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A characterisation of the closure of H~ in BMO

W. SCHACHERMAYER

Institut fur Statistik der Universitat Wien,
Brünnerstraße 72, A-1210 Wien, Austria.

ABSTRACT. We show that a continuous martingale M E BMO has a ~ . ~BMO2-

distance to H°° less than c > 0 iff M may be written as a finite sum M = MTn+l I
n=o

such that, for each 0  n  N, we have ~ Tn MTn+1~BMO2  ~. In particular, we
obtain a characterisation of the BMO-closure of Hoo. .

This result was motivated by some problems posed in the survey of N. Kazamaki [K
94]. We also give answers to some other questions, pertaining to BMO-martingales,
which have been raised by N. Kazamaki [K 94]. .

1. Introduction

The celebrated Garnett-Jones theorem - in its martingale version due to N.
Varopoulos and M. Emery ([K 94], th. 2.8) - characterizes the BMO-distance of a
continuous martingale M from L°° in terms of (the inverse of) the critical exponent
a(M), defined by

a(M) = sup{a E  oo},
T

where T runs through all stopping times.
In [K 94] N. Kazamaki proposed the critical exponent

b(M) = E  oo~~
T

and raised the question whether (the inverse of) b(M) characterizes the BMO-
distance of M to HOO.
We shall give in section 3 an example of a continuous martingale M in BMO

such that b(M) = oo while M is not in the BMO-closure of H°°. In the present
context H°° denotes the space of continuous martingales M on a given stochastic

base (03A9,F,(Ft)t~R+, P) such that = ess  oo.

This example, which also answers negatively another question of [K 94], provides
strong evidence that there is little hope to find a characterization of the BMO-
closure of H°° analogous to the Garnett-Jones theorem in terms of some critical
exponent.
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But we can give a different kind of characterization of and, more
precisely, of the BM02-distance of a continuous martingale to H°°. Recall ([K 94],
p.25) that, for a continuous local martingale M, the BM02-norm is defined as

~M~BMO2 = >

T

where T runs through all stopping times. (For unexplained notation we refer to the
end of the introduction and to [K 94]).

1.1 Theorem. Let M be a continuous, real-valued martingale in BMO, Mo = 0.
For ~ > 0, we can find a finite increasing sequence

of stopping times such that

~TnMTn+1~BMO2  E n = 0,..., N

if and only if
 s. .

1.2 Corollary. Under the assumptions of theorem 1.I we have that M E
Hoc iff, for each E > 0, there are stopping times 0 = T~0  T~1  ... T~N(~) 

oo such that 
o _ 1 N(E) _

~T~nMT~n+1~BMO  ~ n = 0,..., N(~).

The corollary might be compared to the (trivial) statement, that M is in BMO
N(e)

iff for each é > 0 we may decompose M into M = E Mn, such that each Mn
n=0

satisfies ~Mn~BMO  E. The flavor of the situation described by corollary 1.2 is
that we require that the decomposition of M should be obtained from a partition
of 03A9 x R+ into finitely many stochastic intervals.
We prove theorem 1.1 in section 2 below and in section 3 we construct the counter-

example mentioned above. In fact, this example contains much of the motivation
and intuition for theorem 1.1.

Let us also mention that the construction of this example is similar in spirit to
example 3.12 in [DMSSS 95].

In section 4 we deal with two other problems on BMO-martingales raised in [K
94] and which are not related to H°°. We show that, given a continuous martingale
M and 1  p  oo, then p  a(M) implies that £(M) satisfies the reverse Holder
condition Rp (prop. 4.1). This answers positively the question raised in ([K 94],
p.68)1. We also give a positive answer to the question raised in ([K 94], p. 63): if
1~ is a measure equivalent to P with continuous density process then the
Girsanov-transformation induces an isomorphism between BMO(P) and 

1 See, however, the note added at the end of this paper and the subsequent paper by P. Grandits.



346

if and only if the density process is the exponential of a BMO-martingale (prop.
4.3).

