itself, and
that the sequence of iterates npn(O) is increasing, with limit the complementary of
the humpless kernel of the closed set OC. .

LEMMA 7. - Let D be a closed half-plane, K a compact in D, V a neighbourhood
of K in D and x a point in K. There exists in V B K a continuous curve with
endpoints y and z such that x belongs to the segment [y, .

PROOF. - Call D’ the closed half-plane included in D and whose boundary 9D~
contains x; by replacing D by D’, K by KnD’ and V by VnD’, we may suppose that
x belongs to the boundary A = 8D of the half-plane D. Without loss of generality,
we shall also suppose V open in D and V ~ D.

Let a > 0 be the distance from the compact K to the closed set D B V. Cover K
with a finite family (B(ci, 2 a), i E I ) of open disks with the same radius 1 2a and with
centres c; in K. Choose a number b E ( 2 a, a) meeting the following requirements:
any circle Ci = aB(ci, b) with centre ci and radius b is not tangent to ~, any two
of these circles are not tangent, any three of them have empty intersection, and no
intersection point of two of them is on A. (This is possible because only finitely many
values of b are forbidden, namely the distances d(ci, 0394), the half-distances 1 2 d(ci,cj),
the outradii of the triangles cicjck, and the distances from ci to the intersections of

A with the perpendicular bissectors of the segments Call F~ the closed disk

b); its boundary is Cz. The compact L = Ui F2 verifies K C U2 B(ci, b) C ~
and LnD C V, hence also 8LnD c V B K. To prove the lemma, we shall construct
in 8LnD a continuous curve whose endpoints are on A and encompass x.

Orient the plane, thus defining a counter-clockwise direction on each circle. Orient
also the line A, in such a way that if a circle C meets A at two points y and z, and
if y is before z on A, z is before y on the arc CnD with endpoints y and z.

The intersection ~~L = Ui is a finite union of segments with strictly
positive lengths, hence also a finite union of disjoint segments with strictly positive
lengths; call sa = zaJ these disjoint segments, where a ranges over a finite set A
and where ya is before za on the oriented line A. Let Y be the set a E A} of
all left-endpoints of these segments and Z the set {za, a e A} of all right-endpoints
of these segments. Point x belongs to one of the segments on A, there are before
x more points of Y than of Z (exactly one more). We shall construct a one-to-
one correspondence between Y and Z, such that any two corresponding points can
always be linked by a continuous curve lying in 8LnD. At least one point of Y
before x will be linked to some point of Z after x, thus proving the lemma.

Remark first that each point of 8L is in L, hence in one of the closed disks Fi;
and it belongs to the closure of the exterior of L and a fortiori to the closure of the
exterior of the disk Fi; so it must be on the boundary Ci and this gives 8L C Ui Ci.

Start at a point z E Z. It belongs to aL, hence to some Ci, unique owing to the
conditions on b. Follow this Ci counter-clockwise until meeting the line A or another
circle Cj . If A is met first, stop; if some Cj (unique owing to b) is met first, leave
C~ and follow Cj counter-clockwise until meeting A or some Ck (k 7~ j, but k can
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be equal to i). If on A, stop, else switch to the new circle. Keep doing this as long
as possible, that is, indefinitely or until meeting A.

To conclude, it suffices to show that, starting from z E Z, the line 0 is reached
after finitely many steps, at some point y E Y; that the path followed from z to y
lies in 8LnD; and that the so-defined mapping from Z to Y is one-to-one and onto.

Consider the reverse algorithm, analogously defined, but with ’clockwise’ instead
of ’counter-clockwise’. Applied after starting with the direct one, the reverse
algorithm follows backwards the same path; this shows that two paths obtained
with the direct algorithm cannot merge (that is, coincide after some step without
having coincided in the past). In particular, starting from z E Z, it is impossible to
pass twice the same point, for the past of the second time should be the same as
the past of the first time, and the starting point z should have been met between
both times; but meeting A terminates the algorithm. As the total number of arcs
at our disposal is finite, A must be met after finitely many steps, and the algorithm
eventually stops.

