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0. Summary

Let mt be a square integrable martingale, mo = 0, such that there exists
limt~~ mt = moo a.s. We study a minimal possible suflicient condition for the
validity of Wald’s equation Em~ = 0 in terms of the tail behavior of a square
characteristic S(m) oo of mt. .

1. The background for the problem and the main result

Let (S~, F, Ft, P), t E Z+ = ~0,1, ...} be a stochastic basis with the filtration
Ft. We always consider in this paper the process mt as a square integrable martin-
gale, mo = 0 , that is a square integrable process such that Em-r = Emo = 0 for any
bounded (by a constant) stopping time T (of course, with respect to Ft) . Denote
a square characteristic of mt by S(m)t := where we used notations
for the martingale-difference Xk := mk - mk-i and for conditional expectations
Et( ) ~= E~{ )~Ft-1}.

It is well known (see Meyer (1972,Theorem 64), Liptser and Shiryaev (1991))
that if S(m) =  oo a.s. then there exists limt mt = m~ a.s. (all limits
over t are considered as t --~ oo ). For many applications , for example in sequential
analysis, it is of interest to know under what minimal conditions the equation

Emoo = 0

still holds.
The prehistory of this question goes back to classical Wald monograph (1945)

in which this equality was used to establish some general properties of sequential
tests. The first results obtained by Wald (in modern form) is the following:

AMS 1991 classification : 60G42, 60G40.
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ES(m)  oo ~ Em~ = 0.

Later Burkholder and Gundy (1970) proved the maximal inequality

Esup 
t

which implies uniforme integrability of m if

E(S(m))1~2  00,

and, of course, Wald’s equation:

Emoo=O. (1)

(we denote all constants whose values are not important for this exposition by C ).
Note (1) is valid also for continuous time martingale and it seems the first result

in this direction was obtained by Novikov (1971) for stochastic integrals with respect .

to a brownian motion (the paper of Novikov (1971) was presented for publishing at
the same time as Burkholder and Gundy (1970)).

Azema, Gundy and Yor (1979) discussed a problem of uniform integrability
(U.I.) of continuous martingales (mt E M~) and, particularly, they showed that if
mt E M~ and supt  oo then

lim P{S(m) > t}t1/2 = 0 is U.I. ~ Em~ = 0. (2)

The similar result as in (2) for discrete time case was obtained by Gundy (1981)
but for a special case of martingales satisfying the following conditions:

sup E|mt|  00 , ,1 tmP{S(m) > = 0,
t t

(3)
Xt = VtDt, Vt is Ft-1-measurable, EtXt = 0, EtlXtl > C > 0, EtX2t = 1

(all inequalities for random variables in our paper hold with probability one).
In the present paper we prove that under some different bounds for conditional

moments of the martingale-difference Xt a weaker condition on S(m) instead of
that one in (3) may be used and ever more detailed information concerning the
asymptotic behaviour of P{S(m) > t} may be obtained (see Lemma 1 and Remark
1 below).

To formulate the basic result introduce the following class of deterministic
functions

G = f 9(x) > 0, g(x) f, = oo}. .

Theorem 1. Let S(m)   oo, |Xt|  C. . Then

(there exists E G : Eg(S(m))  oo) ==~ Emoo = 0. (4)
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To see that condition of (4) is a less restrictive that the condition

lim P{S(m) > t}t1/2 = 0

one may take the function g(x) with the step-wise derivative
m

g’(x) = xk/2)I{xk  

k=l

where I{ } is an indicator functional =1, x~+1 > xk+1. As for any nondecreasing
positive function f (x)

= oo ~~ ~ = oo

then g(x) E G.
Take now

+ 1 : sup P{S(m) > t}t1~2  .

t>x

As

EgS(m))  ~ ~ ~1 P(S(m) > x) xdg(x) x  ~,

then it is easy to see that Eg(S(m))  oo. Note that, of course,

(there exists E G : Eg(S(m))  oo) ======~ lim inf P{S(m) > = 0.

It should be noted that unlike the case of nonnegative martingales the validity
of Wald’s equation Emoo = 0 , generally speaking, does not imply Wald’s identity
, that is the equality EmT = 0 for any stopping time T : : consider for example,
sums of Rademacher’ variables (with jumps 1 and -1) stopped at moment of the
first hitting zero after first passaging of the level +1. But if one assumes that mt
is U.I. then (as remarked by Vallois (1991)) Wald’s equation is equivalent to U.I. of
mt .

