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FIRST ORDER CALCULUS AND LAST ENTRANCE TIMES

B. Rajeev
Stat-Math Division

Indian Statistical Institute
203, B.T. Road, Calcutta - 700 035

’ 

INDIA.

Introduction. Let (Xt) be a continuous local martingale,

Xo = 0 a.s., X> the quadratic variation process, L(t,O) its

local time at zero. Let Tt = max s  t : 0 and (ht) a
locally bounded previsible process. The point of departure in

’First Order Calculus’ (see ~10~, page 241) is an interesting

path property of (semi) martingales given by the so called

Balayage formula
t

h03C4t Xt = o h03C4s dXs (#)

This says that h Tt Xt is a continuous local martingale and

then it is not too difficult to show that its local time at zero
t

is f jh )dL(s,0). This is in analogy with the usual second order
0 ~ t

(Ito) stochastic calculus where the local martingale 0 / h(s)dXs
has the quadratic variation f Actually eqn. (#)
holds in more generality. It holds whenever X is an arbitrary

semi-martingale, h a locally bounded previsible process,

Tt = max (s  t : I s e H~ , where H is a random closed optional

set with Xt(u) = 0 for (t,u) e H. After its f irst appearance in

Azema and Yor [1~, it was later studied extensively in a series
of papers [4], [6], [7], (-11] and [12]. In particular, conditions
on both the set H and the process h can be further relaxed (see

[4] for the first case, [6~ and [11] for the second).
Consider now an equivalent formulation of the above

result. Let at = max t : : s e H ~ . . The condition Xt(u) - 0,
(t,u) e H is equivalent to X t .= 

0 because a;(u) = t iff
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(t,u) e H. Observe further that, as a consequence (X-Xa)(t )
(= X-X t ), We can write eqn. (~) in terms of (X-X ) rather
than X. What happens if we drop the requirement Xa ~. O? Note

that in any case we have (X-Xo)(t) ; 0 for t e H and eqn. (~)
would hold for (X- XQ) provided we can s how that (X-X ) is a

semi-martingale or equivalently that X is a semi-martingale.

In analogy with case of measures, we can think of (X-X) as the
H-balayage of X. We now give some examples where the condition

0 fails, but X is in fact a semi-martingale.

The original motivation behind this work is the following

example : Let be a continuous semi-martingale, a  b and

assume for simplicity that (a,b) a.s. Let A = {(s,o) :
Xs(u) E (a,b)~ , , H = Ac and at as above. In this case XOti 0
and it was shown in [9], that (X-X) is a semi-martingale and

its decomposition obtained. A typic al feature of the process

(X-X) is clearly reflected in the above example : I (X-X) is no

longer a continuous process. However we do have the following

for all t ~ 0,

I = I ~~XQ(s )) = (b-a ) x number of crossings
st 

’ 
s t 

°
" 

"of (a,b ) by X in time t

 co a.s.

Another interesting example is given by A = ~(s,u) ~ I X (u) > a) ,
Xo  a a.s., , H = Ac, , max {s i t : t s e Ac = H ~ . . Here too

0. The process (X-X) is however continuous and it is
easily seen that (X-XQ)(t) = (Xt-a)+. In this case the semi-
martingale decomposition for (X-X) is just the Tanaka formula.

To return to the question posed in the previous para-

graph : I Let (Xt) be an arbitrary semi-martingale with respect
to a filtration t, A an t optional set with open sections

C(0~°~) max f i t : s e Ac ~ . Let Ar denote the
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right end points of the intervals of A and A] = A U Ar. We

show that under the condition, 03A3 IA](s)|0394X03C3(s)| = 03A3 IAr (s)|0394X03C3(s)|

 - a.s., is an t semi-martingale. ° Further, we obtain
a Tanaka-like formula for (X- Q) involving a continuous process
of finite variation, which is a sort of local time of X on A

(see Section 2, Theorem 1, Corollary 1). Note that the condition
03A3 IA](s) |0394X03C3(s) I  ~ a.s. generalises the condition X _ 0,a 

The former condition is also necessary (see Remarks following
Theorem 3).