The starting point z belongs to 8L; it is on Q but not in any of the closed disks
Fj with j ~ i (it is not on the boundary of those disks because of the condition
on b ; nor in their interior since it is on 8L). The first step of the path, until another
circle is met, remains in the exterior of all the Fj ’s, hence on the boundary 8L; it is
also in the half-plane D because of the choice of the orientations. It can be checked
inductively that, at each step of the algorithm, the arc of some circle Ck used lies in
the exterior of all the other circles Cm, k: indeed, when passing from some circle
Ck to another circle CQ, since C~ is reached from the exterior and both motions are
counter-clockwise, the path will leave Ck outwards. So the algorithm never leaves
8L. Similarly, when eventually reaching A, the path is counter-clockwise following
some Cp while remaining in the exterior of all the other circles. Hence, the point
where A is met is a point of having a right-neighbourhood Fp~0394 included
in L; so this meeting point must belong to Y.

This defines a mapping from Z to Y. To see that it is one-to-one and onto, it
suffices to exhibit its inverse. The latter is obtained by applying the reverse algorithm
starting from the points of Y : by the same argument, one eventually reaches A after
following the same path backwards..

LEMMA 8. - Let 0 be a connected open subset of E. Any two points of 0 can be
linked by a simple curve in 0 (that is, with no multiple points).
PROOF. - It suffices to verify that if x is any point of 0, the set of endpoints of
all simple curves in 0 started at x is both open and closed in 0. Since 0 is locally
convex, it suffices to show that if x, y and z are three points, if c is a simple curve
from x to y and if s is the segment [y, there exists a simple curve from x to z
included in c U s. Calling t the point of s n c closest to z, one gets the required curve
by chaining together the (unique) part of c linking x to t and the segment (possibly
a singleton) [t, 

DEFINITION. - If A is a subset of E, the union of all segments , where u
and v range over A, will be called the segment-span of A.

Clearly, the segment-span of A is included in any convex set containing A, in
particular in the convex hull of A. The converse is false in general, but holds in
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dimension 1 (immediate) and, when A has at most 2 connected components, also
in dimension 2. This is a theorem of Fenchel; for references and generalizations, see
0. Hanner &#x26; H. Radstrom [4]. We shall need only the particular case when A is
connected:

LEMMA 9. - Let A be a connected subset of a plane. The convex hull of A is equal
to the segment-span of A.
PROOF. - It suffices to see that the segment-span S of A contains the convex hull
of A. Taking x E S~, we have to show that x is not in the convex hull of A.

Remark first that S D A (a point is a segment), so x does not belong to A. Let E
be the plane, r a circle with centre x and f the mapping from EB~x} to r such that,
for every y ~ x, the points y and fey) are on the same ray emanating from x. Since
f is continuous and A connected, the range f(A) is a connected subset of r, hence
an arc a cr. Hypothesis x ~ S entails that this arc never contains both endpoints
of a diameter of r; so it is either an arc with measure less than 7r, or a non-closed
arc with measure 7r. In either case, the set (a) C EB~x} is a convex part of E,
containing A, but not x. This prevents the convex hull of A from containing x..

PROPOSITION 3. - Suppose dim E > 2; let 0 be open and F be closed in E.

a) Every prominent point of F is in the segment-span of some connected compo-
nent of the open set F~.

b) The open set np(0) is included in the union of the segment-spans of the
connected components of 0.

c) If each connected component of F~ is convex, F is humpless.

This proposition holds a fortiori if ’segment-span’ is replaced by ’convex hull’.

When dimE ~ 3, the converse statements to a), b) and c) are false: consider the
case when F is a line in E (it is a humpless closed set) and 0 the complementary
of a line (this connected open set segment-spans the whole space).
PROOF OF PROPOSITION 3. - a) Given a prominent point x of F, we have to find
in the same connected component of F~ two points y and z such that the segment
[?/, z] contains x.
By Lemma 5, there exist a closed half-space D’ and a compact and open subset K’

of FnD’ such that x E K’ and ~FK’ C ~D’. There exists a V’ open in D’ such that
K’ = FnV’. Let A be a line containing x and parallel to the hyperplane 8D’ (this
is where the hypothesis dim E > 2 comes in) and let P be the 2-plane perpendicular
to aD’ and containing A. Call D the half-plane D’nP, K the compact K’nD and
V the set V’nD. Since x and V is open in D and contains K, Lemma 7 applies
and gives two points y and z of V B K linked by a continuous curve in V B K and such
that the segment [y, z] contains x. But V B K is included in V’ B K’ and hence in F~;
the points y and z, linked by a continuous curve in FC, are in the same connected

