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The Asymptotic Composition of Supercritical,
Multi-Type Branching Populations

Peter Jagers and Olle Nerman*
Department of Mathematics

Chalmers University of Technology and Gotbenburg University
S-412 96 Goteborg, Sweden

Abstract

The life, past and future are described of a typical individual in an old,
non-extinct branching population, where individuals may give birth as a
point process and have types in an abstract type space. The type, age and
birth-rank distributions of the typical individual are explicitly given, as
well as the Markov renewal type process that describes her history. The
convergence of expected and actual compositions towards stable, asymp-
totic compositions is proved.

1 Introduction

If a proper, branching population does not die out, then its size grows indef-
initely (cf. Jagers 1992, e.g.), and by some sort of law of large numbers its
composition will stabilize. One aspect of this, the stable age distribution of de-

mography has been known for a long time. Indeed, its roots can be traced back
more than two centuries, to Euler, 1760. In such a grand perspective, the com-

plete picture of the asymptotic composition of one-type general, supercritical
branching populations is certainly recent (Jagers and Nerman and vice versa,
1984). The multi-type case was then investigated and presented by Nerman
at the 16th Conference on Stochastic Processes and their Applications (1984).
His results were, however, never published. A first account, informal and in-

complete, appears in Jagers (1991 and, somewhat more extensively, 1992). A
quite pertinent recent paper, from a diflerent, graph and computer algorithm
oriented, tradition is Aldous ( 1991 ) .

The purpose of the present exposition is to give the strict description, that
is lacking up to now, of the asymptotic composition of general super-critical

’This work has been supported by a grant from the Swedish Natural Science Research
Council
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branching populations in abstract type spaces. It uses Markov renewal the-
ory in Shurenkov’s ( 1989) comprehensive formulation. The branching process
framework and real time dynamics are from Jagers (1989). .

2 The Population Space
Consider a typical individual of an old population. Call her Ego or, for short
but less suggestively, 0; think of her as sampled at random from among all those
born into the population, since its inception, long ago. She will have children,
grandchildren etc., whom we shall refer to in the classical Ulam-Harris manner,
x = (zi x2, ... xn) is the xnth child of the ... of the xl :th child of 0, the set of
0 and all her possible descendants being denoted by I,

I := U Nn, , N° :_ {o}, N :_ { 1, Z, ...}.
n~O

But 0 also has a mother, to be called -1, a grandmother, -2, and so forth. We
concatenate vectors by writing them together, so that xy, z, y E I, has first
x’s components, then y’s, and we make the convention Ox = z0 = x. Then,
all the possible progeny of -l, , except 0 and her d.scendents, constitute.s the
set (-1 ) I = { (-1 )x; x E 1}, and with Z- := {o, -1 -Z, ...}, all the possible
individuals of the whole population can be written

J := Z- x I.

A new-born individual is allotted (or chooses, depending upon your philoso-
phy) a life path or life (career) from the life space (S~,,A). This should be thought
of as abstract, with a countably generated u-algebra, and rich enough to carry
those functions that are of interest for the particular study. On Q there is a
sequence 0 ~ T( 1 )  r(2)... ~ oo of random variables giving the successive
ages at child-bearing. If = oo, then the interpretation is that the life
career w involves fewer than j children.

At birth the new-born child inherits a type from a space (,5’, ~S), again with
a countably generated u-algebra. In other words, there are also measurable
functions : H - ,5’, giving the type of the j:th child. The reproduction
point process ~ on ,5’ x R+ is defined by

ç(A x B) := #{i E N;O’(i) E E B}.
In order to define the basic probability space for the whole population, the

population space, we need the life space for each possible individual but also
something that ties the individuals in Z- to their mothers, information about
their birth mnks. These are natural numbers, and we make the interpretation
that if - j + 1 has rank r then - ji is - j’s i:th child for i = 1,...r - 1 and it
is the i + l:th child for i ~ r. Finally, to anchor the population in real time,
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we need information about Ego’s age at sampling. Thus the population space
is defined to be

n := R+ x x oj

with the obvious product o-algebra to be denoted by C. This space can be re-
stricted to a tree-type space of the kind advocated by Neveu (1986) and Chau-
vin (1986). . For the interpretation in terms of random trees (Aldous, 1991) that
might indeed be an advantage.