The paper is organised as follows : In section 0, we

describe the main ideas of the proof in the case of continuous

semi-martingales. Section 1 contains the notations and other pre-
liminaries, Section 2 the statement of the main result and its
corollaries and section 3 the proofs. In section 4, the final

section, we deduce the usual Tanaka formula for an arbitrary

semi-martingale as a consequence of our main results (Theorem 2).
We thus give a new proof of Tanaka’s formula. We also relate the

process of finite variation (or local time of X on A) obtained
in Theorem 1 to the local times at zero of the semi-martingales

(X-X) and -(X-X ), thus closing the circle of ideas (see
Theorem 3).

0. The Case of Continuous Semi-Martinoales : In this section

we describe our results and sketch the idea of the proof in the
case of continuous semi-martingales. We start however with an

arbitrary semi-martingale X and bring in the continuity assump-
tion only when it is required. We hope this will give a better
understanding of the course we eventually take in section 3 in
the proofs of the main results.

Let then (Xt) be a semi-martingale adapted to a filtra-
tion t, with rcll trajectories. A will denote a n t optional
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set with open sections and for simplicity will be assumed to be

contained in (O,~) 03A9 . Qt = max { s it: s E Ac}. Then

X03C3t is an adapted rcll process. Suppose first that A

is a simple optional s et with open sections, i.e. A= U (oi,Ti)
i=i

where oi, Ti are stop times, oi  Ti  oi+1 and ok -> ~

es k -> a . Let AJ = U (oi, and h a locally bounded
i=1

previsible process. It is easy to see that

h(03C3S-) IA](s) = h(03C3k)I(03C3k,03C4k](s)

and that 0394X03C3(s) = (X03C4r- X03C3r), s = 03C4k
ø k k

It follows that h(os-) is a simple predictable pro-

cess and that the process E is of finite

s_. 
a

variation on compact intervals. Now from the definition 
of

the stochastic integral we get

E h(o {s ) + 
- {°.1 )

st 
S AJ Q - °

Note that when X is continuous, ~Xo(s) _ - 
Taking h = 1 in (0.1) we get

03A3 IA](s) 0394X03C3 (s) + (X-X03C3)(t) = 
t0 

IA](s )dXs - (0.2)

It follows that ( X-X ) o is a semi-martingale and taking H = Ac,

t = Q t- , it is easy to see that (°.1) and (°.2) implY ( ~).

In the case of a general optional set with open sections,

we assume E IA (s)  ~ a.s, for all t. To show

s t
that (X-X ) is a semi-martingale, we approximate A by simple

0

optional sets An with open sections.

If on are the entrance times for An, the idea is to

replace (o,A) in eqn. {0.2) bY and then let n -> ~ .

To ensure (X-X 
Qn 

)(t) -> (X-Xo){t), we choose An’s such that
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~n~~n+1 and A = ~ An. . This implies that a(t) and

(X-X 2014> (X-X )(t) pointwise by right continuity of

X. To ensure the convergence of the stochastic integral and

jump terms in (0.2) a further condition on the A ’s is

necessary I We demand that that the right end points of the

intervals of An be contained in those of A. i.e., , An,r~Ar
where = {d~ ’ t > OJ. A~ = ~ t > 0 } , ’
d~ = inf t : s e A~ ~ , , dt = inf {s > t : s e A~ J . Note

that ~] = ~ U and A] 
’ 

~ A U A . . Under these

conditions on An’ , it is easy to see that 2014~ 

t t
pointwise and hence o IAn](s) dXs ~ o IA](s) dXs in pro-

bability. The jumps IAn](s)0394X03C3n (s) are now ’aligned’ with

that of and we can write the jump term in

(0.2) as

IAn](s)0394X03C3(s) +  IAn](s) - 0394X03C3(s)) - (0.3)

Now under the assumption r |0394X03C3 (s)|I  - a.s. . for

all t, the first term in (0.3) converges to Z I.i(s)Ax (s).st ~J ~

It now follows from (0.2)~ with (~A) replaced by (o ~)~ that
as n -) GO , , the 2nd term in (0.3) has a limit(- L(tJ) given by

- L(t) = toIA](s) dXs - (X-X03C3)(t) - IA](s)0394X03C3(s) - (0.4)

When X is a continuous semi-artingale it is obvious that

the RHS of (0.4) defines an adapted continuous process. In

fact, it is easy to see from the properties of the stochastic

integral, that even in the case of an arbitrary semi-martingale,
the RHS of (0.4) defines a continuous adapted process. We

still need a crucial result to deduce from (0.4) that (X-X 
o 
)(t)

is a semi-martingale viz. that L is of finite variation. But

if we now introduce the condition
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> 0 t E A - (0.5)

then since each of the terms in the second sum in

(0.3) is non-positive. As a cons equence the sec ond sum in (0.3)

is non-increasing and so is its limit -L(t). i.e. L(t) is

a non-decreasing process and from (0.4) it follows that (X-X )(t)
is a semi-martingale with a decomposition given by (0.4).