. component of FC, and we are done.

b) Observe that the points of np(0) are the points of 0 and the prominent points
of 0~ and apply a) to F = 0~.

c) If the connected components of F~ are convex, each of these components is its
own segment-span, and F is humpless according to a). ~
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In two dimensions, the converse statements to a), b) and c) hold true, and
prominency and humplessness can be more expressively rephrased.

In the next statement, ’convex hull’ can as well be replaced with ’segment-span’
since, according to Lemma 9, they are equivalent for planar connected sets.

PROPOSITION 4. - Suppose dim E = 2; let 0 be open and F be closed in E.

a) A point x E F is prominent if and only if it belongs to the convex hull of some
connected component of the open set F~.

b) The open set rip(0) is the union of the convex hulls of the connected

components of O.

c) The closed set F is humpless if and only if each connected component of F~
is convex.

PROOF. - a) The necessary condition has been seen in Proposition 3 a); now for
the converse. Supposing x in F and in the convex hull of a connected component C
of F~, we shall show it is prominent.
Lemma 9 yields two points y and z of C such that x E [y, Lemma 8 gives

the existence of a simple curve c linking y and z in C. Let y’ (respectively z’) the
point of c n [x, ?/] (respectively c n [x, closest to x and c’ the piece of c linking

y’ and z’. The union, = c’ U ~y’, z’~ is a

simple closed curve; by Jordan’s theorem, 03B3c
has two connected components, one of which

(call it J) is bounded and verifies 8J = ~y.
. Since x is in F, it is not in C and a fortiori
.. not on c’. In a neighbourhood of x, q is

- straight, and the oriented normal line to q
at x can be defined: let v be a normal vector
to ~y’, going from J towards J~, and of
length r > 0 small enough for the closed

disks B(y’, r) and B(z’, r) to be included in C. The translation by v transforms
y’ and z’ into y" and z" ; let R be the compact convex rectangle with vertices
y’, z’, z" and y", L the compact J U R and K the compact LnF.

As x E K, to establish that x is prominent, it suffices to show that the boundary
8FK is included in the segment [y", z"]. Lemma 1 a) gives

8FK = 8F (LnF) c 8E (LnE) = 8L = 8(R UJ)
c [y’,z’] 

but 8FK is also included in F, wherefrom

8FK c (8RnF) U (c’nF) = 8RnF . .

Remarking that 8R consists of four segments, two of which, [y’, y"] and [z’, z"~ ,
are in C, transforms the above inclusion into

.

Now, for every point t of the open interval (y’, z’), the segment [y’, z’] splits a small
disk centred at t into two half-disks, one included in J and the other one in R; hence
L is a neighbourhood of t. Consequently, K is a neighbourhood in F of each point
of (y’, z’) n F, and those points cannot be on finally 8F K c (y", z") and x is
prominent.
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b) Apply a) to F = and notice that the points of rip(0) are the points of 0
and the prominent points of F.

c) If the connected components of F~ are convex, F is humpless by Proposi-
tion 3 c).

If F is humpless, let C be a connected component of F~. By a), no point of F can
belong to the convex hull C of C, so C is included in F~. Hence C is a connected
part of F~ containing C, so C = C, and C is convex..

3. Martingales, at last!

Prominence and humplessness will be used to describe the closed sets of E that
contain a divergent martingale (that is, almost surely not convergent in E when t
tends to infinity; recall that we consider only continuous martingales).