Recall that a branching process started from a newborn 0-individual is suit-
ably defined on ,S x the first coordinate being the ancestor’s starting type.
When referring to such a process, we shall write ~~ for the type of z E I and

for her birth-time, defined recursively from To = 0 and the successive ages
at child bearing in the line leading to x, cf. Jagers, 1989, though notation is
slightly different there.

3 The Life Kernel and its Stable Population Law

The probability structure of the process is determined by a life kernel Pa on

(St,.A), the probability measure according to which the choice of life-career of
an s-type is performed. In Jagers (1989) it is shown how such a kernel determines
a unique Markov branching probability measure over (~l,,Al), once Ego’s type
has been fixed. We denote this measure, as well, by Pa, s E ,5’ being this starting
type. More generally, if Ego’s type is chosen according to a probability measure
x on (,S, S), then is the corresponding measure, P~ = f s The

expectations are E~ and E, respectively.
The crucial role for the development of a population is played by the repro-

d uction kernel , defined as the expected number of births of children of various
types and at various ages:

d.s x dt) := Er(~(ds x dt)]. .

The population is supposed to be Malthusian and supercritical, this meaning
that there is a number a > 0, the Malthusian parameter, such that the kernel

(03B1),

(r, ds; 03B1):= ~0 e-03B1t (r, ds x dt)

has Perron root one and is what Shurenkov (1989) calls conservative. (This cor-
responds to irreducibility and a-recurrence in the terminology of Niemi and
Nummelin (1986).) By the abstract Perron-Frobenius theorem (Shurenkov,
1989, p. 43, or Nummelin, 1984, p. 70), there is then a u-finite measure 7r

on the type space (,5’, ~S), and strictly positive ~~r~ finite measurable function
h on the same space, such that

(r,ds;03B1)03C0(dr) = 03C0(ds),
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sh(s)(r, ds; 03B1) = h(r).
Further we require strong or positive a-recurrence in the sense that 
and

0  (3 = te-03B1th(s) (r, ds x  oo.

(In population dynamics this entity might be interpreted as the stable age at
childbearing, though some care has to be exercised about this in the multi-type
case, as we shall see.) Then we can (and shall) norm to

shd03C0 = l. .
Throughout we also make the homogeneity assumption that inf h > 0. Then x is
finite and can (and will) also be normed to a probability measure. These are the
conditions (on Jl alone) for the general Markov renewal theorem of Shurenkov
(1989), p. 107. Finally, we assume that the reproduction kernel is non-lattice
and satisfies the natural condition

sup~~(s,,5’ X (O,f~)  1
,

for some f > 0. Note that we assume only non-latticeness, rather than spread-
outness of the kernel. We shall summarize all these conditions by referring to
the population as non-lattice strictly Malthusian. (C~learly there is a lattice

analog of our results, relying upon the lattice Markov renewal theorem, cf.
Shurenkov (1989), p. 122. There you will also find the concept of latticeness
developed in a multitype context, with the meaning that there is a stepping
time unit, independent of starting and ending position in the type space, but
a phase which may depend on both: for some d > 0 and c : ,5’ ‘~ (0, d), and
Ld~(s) := ~(r, t) r E ,5’, t E R+ t = c(r) - c(s) + for some n = 0,1, ...}