The technique used in the present paper is based on exponential martingales
and tauberian theorem (see Feller (1966)) and it is very different from one used
in Burkholder and Gundy (1970), Azema, Gundy and Yor (1979), Gundy (1981)
and related papers of Kinderman (1980), Klass (1988), de la Pena (1993) (all these
papers exploited so-called "good-lambda" inequality first appeared in Burkholder
and Gundy (1970)).

We note that the idea of using exponential supermartingales was used earlier
by Meyer (1972, th. 71) for obtaining some asymptotic results for martingales.

Our method can be easily extended to the case of continuous time martin-
gale (results for quasi left-continuous martingales was reported by the authors to
Probability seminar at Strasbourg university, February, 1994) but the authors plan
to consider in a separate paper a more general case of so-called optional martin-
gales (that is, without standard condition on right-continuity of Ft (see Galtchouk
(1980)).
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Note that the result of Theorem 1 for a special case of stopped processes with
independent increments was proved in Novikov (1981a,1982).

2. Two lemmas

Lemma 1. Suppose S(m)  oo and there exists a+ > 0 such that for all
03BB~[0,03BB+)

Et|Xt|3exp(03BBXt)  CEt|Xt|2 (5)

and

sup Eexp(03BBmt)  oo . (6)
t

Then
0  Emoo  oo, (7)

and

limP{S(m) > t}t1/2 = . (8)

Proof. By condition (5) the following predictable function

=  a+~

is finite and it is non negative due to Jensen’s inequality and the condition EtXt = 0.
Below we exploit the following well-known facts: the process

t

Zt (A) = exp{Àmt - ~ ~~ (~) } ~ 0 ~ ~  A+,
i

is a non negative martingale and there exists

lim Zt(03BB) = Z~(03BB).

The limit moo exists thanks the condition S(m)  oo. By (6) and Fatou’s lemma we
have  oo and by the dominated convergence theorem the following
equality (Wald’s exponential identity) holds

= 1, 0  a  a+ . (9)

Assumption (6) implies uniform integrability of mt = maz(mt , 0) by Vallée-
Poussin’s theorem.

As Emt = Em-t , (m-t = max(-mt, o)) then by Fatou’s lemma

Em+~ = LimtEm+t = limtEm-t > Em-~.

So we have 0  Emoo  oo (this type of arguments was used by Novikov (1981)
and a recent paper of Vallois (1991)).
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The condition (6) implies

 oo. (10)

Indeed

= + . (11)

The first right hand term is finite by (7).
Further, for all A E [0, A+) there exists a such E > 0 that A + e  A+. For all

f > 0 there exists a such constant K that

+ > m~exp(03BBm~)

if moo > ~~
Then for second right hand term of (11) we have

= Em~exp(03BBm~)I0~m~~K~ + 

 +  oo.

This inequality and (11) imply (10).
Since  oo then by the dominated convergence theorem from

(9) it follows:

m m

1- Eexp{ - ~ = - Eexp{ - ~ =

1 1

03BBEm~ + o(03BB), 03BB ~ 0.

Below, in Lemma 2, we shall prove the following relation

00

Eexp{ -1/2 - Eexp{ - ~~t(a)} = o(a), ~1--~ 0, (12)
i

That gives us

1- = 03BBEm~ + o(03BB), .1-; 0.

This equation is equivalent to (8) by following tauberian theorem.

Theorem 2 (Feller W.(1971) Ch.XIII,Example (c)).Let Y be an R+-
valued random variable, and L : R+ ~ R+ be a slowly varying function at oo. Let
0  p  oo.

Then f ollowing relations are equivalent:

i) (1 - E exp(-03BDY)) ~ 03BD1-03C1L(1 03BD), 03BD ~ 0,
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z.) > ~) - oo.

This theorem applies with Y = 5’(m), = Em~, 03BD = 03BB2 2, or A = 203BD.

