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1. Introduction

Let (hs : s > 0) denote an absolutely continuous function with values in l~m whose
derivative is square-integrable:

~|hs|2ds  oo.

0

The Cameron-Martin formula states that if (x9 : s >_ 0) is a Brownian motion in
Rm, starting from 0, then, provided also ho = 0, the law of (x9 + h9 : s >_ 0) is
absolutely continuous with respect to that of (x9 : s > 0) with density

P~ = exp ~h~, dx~) - 2 
In fact if one randomizes the starting point 2:0 according to Lebesgue measure,
then the formula remains valid without the assumption ho = 0. Thus we obtain a
Cameron-Martin formula for the free path space of For suitable functions F
on the path space, the expectation

L ~ ~0 ~0 ~ J

does not depend on t. So on differentiating in t at 0 we obtain an integration by
parts formula:

.

~o

This may be regarded as the infinitesimal form of the Cameron-Martin formula.
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In this note we shall discuss Cameron-Martin and integration-by-parts formulas
for the free path space of a compact Riemannian manifold. The case of paths with a
fixed starting point has already been thoroughly discussed: see [D],[H]. The results
we obtain are at a technical level simple corollaries of results in [L2] or [N2]. The
emphasis here is rather on the efficient calculation of densities and divergences for
flows and vector fields. The integration by parts formula is proved first in §2, by a
direct argument based on the methods of [L2] . Then in §3 we use the main result of
[N2] to establish independently a corresponding Cameron-Martin formula. From
here we can recover the integration by parts formula by differentiating.

Integration by parts formulas of a similar type are proved in [Ll],[L2],[LR] by
using a mixture of small time asymptotics and developments of Bismut’s formula

[B],(EL),(N1]. They rely deeply on the identity between the tangent spaces to path
space used by Bismut [B] and Jones and Leandre [JL]. Such integration by parts
formulas are also known for free twisted loops: see [LR]. In this case we do not yet
have a corresponding Cameron-Martin formula.
We would like to thank David Elworthy for his warm hospitality during the

Warwick Symposium on Stochastic Analysis and Related Topics 1994/5, where
this work was done.

2. An integration by parts formula on the free path space

Let Q denote the set of continuous paths (xs : s > 0) with values in a compact
Riemannian manifold M. Let X denote a vector field on Q, thus X(x) = (Xg(x) :
s > 0) where Xs(x) belongs to the tangent space to M at We shall investigate
the relationship between X and the equilibrium Wiener measure on Q:

P(dx) = MPx0(dx)dx0

where Px0 denotes the law of Brownian motion in M starting from xo and dxo
denotes the normalized Riemannian volume. Let us consider the vector field X

given by
m

= Ts ~ 
i=l

where, for i = 1, ... m, Xt is a C2 vector field over M and Ts is the parallel
transport from 2~0 to x s.

Conditional on we define a Brownian motion bs in Tx°M by bo = 0 and

abs = T;laxs

where a denotes the Stratonovich differential.

For each s >_ 0 denote by e~ : S~ -~ M the evaluation map es(x) = zs. We
consider the pullback Ts by es of the tangent bundle TM equipped with the pullback
of the Levi-Civita connection of M. Then formally axs is a section of Ts abs is a
section of To, Ts is a section of Ts  (To)*, and we have

~X~xs = + s~X~bs.
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This formula is justified in [L2] at (4.65). We know also by [L2] (see (4.64), (3.87))
that

~Xs = s s0-1rR(~xr,Xr)r,
~X~xs = Ts ) 

i=l
soSO 

m 
~

Vx8bs ( / X r)T,. ab9.
i= p 

Hence we obtain for the Ito differential

~Xdbs = hisXi(x0)ds - 1 2-1sRicci(Xs)ds - (s-1rR(~xr,Xr)r)dbs.0 /

We compute now the action of X on a test functional

F = 0s1...sn H(s1,... , sn; x0)dbs1 ... dbsn

where the sum in n is finite. Here H is a cotensor in We have

so

lE(dF,X) = dx0Ex0 (0s1...sn H(sl,...,sn;x0)dbs1 ... dbsn-1(03B8sn dsn))