The existence of sets An satisfying 1) An C 

2) A = U n An and 3) An,r ~ Ar is easily shown : If 
n 

rn
is an enumeration of the rationals we can take An = U ).

" 
i=l " I

If in addition (0.5) holds, there is a further choice viz.

An = U (03C3nk, 03C4nk) where 03C3nk, 03C4nk are the successive crossing

times of 1/n and 0 by (X-X03C3)(t). In fact in the proofs of

the general case we shall use the latter choice, mainly for its

geometric appeal. At this point we note that our proof is a

generalisation of the ’down-crossing’ ’ pr oof of t he Tanaka formula

(see [5], [8] and [9]).

Thus far we have proved the following result : t

Suppose X: - any semi-martingale, A an optional set with open

sections such that Z )  m a.s. for all t. .

Suppose in addition that (0.5) holds. Then there exists a

continuous, adapted increasing process L(t) such that

IA](s) 0394x03C3(s) + (X-X03C3 )(t) = t0IA](s) dXs + L(t) - (0.6)

We now demonstrate how condition (0.5) may be dropped

in the case when X is continuous. Introduce the sets

A~ _ ($~~) : I OJ , ~ Ad = ts~~) :  OJ-
observe that Au and Ad are optional sets wit h open sections

(because X is continuous), contained in A. Let a~ and od
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be entrance times for A~ and A~ respectively. Obviously

(X-X03C3u) and Au satisfy (0.5). Further because X is

continuous, |0394X03C3u (s)| = |0394X03C3(s) I (s) ,  ~

a.s. for all t. Then by the above result, there exists a

continuous adapted non-decreasing process L such that (0.6)
holds for (X-X ) , , A 

u 
and L . . Applying the same arguments

to -X, there exists a continuous adapted increasing process

L~ such that (0.6) holds for (X-X~ ) , , A~, and -L~ . . Hence,

(X-X~)(t) = (X-X~(t) - (X-X~)- (t)
= (X-X03C3u)(t) + (X-X03C3d)(t) (~ X is continuous)

= t0 IAu]U Ad](s) dXs + Lu - Ld - IA](s)0394X03C3(s)

Now it can be shown (see remark following Corollary 1 to

Theorem 1) that

d Xc> (A] - Au] U Ad]) = 0 a.s.

Let L(t) = Lu (t) - Ld (t) - t0 IA]-A (s) dVs

where X = M+V.

L is a continuous adapted process of finite variation

such that (0.6) holds for (X-X~), A and L. In particular,

(X-X ) is a s emi -mart ingal e .

1. , Preliminaries. . We continue with the notati on and

terminology of Sec. 0. We have the filtered probability

space ( ’"} , ~, p) satisfying usual conditions.

(X~) is a given ~ semi - martingale, fixed for the
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rest of the discussion. A~(0, "’) x03A9 is an optional

set with open sections. If A(u) = U (o~(u),f~(u)), let
A] be the previsible set with sections A] (u)

= U (~(u)~(u)]. Let = max { s i t : s e A~(u)} , ,
= 0 . Henceforth we suppress the dependance

on u and write, for example, t e A instead of t e A(u). .

For any adapted rcll process we define the adapted

rcll processes (Y~(t)) and ((Y - Y~)(t)) by

Y03C3(t) = Y03C3t (Y - Y03C3)(t) = Yt - Y03C3t
. 

) For 
h 

> 
0,

let Duh = inf {s > h : (X - X03C3)(s) ~ 0 } . The optional

set Au is defined by Au = U (h,Duh). Let

o~(t) = max { s i t : I s e A~ ~ ~ similarly define
~dh = i~ ~s ~ h : (X - X~)(s) 2 o) ~ = ~ (h,D~)
and o~(t) = max ( s i t : s e . Here the suffix u

stands for ’up’ and d for ’down’. In particular A~ (A~)
is the set of times in A at which the process X is

above (below) X~ . . Let A~ = A~ U A~. Let A~ (A~)
denote the set of right (respectively left) end points

of the intervals of . A. have similar meanings

relative to the sets A~ and A~. X~ as usual denotes

the continuous martingale part of X. 1~ will denote the

indicator function of the set A.