’~(1~3 1’(°~’ ’S ~ R+) > ~~(.s, = 4). °

In order, finally, to give a presentation of the stable population measure on
(H, A) we need notation for some random elements on this space: To will denote
Ego’s age at sampling, ,5o her type, and Ro her rank, i. e. ordinal number in
her sibship. Ti is Ego’s mother’s age, when she gave birth to Ego, 6’i her type,
and Ri her rank. And so on backwards. Similarly we let l’o, Ih, ... denote the
whole lives of Ego, Ego’s mother, ... , and Z° the population initiated by Ego.
Z1, Z2, ... can be used to denote Ego’s mother’s life and daughter process except
Ego, grandmother’s daughter process, except mother and her progeny etc. Thus,
Zj is the coordinate projection 0 -~ Similarly, To is the projection of the
population space onto its first coordinate R+ and the sequence of ranks is the
projection onto N°O, cf. the figure. Also recall that T~ are the type and
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birth time.s in a branching process of the ance.stor’s i:th child (the latter
equalling infinity, if no i:th child is ever born). In the following definition we shall
interpret assertions ’Z~ E A~’ also as assertions about a traditional branching
process (- j being its ancestor). Then we must supplement it by information
about which of the ancestor’s children who has been withdrawn from the process
in order to play the role of - j + 1. Indeed, the very careful reader should
interpret A j , j =1, 2, ... on the right hand side beneath as the set

k E Z+~ ~’ E I ) E k E Z+~ x E I) E 

Such subtleties are due to the convention we made about birth ranks in Section

2, where the concatenated vector kz was also defined.

Definition 1 The stable population measure P on (03A9,A) is determined by

P(Zo E Ao To E dto, .’.Jo E d.so Ro = io E At, Ti E dtt, ,5’i E ds1, R1= i1;

... ; Zn E An , Tn E dtn Sn E dsn, Rn = in ) _

E,~~e-‘~~‘n : E n E ~ E dtn}~ ...

... Es A1 n E dso E 

for all n E N, A j E .Al , tj ~ R+ s j E ,S’, i j EN, j = 0,1... n.

By the eigenmeasure and eigenfunction properties of 03C0 and l1 it can be checked
that changes in n yield a projective system defining P, and in the next section
we shall see how the stable population appears as a limit of growing branching
processe.s. Here we shall try to understand its substance, by formulating some
consequences of the definition. In them we write ds) as an abbreviation for

ds; a) = ~0e-03B1t (r, ds x dt). . Powers n are iterated kernels and Eln(r, ds x
dt) := d.s x dt) .

Proposition 1 The sequence of types backwards from Ego, is a Markov
chain with transition probabilities

P(Sn+1 ~ ds | Sn = r) = 03C0(ds) (s,dr) 03C0(dr) .

The distribution of ,S’o is 03C0, whereas Sn n(s,S)03C0(ds) ~ h(s)03C0(ds), as n ~

oo, the latter limit also being the stationary distribution of the chain.

Proof Integrating and summing in the theorem yields

P (,So E dso, ... ,5" E _

= E e-ar(i"_1); E ...

I.-1
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... Es~ y e-nr(’,); o(i p) E 
io

= 

~ 

~ .. dso),
where 

(A;03B1) := / o e-03B1t03BE(A x ’

we have used the eigenmeasure property J and written
o(i), T(i) instead of oi, Ts, since the Pa; reduce to measures over the life space
here. The asserted form of transition and marginal probabilities follow from this
joint distribution of types. The convergence ,5’) -~ h(s) follows directly
from the lattice Markov renewal theorem (Shurenkov, 1989, p. 122). . Of course,
it can also be brought back to a limit theorem for Markov chains by the trick of
norming ~i to a kernel with mass one, dr)/11(.s). The stationarity can
be checked directly.

o

Without spelling this out as another proposition, let us state that the sequence
~(~n~ ~5n)} of ranks and types also constitutes a Markov chain. Indeed, given
the sequence of types, the ranks even become conditionally independent. The
rank marginals are given by P(Ro = i) = E,~~e-‘~T~’1J, and

P(Rn = i) = E ds] sh(s)E03C0[e-03B1r(i); 03C3(i) E 

as n - oo. Though the distribution of, at least, Ro is important for birth
rank studies, the joint behaviour of types and times between births seems of
greater import both mathematically, and in tracing populations backwards, e.g.
in evolutionary genetics.

Proposition 2 The sequence of types and interbirth tinips backwards from Ego,
Tn }p define a Markov reiiewal process. They have the tmnsition kernel

P(Sn+1 ~ ds, Tn +1 ~ dt | Sn = r) = 03C0(ds ) 03B1(s, dr  dt) 03C0(dr) .