This note is based on and motivated by the highly informative recent survey of
N. Kazamaki [K 94], to which we refer for unexplained notation.
We also use the following standard notation. If M is a martingale and T a

stopping time we denote by MT the martingale "stopped at time T", i.e.,

MTt = Mt^T

and by TM the martingale "started at time T", i.e.,

TM = M - 

Throughout this note we shall assume that M = is a continuous real-

valued martingale, Mo = 0, based on a filtered probability space (~, .F, ~)
satisfying the "usual conditions" of completeness and right continuity. We do not,
however, assume any kind of left-continuity of the filtration 

2. The BMO-distance from H°°

This section is devoted to the proof of theorem 1.1. We denote, for 1  p  oo,

by dp(M, HOO) the distance of the continuous BMO-martingale M to H°° with
respect to the norm of BMOp(P). We start with the easy implication.

2.1 PROOF OF NECESSITY IN THEOREM 1.1. Let us assume d2(M,HOO)  E, so

that M = Y + Z, where Y, Z are continuous martingales, Yo = Zo = 0, Y E H°°
and  E.

For 0  r~  6 - define the stopping times T~, inductively by To = 0
and

It is obvious that after at most steps we arrive at Tn = oo and that

~TnMTn+1~BMO2 ~ ~TnYTn+1~BMO2 + ~TnZTn+1~BMO2  ~. []

For the reverse implication we need a preparatory result.

2.2 Lemma. Let T be a stopping time and X a continuous martingale in BMO
which vanishes before T, i.e., X = ~X. .

For C E R+ let
Tc = C},

and define Y = XTc , Z = so that X = Y + Z. Then Y E H°° and Z satisfies

PROOF. We only have to show the final inequality. Note that
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and that

> ~Tc  oo}
c_ { ~x~Tc = C}.

Whence

~ ~X~2BMO2 C . / 1 (a.s.)

Taking conditional expectations and using  we get

2.3 PROOF OF SUFFICIENCY IN THEOREM 1.3. Suppose that there is a finite
increasing sequence 0 = To  Ti  ’ ’ ’  TN  TN+l = o0 of stopping times such
that

 e n = ~, ... N.
We apply lemma 2.2 to each with C > where

~J = e2 - to find a decomposition

Zn

with Yn E H°° and

Note that Yn = and Zn = Tn Letting

N N

and 
n=O n-o

we clearly have that Y E H°°. The crucial point is to show that

 ~, (2)

which will finish the proof. To show (2) it suffices to show

 e2 (3)

for each stopping time U such that there is some 0  n  N for which we have

Tn  U  Tn+l.
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We then may estimate
N

 + ~ ~~~]
J=Tt+l

From (1) we infer that, for j > n + 1,

(Z)Tj =  

which gives
 ~2~ >

showing (3) and finishing the proof. D
We end this section by indicating how to obtain a sequence of stopping

times, satisfying the requirements of theorem 1.1, by backward induction.

2.4 Lemma. For a martingale M E BMO and ê > 0 denote by T the family of
all stopping times T such that

~TM~BMO2 ~ ~
Then there exists a minimal element T E T, in the sense that, for each T E T,

we have T > T almost surely
PROOF. First observe that T1, T2 E T implies that T1 n T2 E T. Indeed

= _ ~ and similarly
It follows from the definition of the norm II . IIBM02

that this implies that _ E.
Now it is a standard exhaustion argument to show that there is a decreasing

sequence in T such that, for every C E R+ and T E ~,

lim (P Q9 A)]T A C, n C, C]] = 0

where A denotes Lebesgue-measure on R+.
As we assumed that the filtration is right continuous we get that

T = infT;

is a stopping time and obviously this is the desired minimal element. D

Lemma 2.4 may be used to determine whether d2(M,HOO)  so, for 0 and

a given continuous martingale M E BMO. For e > êo define iT as in lemma 2.4 to
be the smallest stopping time such that ê. Then apply lemma 2.4 to
M1T to find a smallest stopping time 2T such that ê. Continuing
in an obvious way the process either arrives after finitely many steps at the stopping
time zero or we have nT =t 0, for each n E N. Obviously the first alternative holds
true for each ê > so, iff d2(M, H°°)  Eo.