+ M X0f(x0)dx0

where f(x0) = Ex0(F) and

03B8s = -1s(D/~s - 1 2Ricci)Xs.
Here D/~s denotes covariant differentiation along In the first term we used the
fact that integrals in dbs vanish under the expectation. In the second we used the
fact that the Fock space structure, being derived from the metric, is preserved by
the Levi-Civita connection. Let us define

+ 0 ( as D - lRicci) 
We have shown:



19

Theorem 2.1. We have

3. A Cameron-Martin formula on the free path space

Recall that n denotes the set of continuous paths (xs : s ~ 0) with values in M.
Let X denote a vector field on St, thus X (x) = > 0) with X9(x) E M.
Our object now is to compute the image of the equilibrium Wiener measure P under
the flow determined by X.
We begin with a rough argument from which some technical points are missing.

Later, in order to fill these gaps we shall specialize our choice of vector field X,
which may obscure the simplicity of the basic argument. Let us assume that Xs is
previsible, and that DXs/~s exists for almost all s, and is square-integrable. Let
us assume also that for P-almost all 2-0 we can integrate X to a flow in ~

xt = (1)

Here we use t to parametrize a family of paths xt = (x9t : s > 0). Let us suppose
that Xst is a two-parameter semimartingale in the sense of [N2], then the two-
parameter stochastic calculus provides a means to compute the law of xt when 2:0
has law P.

We may rewrite (1) in differential form

~txst = Xst~t

where Xst = Xs(xt). Recall that we write d~ and a~ for the Ito and Stratonovich
differentials in s ; we also write Ds for the covariant Stratonovich differential corre-
sponding to the Levi-Civita connection. Then

= 

Let us introduce a lift vst of xst to the bundle OM of orthonormal frames in TM,
choosing voo arbitrarily and imposing the following horizontality conditions:

Dsvs0 = 0, Dtvst = 0,

which determine vst uniquely, given voo. In addition we introduce two further

processes, qSt in TM over and bst in JR n, by the equations

Dtqst = (2014 - 1 2 Ricci) Xst~t, qs0 = 0,

dsbst = (dsxst - qstds), b0t = 0.

Since xs0 is a Brownian motion in M, it follows that bso is a Brownian motion in
1R n. Since our connection is torsion-free,

Ds~txst = Dt~sxst,
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hence

at(asbst ® asbst) = v-1stDt(~sxst ® = 0

and so 
n

~sbst ® ~bst = 8sbso ® ~sbs0 = E ei ® 

where ei runs over the standard basis in Rn. We recall the basic identity ([N2],
(2.38))

Dt~sxst = Dtdsxst + 1 2R(~txst,~sxst)~sxst,
where R denotes the curvature. But we have identified the quadratic variation in
s of x st as the trace, so

R(~txst,~sxst)~sxst = Ricci(~txst)~s.

Hence

= - 1 2Ricci(~txst)~s
= (D ~s - 1 2Ricci)Xst~s~t
= Dtqst~s,

and

~tdsbst = v-1st(Dtdsxst - Dtqstds) = 0.
Therefore bst = bso for all t, and (zst s > 0) is a Brownian motion in M with drift
qst.

So far we have ignored what is happening to the starting point, but that is very
simple. Previsibility forces Xo(x) to be a function of the starting point xo alone,
giving us a vector field on M, which we again denote Xo. Then xot obeys the
autonomous equation

~tx0t = X0(x0t)~t.

If we assume that Xo is C1 say, then the law of xot is given by

0 = ~ ~tE[f(x0t)exp{- 
t0 div X0(x0)d}]

.

On the other hand, conditional on the law of 0) is absolutely
continuous with respect to at least on compact s-intervals, with density given
by the Cameron-Martin formula. We have
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Hence the law of Xt = (xst : s ~ 0) is given by

0 = ~ ~tE[F(xt)exp{- t0 div X(xr)d}]

for all bounded Borel functions F on n, where

div X(x) = + 1 2Ricci) Xs(x),dxs .

This is our Cameron-Martin formula for the free path space. For suitably smooth
functions F we can evaluate the derivative at t = 0 to recover the integration by
parts formula of §2

= E[Fdiv XJ.
That concludes our rough argument.