The distribution of ,5’o is 03C0, To is exponentially distributed with the Malthusian
parameter, and independent of the nest.

(Sn, Tn) ~ n-1(r,S) 03B1(s,dr x - x 

as n --> oo.
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Proof The proof follows the pattern of the preceding one, and is left out.

o

Among other things, this shows that the expected age of the mother at the birth
of a random child is

= / sxR+ ds x dt),

whereas the expectation of the asymptotic distribution of ~ oo is

_ / ~ 

x dt). .
sxR+

Here, of course, ds x dt) = f S ds x 
In analogy with Proposition 2, the sequence ,5n, Tn} constitutes a Markov

renewal process, with a transition kernel that is easily determined from Defini-
tion 1. . Actually, more generally:

Proposition 3 The sequence of ranks, types, and lives backwards fmni Ego has
the Markov property

P(Rn+l = j, E Un+1 E A I Rn = Z, = r, ...) _

= E03C0 [e-03B1(j); 03C3(j) ~ ds)]Es[e-03B1(i); A ~ {03C3(i) ~ dr}] E03C0[e-03B1(i); 03C3(i) ~ dr} .

The distribution of U0) is 03C3(i) E ds]P,(A), i E N, s E ,S’, A E
A, whereas in the notation

B) := a)~ A~~ ,

P(Rn = i, E ds, tIn E A) =

= E ds] dr) ~

~ E03C0[e-03B1(i);03C3(i) E ds]h(r)A(s, dr) ,

as n ~ oo.

Proof The proof is again (rather complicated but) not hard by insertion.

o
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The stable population measure P describes a typical individual, her back-
ground and future when sampling from among all those born, dead or alive.
Though this is artificial from, say, a biological viewpoint, it is not only math-
ematically convenient but also conceptually the fundamental situation. Being
alive or not is a property of your age and your life career. Therefore the stable
measure when sampling in the live population is obtained by conditioning in
P on Ego being alive, and correspondingly for sampling from other subsets of
individuals.

To express this more formally, assume a life span, a : ~ --> [0, oo], defined
and let Lo denote Ego’s life span. Then, Lo > To means that Ego is alive.

Proposition 4 The probability law describing a typical individual, sampled from
among those alive is P(. Lo > To).

Corollary 1 The probability that a typical, live individual is of mnk i, has type
in d.s and a life career in a set A E A is

E ds] Ps (A, a > pJ (a > 

The probability of having just the property A is

a > 
.

In the next section we shall see that this is, indeed, the limit of the probability
measure describing the properties of an individual sampled from among all those
alive..

4 Convergence towards Stable Population Com-
position

Let Jn denote the class of individuals stemming from i. e. ~-~i, ...-1, o} x I.
Recall that by convention 0 E I , Ox = x, and - j0 = (- j, 0) _ - j. Therefore
- j I = ~- j} x I denotes - j and all her possible descendants except -j + 1
and her progeny. Observe that if -Ti is mapped to 0, all her progeny being
mapped onto I so as to preserve all family relations, then (5~~~ , ,A~n ) is mapped
to (~l and the two spaces can be thus identified. Fix za, z = (in_1... io) E
Nn, A E AJ" and a E R+, and consider the subset E E C,

E := ~0, aJ x (io ... in_1) x x A X .

Define IIx as the projection mapping (s, (vy ; y E I }) to y E I }) , the
daughter process of x E I, cf. Jagers, 1989. In an obvious sense y E I has the
property E at time t if and only if
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~ y = zi for some xi E l,

. 

. 