Finally we remark that we have proved and stated the "isometric" theorem 1.1
in terms of the norm of BM02. . If we define the norm [[ . IIBMOp, for 1  p  oo,

as the smallest constant C for which

supE[((M)oo - (M~T)2 (~T]p ~ C,
T

then an inspection of the above proofs shows that theorem 1.1 also holds true with
BM02 replaced by BMOp.
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3. A martingale which is not in the BMO-closure of H°°

In this section we give an example which will provide some motivation and intu-
ition for theorem 1.1 above and also answer negatively two questions of N. Kazamaki
([K 94], p.48 and 70).

As in ([K 94], p.70) we define for an L2-bounded martingale M the martingale

q(M) = ~~(M~~~~t~ - ~~(M~o~~~a~~ (1)

N. Kazamaki has asked, whether q(M) E implies that M E 

similarly, he raised the question whether b(M) = oo implies that M E 
Both conjectures turn out to be wrong.

3.1 Example. There is a continuous real-valued martingale M defined on the
natural base (S~, ,~’, (,~’t)tE~+,1~) of a standard Brownian motion W with the follow-
ing properties.

(i) 
(ii) a(M) = b(M) = a(q(M)) = b(q(M)) = oo. Whence M as well as q(M) are

in and as well as E(-M) satisfy (Ap), for each 1  p  o0

(jK 94~, th. 2.8 and 3.I1).

PROOF. We shall first define a martingale N and then find a martingale M such
that we obtain N = q(M) via (1) above.

Fix a sequence tending sufficiently fast to zero. For example, we may
choose an = 2’~2 .

Let W be a standard Brownian motion and define the martingale differences of
N on the odd intervals (~2n, 2n + by

Nt - N2n = (Wt - t E ~2n, 2n + 1] .

where the stopping time Tn is defined by

We finish the definition of N by letting No = 0 and letting N be constant on the
even intervals (~2n + 1, 2n + 
We now are ready to define the martingale M by specifying its martingale dif-

ferences on the even intervals: for n > 0 let

Mt - M2n+1 = (N2n+1 - N2n + W2n+1) t E [2n + 1, 2n + 2].

Defining again Mo = 0 and letting M be constant on the odd intervals
( ~2n, 2n + l~ ) ~ o we complete the definition of M.

First note that q(M) = N. Indeed,

n=0
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so that

00 00

= 03A3(Nt^(2n+1) - Nt^2n + 03B1n) - 03A303B1n
n=0 ~=0

= Nt.

Let us now show that (i) and (ii) are satisfied.

(ii) We shall show that b(M) = ~. Note that, for b > 0,

00

= ~ + 
~=0

oo

= JY N2n + ~.))].
~=0

If tends sufficiently fast to zero, e.g. an = 2"~", we obtain that
this infinite product is finite for every 6 ~ R-}-.

Similarly, for k > 0 and t C [2~, 2k + 2] we get

= (M)2~+2))]’ 
00

n=A:+l

which clearly is uniformly bounded in t, for each b > 0. This readily shows
that b(M) = ~. (Note that it makes no difference whether we consider

conditional expectations with respect to for each t G IR+, or with respect
to ~r, for every stopping time T, in the above estimate).

The verifications of a(M) = a(q(M)) = b(q(M)) = oo are similar and
left to the reader.

(i) We shall show that > 1. Assuming the contrary we could find,
by theorem 1.1, a finite sequence (T~)~,0 = To  Ti  " .  = oo

such that

~=0,...,~V.