The Euclidean structure (balls, distance, etc.) already used several times is also
able to measure the length of a curve and its analogue for a martingale: The
Euclidean quadratic variation of a martingale X in E is the increasing process

(X, X)t = lim ~k 
where the limit is in probability; equivalently, it is also the sum ~i (Xi, where

the real martingales Xi are the coordinates of X in an orthonormal affine frame.
Recall the equivalence, valid for almost all W,

lim exists in E ~ X,X>~(03C9)  oo .

LEMMA 10. - Let x be a prominent point of a closed subset F of E. There exist
a number a > 0 and a set U open in F such that x E U c F B np(F) and that, for
every F-valued martingale X verifying Xo E U,

P lim Xt exists in E~ > a . .

PROOF. - There exist a hyperplane H and a compact K such that x F,
aFK ~ H and x ~ H. Let f denote the affine function on E vanishing on H and such
that f(x) = 2; the number a = supK l verifies 2  a  oo. As x is not in it lies

in iF K, and the set U = {~ > is open in F and verifies x E U C K and

.~ > 1 on U. The properties of H and K imply that each point of U is a prominent
point of F. If X is an F-valued martingale such that Xo E U, call T the stopping
time inf {t : Xt E On {T  oo}, XT E aFK cHand f(XT) = 0; on the
interval [0, T] , X is in K for, in F, no continuous curve starting in U can leave K
without meeting the boundary Hence, the stopped process XIT is a bounded

martingale, and the real process M = is a bounded real martingale verifying
Mo > 1, M  a and Moo = 0 on {T  oo}. Consequently,

a P (T = = = E (Mo~ > 1,

wherefrom P[T = oo] > l/a. But on the event {T = ~} the paths of X are in K,
hence bounded, hence convergent; so, P[X converges] > a 
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LEMMA 11. - Let F be closed in E and X be an F-valued divergent martingale.
The subset {X ~ np(F)} of R+ x Q is evanescent.

In other words, an F-valued divergent martingale lives in fact in the smaller
closed set np(F).
PROOF. - As the set 0 = FBnp(F) is open in F, it is a countable union of compacts,
and every open covering of 0 in the topological space F contains a countable sub-
covering. Now Lemma 10, applied to each point of 0, gives a covering of 0 by open
sets Ux C 0, each of them associated with a number ax > 0. Hence there exist a
sequence of open sets of F and a sequence in (o, oo) such that

= 0 and that, for all n and all F-valued martingale X verifying Xo E Vn ,
the minoration P [X converges] ) ,Q~ holds.

Let X be a martingale in F such that the optional set {X ~ np(F)} is not
evanescent. This set contains the graph of some stopping time (section theorem); so
there are a stopping time T and an n such that the event S~’ = {T  vn}
verifies P > 0. Applying the above minoration to the martingale Xt = XT+t
(defined on S~’ with the filtration ~’ _ 0T+t and the probability P’ = P [A 
yields P’[X converges] ) !3n, whence P[X converges] ) > 0, and X is
not divergent..
PROPOSITION 5. - Let F be closed in E. Every F-valued divergent martingale
takes its values in the hump less kernel F of F.
PROOF. - Let X be such a martingale. By induction on n, Lemma 11 shows
that each set {X ~ npn (F)} is evanescent. So is also the union of these sets; now,
according to Proposition 2, this union is nothing but {X ~ F}. ~
PROPOSITION 6. - Let F be a humpless closed set of E and x a point of F. There
exists an F-valued divergent martingale X such that Xo = x.
PROOF. - Step one. Given any a > 0, we shall construct a Markov kernel N in F
(endowed with its Borel 03C3-field) such that for every y E F, the probability eyN has
mass centre y and is carried by the compact {z E F : d(y, z) = a} = FnS(y, a).

For y e F, let Ly denote the compact FnS(y, a); we shall first show that y
is in the convex hull Cy of Ly. If it were false, y and Ly would be separated by
a hyperplane H there would exist a closed half-space D with boundary H such
that y E D and Ly The intersection FnDnS (y, a) would be empty and the
compact K = a) would also be equal to FnDnB(y, a); it would be both
closed and open in F~D. Lemma 1 b) would give 8pK C aD = H and y would be
prominent in F. As F is humpless, this is impossible.