Now, note that x: = x + r, o 03A0x, so that defining a random characteristic on
(~5’ x ~S x (cf. Jagers, 1989)

:= 

(A thus viewed as a subset the number of individuals having the property
E at time t in a branching population started at time 0 from a newborn ancestor
will be

’" (t) o - ~ li]IsESXA}1{0t-7r,a}. .
sgl xEl

But adapting the convergence theorem for means of supercritical general branch-
ing populations (cf. op, cit.) to the Markov renewal theorems of Shurenkov
( 1989, pp. 107, 127, 134) we have:

Theorem 1 Consider a non-lattice, strictly Malthusian, supercritical branch-
ing population, counted with a bounded characteristic x such that the function

is directly Riemann integrable (03C0). Then, for 03C0-almost all s,

lim ) =11(,s) sxR 
in the obvious notation for Laplace transform.

If the population is as above and some convolution power of the reproduction
kernel is, further, non-singular (ef. beneath), then for 03C0-almost all .s E S

lim e-03B1tEs[zxt ] = h(s)Ex[(03B1)]/03B103B2,

uniformly in all x urith Es[~(t)]  I (without any Riemann integrability require-
ment).

The notion of direct Riemann integrability used is that of Shurenov ( 1989) pp.
80 A measurable function g : ,S’ x R+ -~ R is directly Riemann integrable
(~r) if for any f > 0 we can find 6 > 0 and functions g’ and g+ both in L1 E~ x dt]
such that for ~-almost all .s, g- (s, ~)  g(.s, .)  g+ (.s, ~), = g~ (.s, ~i~) for
n03B4  t  (n + 1 )03B4, and the L1 [03C0 x dt]-distance between g+ and g’ is le.ss than
f. C;onvolution means convolution in time combined with transition in type.
Non-singularity is Shurenkov’s term ( 1989, p. 127) for spread-outness: For
fixed r E ,S and a Borel set B, the reproduction kernel . x B) is absolutely
continuous with re.spect to .). It is possible to choose a regular version
of the Radon-Nikodym derivative, F(r, .s, dt), which is a measure on R+ in its
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last coordinate. Non-singularity means that for almost all r, s with respect to
ds) this measure is non-singular with re.spect to Lesbegue measure.

Thanks to this strong Markov renewal theory, the proof is rather straightfor-
ward cf. Jagers (199Z), by use of the regularity condition supa ~0, f~)  1

for some f > 0, in order to guarantee boundedness of where

y 
~EI

is the total population at time t of a branching process started at time 0. Of
course, there is also a lattice variant of this result, cf. Shurenkov (19$9, p. 122
and 134). .

For sets E as above, we call

Pes,t(E) := Es[z~t ]/Es[yt] ,

the composition in expectation of a branching population at time t, started at
time 0 from an ancestor of type s E ,S’. By summation over various z E Nn and
replacing the interval ~0, uJ by Borel sets B, this can obviously be extended to a
probability measure over the measurable subsets of R+ x N‘~ x Sl~ which depend
only upon n E N steps backwards, i. e. belong to the u-algebra generated by
sets of the form E = B x M x N~ x A x B E ~(R+), M C Nn, A E ,A~n
for fixed, but arbitrary ~t E N. We denote the latter by Cn and write Cn (B) for
the sub-u-algebra, where the first coordinate is fixed to be B.

Corollary 2 Under the assumptions of Theorem I, consider a B E B(R+), ra E
N, and any E E Cn(B) such that Rj = = 0, ...n-1 Write z = (in-1, ... io)
and assume that e-03B1tPs(t - 2 E B) is directly Riemann integrable. Then, the
composition in expectation of a non-lattice, strictly Malthusian, and supercritical
bmnching population at tinie t, started at time 0 from an ancestor of 03C0-almost
any type s E ~S’, satisfies

Pa = - B A~ = P(E) ,

ast->oo.

Proof This is only checking the direct Riemann integrability. Note that a is

fixed, and of course matters in the coordinate projection singling out A from E,
cf. the discussion preceding Definition 1. .

o

Corollary 3 If reproduction (i.e. some convolution power of the reproduction
kernel) is non-singular" besides the conditions of Theorem 1, then for 03C0-almost
all s Pa;t ’~ P in total variation, as t - oo.
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Proof By Theorem 1, the convergence is uniform over sets E E Cn for n fixed,
at least if they are of the form E = B x M x N‘~ x A X B E ~(R+), M C
Nn, A E But these sets, n E N constitute an algebra that generates C =

Un Cn. . The rest follows by approximation.
0

Leaving composition in expectation, we turn to the actual composition,

.

