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Hirsch’s Integral Test for the Iterated Brownian Motion
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ABSTRACT. We present an analogue of Hirsch’s integral test to decide whether a function belongs
to the lower class of the supremum process of an iterated Brownian motion.

1. Introduction and main statement

Consider B+ = (B+ (t), t > 0), B- == (B- (t), t > 0) and B = (Bt, t > 0) three
independent linear Brownian motions started from 0. The process X = (Xt, t > 0)
given by

Xt = 
B+(Bt ) if Bt ~ 0
B-(-Bt) if Bt  0

is called an iterated Brownian motion. The study of its sample path behaviour has
motivated numerous works in the recent years; see the bibliography. Many results
in that field are analogues of well-known almost sure properties of the standard
Brownian motion, which are originally due to Chung, Khintchine, Kolmogorov,
Strassen ... The purpose of this note is to present such an analogue of Hirsch’s
integral test, that is to determine the lower functions of the supremum process of
X, 

_

(~ 0).
In this direction, the lower functions of the increasing process

Mt 

have been characterized in Bertoin (1996) as follows: If f : : (0, oo) -~ (0, oo) is
an increasing function, then Mt / f(t) = 0 or oo a.s. according as the
integral f °° diverges or converges. More precisely, this follows readily
from the observation that the right-continuous inverse of M is a stable subordinator
of index 1/4 and an application of Khintchine’s test for the upper functions of stable
processes.

Plainly, the inequality M  X can then be used to deduce some information
on X; however this does not suffice to characterize the lower functions of X. .

Theorem. Let f : (0, oo) - (0, oo) be an increasing function. Then

liminf Xt f(t) t-1~4 - 0 or oo a.s.

according as the integral

i t f (t)2
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diverges or converges.

This shows that the asymptotic behaviours of M and X differ; a feature that is

perhaps a priori not obvious. For instance, one has

lim inf Mtt-1/4 log t = 0 , lim inf Xtt-1/4 log t = oo .

A related phenomenon in connection with Strassen’s theorem has been pointed out
recently by Csaki, Foldes and Revesz (1995).

The Theorem will be proven in the next section. Though we shall not give any
precise statement, we also mention that it has a small time analogue.

2. Proof of the Theorem

To start with, we introduce some notation. We consider the supremum processes
S’+, S-, S and I, of B+, B-, Band -B, respectively. It is immediately noticed
that 

_

Xt = S+(St)VS-(It), for all t > 0. (1)

Lemma 1. There is a constant c > 0 such that for every a > 0:

IP (X1  a)  ca2 .

Proof. By (1) and the scaling property, we have

=  a)
= IP Si   a/Vh)
~ 2a2 03C0 IE(1/S1I1)

(because S+1 and 6’i’ can be viewed as the absolute values of two independent
normal variables). All that is needed now is to check that the expectation in the
last displayed formula, is finite.

We present two approaches. First, the joint law of (Sl, 7i) is given on page 342
in Feller (1971), from which several lines of elementary computation enable us to
conclude that IE  oo. Alternatively, in order to avoid theta functions
in the joint law of (Sl, h), we can instead use the following elegant formula (see
Pitman and Yor (1993)):

IP(TS1  x; TI1  y) = 1 - sinhx + sinhy sinh(x + y)
, x>0, y>0,

where T is an exponential variable with E(T) = 2, independent of B. This yields

IE(1 T) IE(1 S1I1) = IE(1 (TS1)1/21 (TI1)1/2)
- 

~0 
dx 

~0 
dy 

1 xy ~2 ~x~y ( - sinh x + sinh y sinh(x + y))
,



363

which is easily seen to be finite. o

We now prove the easy part of the Theorem:

Proof of the Theorem, first part. By Lemma 1 and the scaling property, we have
for every integer n

IP(X2n  2(n+1)/4 f(2n) = IP (X1  21/4 f(2n) ) ~ cf(2n)- 2
.

If the integral in the Theorem converges, then so does the series 03A3 f (2n)-2. Hence

_ 2(n+~)/4
X2n > for every sufficiently large n, a.s.

and by a standard argument of monotonicity,

1 a.s.