Since y E Cy, y is by Carathéodory’s theorem the mass centre of a probability
Ny carried by r+1 points of Ly, where r = dimE. To conclude step one, it
suffices to verify that Ny can be chosen mesurable in y. The set of all systems
(y; z0, ..., zr; ~10, ..., verifying Zi E Ly, o  ~i  1, ~li = 1 arid = Y
is closed in ’Fr+2 x ~0,1~ r+1, with non-empty y-sections; so it has a Borel section
y ’-~ (zo(y), ..., zr(y); ..., (see for instance Dellacherie ~3~, page 350).
Defining Ny as gives the claimed kernel.

Step two. Given a > 0, we shall construct a martingale Xa starting at x, with values
in the closed set Fa = {y E E : : d(y, F)  a} and with Euclidean quadratic variation
(xa, .
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Recall that to each centred probability ~c on a vector space V is associated a

V-valued Walsh martingale (unique in law): denoting by R the absolute value of
a real Brownian motion started at the origin, the Walsh martingale is obtained
by independently multiplying each excursion of R by a random vector in V with
law see for instance [2] for more details. This process is a martingale because ~c
is centred.

If now y is a point in the affine space E and v a probability on E centred at y, one
can similarly define "the" E-valued Walsh martingale W started at y and associated
to v; if T is the first time when R hits 1, the random variable WT has law v.

Take v = where x is the given point and N the kernel constructed in step
one; since ~xN is carried by the sphere S(x, a), the so-obtained Walsh martingale
W has Euclidean quadratic variation (W, W)t = a2t and its distribution at time
Ti = inf {t > 0 : Wt E a)} is Define a martingale Ya equal to W on the
interval [0, after Tl , start the same construction again independently with x
replaced by YTl (it is in F by construction of N) and cxN by N; and stop at
the first hitting time T2 of a) after Ti, etc. Since the differences Ti+ 1 - Ti
are i.i.d. (they are distributed as the time needed by R to reach 1), Ti tend to
infinity and this construction can be performed step by step, yielding a process Yt
well-defined for every t > 0. Moreover, this process is a martingale, with Euclidean
quadratic variation = a2t: this holds on [0, Ti~ by induction on i (this is
where the measurability of N is used). Last, Ya is in F at times Ti and in the ball
B(YTi,a) during the interval Consequently, its distance to F remains
bounded by a and it lives in Fa. To get Xa as claimed, it suffices to time-change
ya by a constant factor: Xt = is a Fa-valued martingale starting at x and
its Euclidean quadratic variation is = = t.

Step three. Construction of a F-valued martingale X started at x, with Euclidean
quadratic variation (X, X)t = t.

Carrying the construction of the previous step for a = yields a sequence
continuous, E-valued martingales started at x and with the same

Euclidean quadratic variation t 
= t. Such a sequence has a subsequence

convergent in law, whose limit is a martingale X in E verifying also Xo = x
and (X, X)t = t (see Rebolledo [5]). Furthermore, since Zk is F1/n-valued for
k ~ n, so is also X, which lives in each hence in F. Last, X is divergent since

COROLLARY 1. - Let F be closed in E and x be a point in F. There exists in F
a divergent martingale starting from x if and only if ~ is in the hump less kernel F.
PROOF. - If there exists a divergent martingale in F started at x, it lives in F
according to Proposition 5; consequently its starting point x is in F.

Conversely, if x E F, Proposition 6 applied to the humpless closed set F gives the
existence of a divergent martingale, started at x, living in F and a fortiori in F..

COROLLARY 2. - Let F be closed in E. The following three statements are

equivalent : :

(i) there exists an F-valued divergent martingale;
(ii) the humpless kernel F is not empty;
(iii) F contains a non-empty humpless closed set.
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PROOF. - Implication (i) =~ (ii) stems from Proposition 5, its converse (ii) =~ (i)
from Corollary 1, and equivalence (ii) ~ (iii) from the definition of F. ~

COROLLARY 3. - Let F be closed in an plane E. There exists an F-valued
divergent martingale if and only if there exists an open set U, whose connected
components are convex, and such that F~ c U ~ E.
PROOF. - This is a restatement of the equivalence (i) (iii) in Corollary 2 using
Proposition 4 c) ..