As for classical cases, convergence here requires the famed x log x-condition. It
has the following general form: Write

03BE := / x dt). .

Then the condition is

~~  oo .

From Jagers ( 1989) we have:

Theorem 2 Add the x log x-condition and finiteness of 03BE(S x R+) to the as-
suniptions of Theorem 1. Further assume that, for fixed t, yt is uniformly inte-
grable over its starting type = s E ,5’. Then, as t ~ oo,

e-atzf .-~ 

in L1 [P,], for 03C0-almost all .s E ,5’. Here w is a non-negative random variable
with E,[w] = h(s). .

Note that we have w with E,[w] = la(s), rather than expectation one as asserted
in op. cit.. It is the unnormed random variable w that is the limit of the intrinsic

martingale
wL = ~‘ x~L

(a.s. if only sequences of lines L are considered, in L otherwise, c. f. op. cit.).
From its definition (and Theorem 2) it is clear that w > 0 ~ ~yt -~ oo. The

converse of this is needed to show that for bounded characteristics x

zf /Yt -3 E1r[X(a)]

if only yt -~ oo.

Lemma 1 For n strictly Malthusian process, assume that infs~S P, (w > 0) > 0.
Then, w > 0 ~ oo a. s. s E ,5’.



52

Proof Enumerate individuals in the order they are born into the population:
X o = 0 E 1, 0 = Txo  Tx,  TXz  .. , by some rule that guarantees that
mothers precede their daughters (if individuals happen to appear simultane-
ously). Then

yt = sup{n; Xn  t}. .

If yt --~ oo, then the sequence ~Xn } is already well defined. Otherwise, just
continue somehow, respecting the rule that mothers must precede daughters.
The assumption of strict Malthusianness prevents explosion in finite time. Hence

-3 oo whether yt -~ oo or not.
But for any n E N

(As the reader has noted we are far from finicaal about spelling out a.s.-qualifica-
tions.) If An denotes the 03C3-algebra generated by the ancestor’s type 03C30 and the

lives , then Lévy’s theorem yields that

0  inf Pr (w > 0)  (w o > 0) =

= >0 0 or yt  ~ ) /4n- i ) ~ l{03C9>0 or y1~ },

as n - oo. Hence, a.s. yt - oo =~ w > 0, the converse implication being
already noted.

Q

Note that under the conditions of Theorem 2, = I1(.S) > 0. Hence, for
all s E ,S’, P,(w > 0) > 0 and suitable compactne.ss assumptions yield the same
for the infimum.

Corollary 4 Let the assumptions of Theorem 2 hold and add that inf, P, (w >
0) > 0. Then, for any E as in Corollary 2, the actual composition converges to
the stable composition ori the set of non-extinction:

P"t(E) - P(E)

in P, -probability on {yt - oo} for 03C0-almost any .s E ,S, a.s t -3 oo.

By invoking Aldous’s paper (1991) we could have made the argument marginally
simpler, proving Corollary 2 just in the setting where E depends only upon Ego’s
and her progeny’s lives. That yields the convergence of his fringe tree, which is

Ego’s daughter process in our terminology. Realizations of our stable population
process (St, A, P) are "sin-trees" in Aldous’s parlance: they have a single infi-
nite path. Thus the convergence of the extended fringe follows from Aldous’s
Proposition 11. , Unfortunately, his main theorem on extremality of invariant
laws, and the ensuing convergence in probability of the fringe distribution, is of
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little avail here, since we have this type of convergence from the beginning and
it is not easier to prove convergence in distribution.

Finally, note that in order to obtain average x-values among those alive we
should just consider ratios zf /zt rather than zf /yt, zt = zt ~°’~~ denoting the
number of individuals alive at time t. (This interpretation presumes that x
counts only living individuals, i. e. that it vanishes outside the interval ~0, a).~
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