Fix n ~ 1. Define T~ =. 0 and let

>T~ , (X-X~)(s)2l/~ k=l,2,...

k=l,2,...

where we take inf{())} = .. ° For n ~ 1, ’ let

~ " k~l~~ ~’ " ~ ~ ~~ = ~ax {s i t : t s e A~ . 
It is easy to see that A~ which implies that 

o~i(.) i0n(.) ~
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Proposition 1, a ) i ) A~ C s : I > 0 ~ C A

ii) Ad C {s : I (X-XQ)(s)  0 } ~ A
b) i) Au = U An

n=1 n

c ) i ) A~ - e A : = 

’

it ) s : ° 0 C ~ U A.

roof . a ) i ) . . It is easy to see that for t E Au,
(X-XQ)(t) ) 0. The second inclusion in a) i) follows
from the observation that (X- a)(t) = 0 for A. The

proof of a) ii) is similar.

b) It is obvious that Tk) for n > 1, k > 1.

Hence U An ~ An . To see the reverse inclusion suppose
n

s E An and An for all n > 1. Thus for all n ~ 1,

there exists kn such that s e ( rk 
n 
1 In fact

there exists no such that for all n > no, , s = ’

otherwise s for infinitely many n. 

n

n n

Hence (X -  ~ k for n k -> ~ . . This implies

(X -  ~, contradicting the first inclusion in

a) i). . Since Au has open sections, there exist a ’ p, ’

03B1  03B2 such that (03B1,03B2) ~ Au, , a  s = 03C3nk

n  03B2 

for all

n > no. But s = 03C3nk
n 

for all n > no implies, from

the definition of that (X-XQ)(s-)  o. In

particular there exists so E (a,~) such that (X-Xo)(sa)
 0, which contradicts a) i),

c} i) If s e A~ and s ~ then there exist

sequences s n , tn , s, tn s, , such that

Xs  XQ(sn) - and Xt > = 

n n
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It follows that Xs- = X03C3s

ii ) If s e A] - Aud] and 0394Xs ~ 0, it follows from
c ) i ) that either Xs > X03C3s or Xs  X03C3s . This , together

with s; implies that, in fact s U A~ - ( r U Ar). .

2. The Main Results. Let X, A, o, Au, Ad, Aud all be

as in section 1. We can now state our main result. All

the proofs are deferred to the next section. The following

hypothesis is fundamental : I

for all t, E j  . almost surely - (*). .
st -~ ~

Note that = I Ar (s) 
Theorem 1. Suppose (*) holds. Then

a) for every t,

IA]-Aud](s)|0394Xs |  ~ almost surely.

b) X03C3 and X - X03C3 are semi-martingales.

c) There exists a unique continuous adapted process of

finite variation, denoted by L(.), such that almost

surely,

] IA](s) 0394X03C3(s) - IA]-Aud ](s) 0394Xs + (X-X03C3)(t)

= t0 IAnd] (s) dXs + L(t) (1)
o ~,d~ .

f or all t _> 0 .

d) If in addition to (*), (X - Xa)(t) > 0 for all t,

almost surely, then L(.) is an increasing process.

(e) The process L(.) is supported on the complement of

the set In other words, , almost surely,
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t

f = 0

for all t > 0 . .

. (1 ) can be reduced to a simpler and more

elegant form under an additional ’hypothesis’ which we

now state

almost surely, 0 f p _ (**)

Corollary 1. Suppose (*) and (**) hold. Then there
exists a continuous adapted process of finite variation,
denoted by L’(.), such that almost surely,

IA](s)0394X03C3(s) + (X-X03C3)(t) = t0 IA] (s )dXs+L’ (t) (2)

for all t ~ 0. Moreover, almost surely,

t

0 IA](s) dL’(s) = 0

forall t >0. .

Remark. The condition (**) is actually redundant i.e.
it is always satisfied for any semi-martingale X and

any optional set with open sections. This is a consequence
of the occupation density formula. We indicate a proof of
this below. In particular we recover the results of j9~
from Corollary. 1. However for an arbitrary semi-martingale,
there are certain sets for which we can prove (**) holds
without using the occupation density formula. We take

this approach in section (4) to prove the Tanaka formula.