So to finish the proof of Lemma 1 we need only to prove equation (12). We
shall use the following

Lemma 2. Under conditions of Lemma ~

00

(A~/2 -   (A~/2 + A~C)~(m),0  A  A+ .
i

Proof of Lemma 2. From the definition of it follows that for for all

03BB ~ [0, 03BB+)

~03C8t(03BB) ~03BB : = 03C8t (03BB)’ = Et(Xt exp{03BBXt - 03C8t(03BB) })

0  = ~(A)}) =

~(A)}) - (~(A)~.

Integrating the last inequality with respect to A and applying the inequality
2014 1  we get

03C8t(03BB)’ ~ 03BBEtX2t + 03BB2 2 Et(X+t)3exp{03BBXt}. (13)

As by (5) CEtX2t we get the upper bound in Lemma 2.
To prove the lower bound, let us note that the same arguments give

03BBexp{-03C8t(03BB)}EtX2t - 03BB2Et(X-t)3/2 - 03BB(03C8k(03BB)’)2 .

Finally, integrating again, by (5) and by the bound (13) we have

> A~/2E~ - 
The proof of Lemma 2 is completed.
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Now to complete the proof of Lemma 1 let us note that due to the upper bound
from Lemma 2 and the inequality 1 - exp( -x)  x+

00

S(m)} - Eexp{ - ~ 
i

Eexp{-03BB2 2 S(m)}(1 - exp{-03BB3CS(m)}) ~

= a ~ 0 ,

(by the dominated convergence theorem).
On the other side, by the lower bound from Lemma 2 and the same as above

arguments
00

S(m)} - Eexp{ - ~ >

1

(1- = o(a), a -~ 0

That completes the proof of Lemma 1. .

3. Proof of Theorem 1. .

Introduce the stopping time

r(A) = inf{t: mt > A - g(s(m)t)}, > = oo})

where a parameter A is positive, g E G, and consider the stopped martingale

mt ~= 

It is easy to see that all conditions of Lemma 1 are fulfilled for mt (condition
(5) is fulfilled by the boundness of jumps of mt and (6) by the definition of T(A)).
So 0  Em~  oo and

limP{S(mA) > t}t1/2 = (2/03C0)1/2EmA~. (14)

Now show that

Em~ = 0 .

Indeed, due to the relation  oo and by  C it follows that 
00 or, equivalently (integrating by parts),

~1 P{S(mA) > t}dg(t)  oo .

But g E G and so by (14) we have now EmA~ = 0 or, equivalently ,
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EI {T(A) = ~}m~ + EI {T(A)  = 0

Finally, note that since r(~4.) -~ oo, as A - oo, then by the assumption of (4)

 >  -’ 0, A -~ oo . .

As

EI {T(A) = ~}m~ - Emoo

we get the lower bound
Emoo > 0. .

Repeating the same arguments for the martingale (-mt) we obtain the upper
bound 0 .

Proof of Theorem 1 is completed.

4. Remarks

1. The arguments used in proof of Lemma 1 entail the following result which
may be known but we have no references.

Proposition. Let (mt) be a local martingale, mo = 0, such that mt > -Z for
any t, where Z is a positive integrable r. v.

Then (mt) is a martingale.
Proof.
Let (~) be a localization sequence of stopping times for the local martingale

(mt). .
Then by the martingale property

where T is an arbitrary stopping time less than T =const. Hence

.

Taking a limit as 1 tends to infinity we get by Fatou’s lemma

Em; = Em;  oo.

So mr is an integrable r.v. and the sequence 1 = 1,2,... is uniformly
integrable. Hence we have for any bounded T

Em+ = Em;. .

This fact means that mt is a martingale.
2. It seems the conditions of Theorem 1 and Lemma 1 concerning boundness

of jumps of a martingale mt may be essentially weekned. That is true , at any rate,
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for the case when 77~ = X~, Xk are iid, EXk = 0, EXk = Q2 > 0 . In
this case ~2T and so by Lemma 1 under additional conditions (5) and (6)
we have

lim P{03C32 > t}t1/2 = (2/03C0)1/2EY.

For the special case of stopping time T = inf{t : Yt > f (t)}), f (1) > 0,
which was studied by Novikov (1981b), more stronger results can be obtained.
In particular, Novikov (1981b) proved the following result: if a function f(t) is

increasing and convex, or f(t) is decreasing, concave and additionally, Eexp(aXl) 
0o for some a > 0 then

/i
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