4. Remarks

a) (Remark by P. A. Meyer.) Prominence with respect to some closed F is far
from being a local property: proving that x is prominent requires considering only
the intersection of F with some ball centred at x, but this ball can be arbitrarily
large, and proving that x is not prominent is impossible if you know only a bounded
part of F. But humplessness is, in some sense, local. Say that F is r-humpless if each
point x of F belongs to the convex hull of r). . The following are equivalent : :
(i) F is rn-humpless for some sequence with rn > 0 and rn -~ 0;

(ii) F is r-humpless for every r > 0;
(iii) F is humpless.

Indeed, the proof of Proposition 6 first establishes that (iii) =4> (ii), then uses
only the (seemingly) weaker statement (i) to construct in F a martingale started at
any given point. So (i) implies the existence of such martingales, and (iii) follows by
Corollary 1.

b) Replace now E by a C2-manifold, endowed with an affine connection. Given
a closed set F c E, do there exist divergent martingales in F? No generalization
of humplessness to that case seems to exist. But using some complete Riemannian
metric on the manifold (not related to the connection; notice that any two such
metrics are comparable on compacts), it is still possible to define r-humplessness
and the construction in Proposition 6 carries over to this situation: F contains
divergent martingales iff it contains non-empty, closed, rn-humpless subsets for a
sequence rn > 0 tending to 0.

c) What happens if F is no longer supposed closed ? Prominent points can still
be defined: x is prominent if there are an affine hyperplane H C E not containing
x and a bounded, closed subset K of F containing x and whose boundary aFI~
is included in H. As in Lemma 10, it is easily seen that no divergent martingale
contained in F can start from a prominent point. But I do not know if Lemma 6
generalizes: if one cuts off the prominent points of F, then the prominent points of
the remaining set, and so on, does he eventually get a humpless residue? Or is it
necessary to transfinitely iterate this cutting off?

These questions are probably uninteresting since, even if a definition of humpless
kernels and Proposition 5 extend, one way or another, to a non-closed F, there
is no reason to expect the converse, that is, the existence in any humpless set of
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a divergent martingale (Proposition 6). The proof given above, constructing the
martingale in a slightly larger set and passing to the limit, is clearly doomed to
failure for non-closed sets.

Another attempt would be to try to reduce the non-closed case to what we already
know. For instance, if a set contains a divergent martingale, does there always exist
a smaller closed set containing also a divergent martingale? The answer is no, even
for a smooth open set; here is a counter-example.

Call A the open planar set {(~, y) E R2 0  y  f (x)}, where f : R -~ R is

convex, C2, strictly positive, and has limit 0 when x ~ -~ (for instance f = exp).
We shall show that A contains a divergent martingale, but no closed set included in
A shares this property.

First, there exists in A a divergent martingale. Let X be a real Brownian motion
started at 0 and I be the current infimum of X, given by It = inf0st Xs. The
process Y = ~ f oI + ~ (X -I ) f’oI is a martingale owing to the change of variable
formula .

dY = ~ f’oI dX + 2 (X -I ) f"oI dI = 2 f’oI dX ,

where (X -I ) dI = 0 because I varies when X = I only. (This formula extends to
the case when f is not smooth: see Azema &#x26; Yor [I], page 92.) As f is increasing,
Y > 2 f oI > 0; as 1 2f is convex, Y  2 f oX  foX. Thus the planar martingale
(X, Y) lives in A. And it is divergent, for so is already its projection X on the x-axis.
And yet, every humpless closed set included in A is empty, so no closed set

included in A can contain a divergent martingale. To see this, let F be a humpless
closed set included in A. Choose any non-empty open ball centred on the x-axis and
having no intersection with F. The union of this ball with the x-axis is connected
and does not meet F; as F is humpless, Proposition 4 a) says that the convex hull
of this union does not meet F either; so F has no point in some strip  ~ } ~
Choose Xo such that f(xo)  ~; F cannot meet the line {x = so it does not
meet the union of this line with the x-axis, nor the convex hull of this union (same
reason as above). As this convex hull is the whole plane, F is empty.
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