The only serious gap in the above argument is the need to establish the existence
of a flow for our vector field X, within the class of two-parameter semimartingales.
Obviously, something in the nature of a Lipschitz condition looks desirable. But
truly Lipschitz functions on H form an overly restricted class. We shall not attempt
to find natural conditions on the vector field X, but restrict attention to the case
already considered in §2. Let there be given C2 vector fields Xl, ... , Xm on M,
together with an absolutely continuous function hs = (h9, ... , h9 ) in l~m satisfying

(2)

Then for P-almost all x and all s > 0 we can define Xg(x) E Tx.M by

m

(3)
i=l

where Ts denotes parallel translation Txs M along x.
We state a special case of (~N2J, Theorem 3.2.6) suited to our present needs.

Theorem 3.1. Let M be a C4 compact Riemannian manifold with Levi-Civita
connection. Let

be a C2 map of the fibres. Suppose we are given regular semimartingale boundary
values (xso : s > 0) and (xot : t > 0) in M together with uoo = voo E 
Then there exist unique two-parameter semimartingales Xst in M and v~t in
OM over xst such that uso = v~o and uot = vot, and satisfying

Ds8txst = 

Dsust = 0,
Dtvst = 0.
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We make some explanatory remarks. In this context regularity of the boundary
values means uniformly Lipschitz quadratic variation and finite variation part. The
auxilliary processes ust and vst are lifts of Xst in OM, which agree and are horizontal
on the s and t-axes; then ust is made horizontal along (zst : s > 0) for each t ~ 0,
whereas vst is horizontal along (xst t ~ 0) for each s > 0. Parallel translation
along (zst : s > 0) is then given by

Tst = ustu-10t.
The process vst already appeared above in analysing the law of xst.

In order to apply Theorem 3.1 to our present problem, we first integrate the C2
vector field 

m

~ 
t==l

which governs the autonomous motion of the base point
x0t = X0(x0t).

We denote by u0t the horizontal lift along x0t starting from uoo, and set

(kt)i = 

kt taking values in (Rm)*. The flow equation
Xt = (3)

is then equivalent to the system of two-parameter hyperbolic equations
Ds~txst = ustkt(~hs)~t,

Dsust = 0,
Dtvst = 0.

In the case where hs has bounded derivative and so is regular, we can now appeal
to Theorem 3.1, applied to the augmented process xst = (xst, hst, kst) in M x

(Rm)*, with hst = hs and kst = kt, satisfying
Ds~thst = 0, Ds~tkst = 0.

Hence (3) has a unique solution, whch is a two-parameter semimartingale. One can
then pass to the case of general hs by a time-change argument in s, as in ([N2],
§4.2). Thus we obtain
Theorem 3.2. Let xo = 0) be a Brownian motion in M. Then there
exists a unique two-parameter semimartingale (xst : s > 0, t > 0) satisfying

m

~txst = Tst 03A3hisXi(x0)~t.
i=l

The calculation of the law of Xst made above is now justified. The presence
of the Ricci term in the drift means that (2) is not sufficient to make the law of
Xt = 0) absolutely continuous with respect to P, unless one restricts to
compact s-intervals. The combination of (2) and

~0 |hs|2ds  ~ (4)
is of course sufficient. We summarize our conclusions.
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Theorem 3.3. Let X be defined P-almost everywhere on 03A9 by
m

Xs(x) = T~ 
~=1

where hs satisfies (2) and (4) and Xl, ... , ,Xm are CZ vector fields on M. There
exists a unique two-parameter semimartingale (xst s > 0, t >_ 0) such that the
path-valued process xt = (xst s > 0) satisfies

(i) xo = x;
(it) xt has law absolutely continuous with respect to 1~ for all t > 0;
(iii) it = 

Moreover for every bounded Borel function F on 03A9 we have

0 = ~ ~E [F(xt) exp{- t0 div X(x)d }]

where

div X(x) = div X0(x0) + D - 1 2Ricci) Xs x dxs .
Finally for every smooth cylinder function F(x) = f (x~l , ... we have the
integration by parts formula

E(dF, X X ]

where
k 

,

(dF, X) ( x) _ ,x9k),X~;(x)~~
j=1
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