Because the integral in the test remains finite if we replace f by e f for any c > 0,
we conclude that the liminf above must be infinite, o

Next, we establish a zero-one law for the supremum of the iterated Brownian
motion.

Lemma 2. Let g : [0, ~) - [0, oo) be a measurable function. The event

{Xt  g(t) infinitely often as t - ~}

has probability zero or one.

Proof. The argument relies on the Hewitt-Savage’s zero-one law. For every integer
n, let nB be the increment (process) of B on the time-interval ~r~, n + 1~:

n B = (Bn+t - Bn , 0 ~ t ~ 1) .

The increments nB+ and nB- are defined analogously. The random variables (with
values in a space of paths) E are i.i.d. One can clearly
recover B, B+ and B- from the sequence of their increments.

Consider a finite permutation E on W, i.e. for some N > 0, one has E(rc) = n
for all n > N. Denote by ~B the Brownian motion obtained by the permutation
of the increments of B, that is the increment of ~B on the time-interval (n, n + l~
is Define similarly E B+ and ~B- by the permutation of the increments of
B+ and B-, respectively. Finally, denote by EX the resulting iterated Brownian
motion.

By construction, we have

Bt , whenever t > N + 1.

Put 

 = max In Bt + max ,
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so that we have a fortiori B±t =03A3 B±t whenever |B±t| > . As a consequence, we see

that ~ = Xt provided that ~X~ ~ /~ and ~ ~V+l. Because the increasing process
X tends to ~, we deduce that the asymptotic events {Xt  infinitely often as
t ~ ~} and  infinitely often as t ~ ~} coincide, where 03A3X stands
for the supremum process of 03A3X. In conclusion, the zero-one law of Hewitt-Savage
applies, o

To establish the converse part of the Theorem, we denote by cr+ and y the right-
continuous inverses of 5~ and 6’", respectively:

~ = inf{5 : ~ > ~} (~ > 0).

We also denote the inverse local time of B at level 0 by T; so that c-+, cr’ and T are
three independent stable subordinators with index 1/2. We consider the sequence
of events

E. = {2n  S03C4(2n)  03C3+ (03C4(2n)1/4 f(2n))  S03C4(2n+1)  34’ . 2n;

2~  7.~.)  7- (~~)  ~(2.~)  34. 2- 2~  T(2~)  2~~} ,
where / is an increasing function. Aiming at applying a well-known extension of the
Borel-Cantelli lemma, we first establish the following:

Lemma 3. The senes diverges whenever ~1dt/tf(t)2 = ~.

Proof. By the scaling property, we can rewrite first as

~(l~)~(~)~(2)34; 1
. 

1  IT(1)  7- (~~)  IT(2)  34; 1   2)
and then as

2?(l  ~ (~(i))  "~  ~ (~(2)) ; ~(2)  34;

1  4(i) ; ~- (4(i))  ~~  5- (4(2)) ; 4(2)  34; 1  T(l)  2) .
The latter quantity is bounded from below by

2P(l  ~(,  2; ~(2)  ~; ~(33) > y~ 33  ~~~  34; ;

l4~2;~(2)~;5-(33)>~;-34~n~~-33; 
1  T(l)  2) .
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Applying the strong Markov property and using the independence of ~, j5~ and
~’, this probability is given by the product

~ (~’  7~). ~~’ > T~) ~ (~’M  7(~ ~ ~’~ ’ 7~)
jP (1  ~(i)  2; 1  7~(i)  2; 1  ~(1)  2) 2P (33  ~(i)  34; 33  7~(i)  34)

~.[~7~.~7(~)f’ °
Thus, if /(oo)  ~, then the claim of Lemma 3 is clear. Otherwise, we have on

the one hand for every sufficiently large ?~:

~7~~’ "

On the other hand, an inequality observed by Csaki (1978) on page 210 yields

IP(S2  1 f(2n); S33 ~ 2 f(2n) ~ 1 203C0f(2n)2 + 8 3303C0 1 f(2n). (3)

We deduce from (2) and (3) that

IP(En) ~ C1 [1 203C0f(2n) - 1 203C0f(2n)2 - 8 3303C0 1 f(2n)]2 ~ C2 f(2n)2. (4)

The divergence of the integral f~ combined with the monotonicity of /
thus ensures that 03A3IP(En) = ~. o

Lemma 4. There js a finite constant Cs such that

n En) ~ C3IP(Em)IP(En ) provided that |m - n| > 7.