We shall verify inductively that

(2) P[T~2~]>0 ~=0,...,~V+1

which will give the desired contradiction.
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The assertion is true for n = 0; let us assume it holds true for n and let

An = {Tn  2n},

which is an element of The set

is in and still has strictly positive measure.
Suppose now that > 2n + 2 a.s., so that

B" =2n+1 Bn

would be a martingale of BM02-norm less than 1. But this is absurd as

- 1~

a contradiction showing (2) and thus finishing the proof. D

3.2 REMARK.

(1) Let us note that in the above example we even have that

(M)T) Z )~,~’T~  oo,
T

for each b > 0 and 0  p  oo. This indicates that there seems to be little

hope to find a characterisation of similar to the Garnett-Jones
theorem.

(2) It turns out, that N = q(M) too is not in The proof is similar
to the above proof that M % .

One also can show that q(q(M)) satisfies a(q(q(M))) = o0

and more generally, denoting by N( k) the k-th iteration ?(?( -’’ q(M) ... ))
then we have that while = = oo.

Having made this observation it also becomes clear that we could have
constructed the example of a martingale N as above without introducing M
and without splitting R+ into odd and even intervals. But, for expository
reasons, we preferred to present the example in terms of the "announcing"
martingale N and the "running" martingale M.

4. Solution of two other questions of Kazamaki

4.1 Proposition. Let M be a continuous real-valued martingale in BMO and
define, as above,

a(M) = sup{a E  oo}.
T
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Then, for 1  p  a(M), the exponential ~(M) satisfies the reverse Holder condition

PROOF. Let 1  a  a(M) and set a = p. We have to show that

sup~E[~(TM)p~|FT]~~  ~
r

where T runs through all stopping times. For T fixed, we get

= MT -1 M ~ - 

= E[(exp(Moo - Mr - 2((M)oo - 1 
Mr - 2(( ~ 1 M ~ - ( M ~ T ))) ~ 

~ + 1.

By assumption the last expression is uniformly bounded which readily proves
that satisfies Rp(IP). D

4.2 Remark. (1) The proposition answers the question raised in ([K 94J, p.68),
(see, however, the note added at the end of this paper and the subsequent paper by
P. Grandits): By the Garnett-Jones theorem in its martingale version (N. Varopou-
los and M. Emery, ~K 94J, th. 2.8) we get, for a continuous real-valued martingale
M E BMO, the implication p  (4d1(M, L°°))-1 ~ satisfies 

(2) There is no reverse to the proposition, i.e., a control on Rp(P) for does

not imply a control on a(M).
To see this, simply remark that M E BMO implies that Rp(P) holds true for

some p > 1 while a(M) may become arbitrarily close to zero.

We now turn to the conjecture raised in ([K 94], p.63) which will turn out to
hold true.

Let M be a real-valued continuous local martingale, such that ~(M) is uniformly
integrable, and denote by 1~ the probability measure with density d~ = 
To each continuous real-valued local P-martingale X we associate the local -
martingale X = -X + (X, M) and we denote this map by § : ~ £() (see [K
94], p.62).

4.3 Proposition. If M ~ then ~ does not map into 

PROOF. We shall use the norm ~ . ~BMO2 in the subsequent calculations. Fix a
standard Brownian motion W = 

Step 1: In order to make the idea of the proof transparent we first assume that M
simply equals WTN = where TN denotes the stopping time

TN = inf {t = 2N },

where N E N will be specified below.
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For n = 0, ... , N denote

Tn = inf {t = 2n },

and note that P[Tn  oo] = 2-n.
The measure 1~ then is given by a~ = = 2N .

Define the P-martingale X(N) by

N-i

= L where X n 
n=1

Note that the BM02(P)-norm of is bounded by for all N E N. Indeed,
let us first calculate the norm of X(N):

N-I

IIX(N) lIi2(jp) = L 1E [(Tn-I +1) ~ - Tn-1 1
n=1

N-1

~ ~ ~ yTn_1 + 1) - ]
n=1

N-1

= L 2rn+1  2.
n=1

In a completely analogous way we obtain, for every 0  j  N - 1

E (X {N))~ - (.~’T~  2 (a.s.,)

and a moment’s reflexion reveals that the above estimate also holds true if we replace
Tj above by an arbitrary stopping time T, whence

On the other hand, the of X(N) tends to infinity as N - oo.
Indeed 

’

N-1

n=1

N-I

- ~ j
n=1

- (N - >

the last equality being a consequence of the homogeneity of the definition of .Y~. .
Indeed, under 1~, the distribution of the random variables =

(Tn-i + 1) A Tn - Tn-i is identical for n = 1,..., , N -1.
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Summing up what we have shown in step 1: If M = WTN then there are mar-

tingales X(N) as above such that the ratio tends

to infinity as N -~ oo.