Proof. Suppose that m ~ ~ - 7, so 2" > 68 - 2~. The probability U E~) is
bounded from above by

IP("’’ l 03C3+ ( 03C4(2n)1/4 f(2n) - 03C3+ (03C4 (2m)1/4 f(2m)) > S03C4(2n) * S03C4(2m+1) ;
_ /r(2")~B _ /r(2~)~B

" ~’f(~r~’’" ~-~)-;>~’-)-~(~’); 1
> 2" ; ~(2-+i)  34 . 2’"; 7~(2~) > 2" ; 7~(2-+i)  34. 2"*; ;

- r(2’")  2~+~; 2~"  -r(2")  2~+~) .
In turn, this is less than or equal to

IP(Em;03C3+(03C4(2n)1/4 f(2n) - 03C3+(03C4(2m)1/4 f(2m)) > 1 2 Bt;
~ ~’f(~r;-~ ~-7(2~r~’2~)~~)~~ (2" - 2"~  r(2") - r(2*")  2(2" - 2~)~ .



366

The inequality

T(2" ) 1/4 T(2m ) 1/4 T(2" ) 1/4 - ~(2m) 1 /4 (~(~n ) ~(~m )) 1/4_  

f(2n) f(2m) - j(~n) 
- 

and the fact that T, J+ and 03C3- have independent and homogeneous increments then
entail:

IP(Em~Em) ~ IP(Em)IP(03C3+(03C4(2n 
- 

2m)1/4 f(2n)) > 1 2S03C4(2n-2m);

03C3- (03C4(2n 
- 

2m)1/4 f(2n)) > 1 2I03C4(2n-2m);

(2" - 2~’ )~  T(2" - 2~’ )  2(2" - 2~’ )~ ) . .
Then using the scaling property, we can bound the right-hand-side by

IP(Em)IP( 03C3+(

03C4(1)1/4 f(2n)) 
> 1 2S03C4(1); 03C3-(

03C4(1)1/4 f(2n)) 
> 1 2I03C4(1); 1  (1)  2)

~ IP (Em) IP ( 03C3+(

2 f(2n) 
> 1 2S1; 03C3-

(2 f(2n)) 
> 1 2I1)

= IP (Em) IP ( S+( 1 2S1)  
2 f(2n)

; S-( 1 2I1)  
2 f(2n))

~ 8 f(2n)2IP(Em)IE(1/S1I1)

We have seen in the proof of Lemma I that E (I /Q)  ~, and Lemma 4 now
follows from (4) . o
We are now able to complete the proof of the Theorem.
Proof of the Theorem, second part. Suppose that the integral in the Theorem
diverges. By Lemmata 3 and 4 and an extension of the Borel-Cantelli lemma [see
e.g. Spitzer (1964) on page 317], we know that F (lim supn En) > 0. This implies
that

IP (S +(S03C4(t)  03C4(t)1/4 f(t); S +(S03C4(t))  03C4(t)1/4 f(t) i.o. as t ~ ~ ) > 0.
Using (I ) and the well-known fact that limt~~ (t)/t3 = 0 a.s. , we deduce that the

probability of the event (Xt t  t1/4 / f(t1/3) infinitely often as t - ~} is positive,
and hence must be one by virtue of Lemma 2. We thus have

 l a.s.

The equivalence

/°°° dt /°° dt

i t f (t)2 
~ ~ ~ 

1 tf(t3)2 
~ ~
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shows that we have also

1 a.s.
-

Finally, the integral test is unchanged when one replaces f by k f for any k > 0, and
we conclude that the liminf above is zero a.s. o
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