Step 2: Now suppose that M = W T i.e., Brownian motion stopped at some stop-
ping time T. Recall that we also assume that £(M) is uniformly integrable. We
shall show that, for every constant C > 0, there is h’ > 0, 6 > 0 and N E N such
that the inequality

~~T>h’~>1-~

implies that there is a martingale X of the form

N-1

X = 03A3 Tn-1n^TW(Tn-1+1)^Tn^T
n=1

such that
C’

Indeed, define as in step 1, where we choose, with the notation of step

1, N sufficiently big so that

2CC2,

where c > 0 is the bound on the BMO(P)-norm of X(N) obtained in step 1.
Then the martingale X defined above equals just X(N) stopped at time T.

Clearly 

the latter being bounded by the uniform constant c2.
On the other hand,

= 

= 

If I~ --> oo and e --~ 0, then this expression converges to 

hence, for I~ > 0 sufficiently big and e > 0 sufficiently small, we obtain

. 

C’

We now pass to the general case. Let M be a continuous real-valued local

martingale such that E(M) is uniformly integrable and such that M rt 
We shall show that, for every C > 0, there is a martingale X in BMO(P), which
is a stochastic integral on M, i.e., X = H ~ M, where the predictable integrand H
assumes only the values 0 and 1, such that

C.
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This will readily imply the assertion of the proposition (by the closed graph theo-
rem).

Let K = K(C) > 0 and c .= s(C) > 0 be the constants given by step 2. As

M ~ BMO(P) we may find a stopping time  ~] > 0 such that

(M) u > > 1- ê a.s. on {U  oo}.
(see, e.g., [RY]).
Now we are exactly in the situation of step 2: Define the stopping times 

where the number N = N(C) is given by step 2, by To = U and .

Tn = > 2n},
where UM = M - MU is the martingale M starting at U. Define the stopping times

Sn = inf {t > 1 ~ A Tn+l
and the martingale X by

N-1

X = M.
n=0

The arguments of step 2 imply that

C a.s. on {U  oo}
and, in particular

C a

4.4 Remark. The condition that ~*(M) is uniformly integrable can be omitted
if we are careful to a proper meaning. If we only assume that M
is a real-valued continuous local martingale let be an increasing sequence
of stopping times tending to infinity which localizes the local martingale 
Denote by l~n the probability measure on with density d~ = and

define, for a local martingale X, the sequence cn = ° Then 

is an increasing sequence in [0,oo] and if we replace by lim cn then
the assertion of the proposition remains valid.

NOTE ADDED IN PROOF. After this paper has been finished and accepted for
publication I received some comments from N. Kazamaki and M. Kikuchi. They
pointed out that there was a mis-understanding with respect to the question raised
in ([K], p.68): we have shown in proposition 4.1 and remark 4.2 above that, letting

~(p) _ (4p)_y >
we have

di (M, LOO)  ~ satisfies 

However, the proper understanding of the problem posed in ([K], p.68) pertains
to the question, whether there exists a function ~ : (1, oo) - (0, oo) satisfying
limp-i = oo such that the above implication holds true with /$ replaced by ~.
The result given in proposition 4.1 above therefore is not satisfactory, as /$ has its
singularity at p = 0 instead of p = 1.

The (properly understood) question of N. Kazamaki ([K], p.68) ultimately was
solved negatively by P. Grandits and his counterexample is presented in the subse-
quent paper : On a conjecture of Kazamaki.
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