To prove (**) is actually redundant, we observe
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that as a consequence of the occupation density formula,

the following holds :

almost surely, d Xc> ~ s : t XS- = a~ - 0 for every a e R.

From Propn. 1 c) we have

i n A

Since the set {x , , s e A } is countable, (**) follows.

3. The Proofs. The proof of Theorem 1 is rather long.

For simplicity and to keep track of the main ideas, we

break it up into different steps which we state as lemmas.

The proof leans heavily on the notion of the stochastic

integral and its various properties. We refer to [2],

Chapter VIII for these. A few steps involve a construc-

tion in terms of Au, ou etc, and then a symmetrical

construction for Ad’ Qd etc. We prove only the former

case. We recall the sets An of proposition (1) which

play a key role in t he proof.

Lemma 1. For every n, there exists an increasing adapted,

purely discontinuous process ~n(.),~n(0) = 0, for which
the following equation ho~ds : almost surely,

-~n(t) + IAc

~[o,t] 
(03C4nk) 0394X03C3( 03C4nk) + (X - X03C3n )(t)

= t0 IAn](s) dX (3)

for all t ~ 0 . 

Lemma 2. Suppose (*) holds. Then there exist increasing

adapted processes Y~(.),Y~(.),n~(~) =.~(0) =.0 and

satisfying : almost surely,
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+ s E  t A c(s) 
+ (X-XQ 

u 

)(t)

t

= 0 IAu](s) dXs (4)

~d(t) + I 

Ard ~ Ac(s)0394X03C3(s) + (X-X03C3d)(t)

= J dXs (5 )
0 d

Lemma 3. Suppose (*) holds. Then for every t > 0,

(I Au] (s)|0394X03C3u (s)| + IA
d] (s) |0394X03C3d (s)|)  ~ almost surely

and there exists continuous adapted increasing processes

0 and satisfying : : almost

surely,

t
I Au](s) 0394X03C3u (s) + (X-X03C3u)(t) = 0 IAu](s)dXs 

+ Lu (t) (6)

IAd](s) 0394X03C3d (s) + (X-X03C3d) (t) = t0 IAd](s)dXs - Ld(t) (7)

Lemma 4. Suppose (*) holds. Then, for every t,

s E t ( ~~(XQ u -XQ)+(s ) ( + ~ Q(XQ d -XQ)-(s ) ~ )  ~ almost surely

and~we have almost surely,

(t~ _ + s E t (8 )

(X-Xo)-(t) _ d )(t) + s E t Q(XQ d -X Q )-(s) (9)

for all t > 0 . .

Proof of Lemma 1. . From the definition of the stochastic

integral, we have
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t0 IAn(s)dXs = X(03C4nk^t) - X(03C3nk ^ t)

= I[0, t](03C4nk)(X( 03C4nk) - X(03C3nk)) + (X-X03C3n)(t)
’ an

m

= I[0,t]~A(03C4nk)(X( 03C4nk) - X(03C3nk))’ r ,

«

+ I[0,t] ~Ac (03C4nk)(X( 03C4nk) - X(03C3nk))

+ (X-X03C3n)(t) (10)

Note that for T k E A, X( Tk) -  0. For T k E Ac
we can write

X( Tn) - X( Tn) - X ( + XQ{ Tk) - 
= Tk) + XQ( T k~ - 

where X03C3( 03C4nk) - X(03C3nk) ~ 0 for 03C4nk ~ Ac.

Define ~n(t) = - IA~[0,t]( 03C4nk)(X( 03C4nk) - X(03C3nk))

- IAc~[0,t](03C4nk)(X03C3(03C4nk) - X(03C3nk))

~n(.) is an adapted, increasing, purely discontinuous

process and r~n(0) = 0. Eqn. (3) is obtained from eqn. {10)

by rewriting it in terms of ~n. This completes 
the proof

of Lemma 1.

Proof of Lemma 2. From Au = U A (Propn, 1 b)),
c~l 

~

condition (*) and the well known properties of the stochas-

tic Integral, it follows that the three terms in eqn. (3)

V1Z.
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IAn] (s)dXs, I Ac~[0,.]( 03C4nk) 0394X03C3 (03C4nk), (X-X03C3n )(.)

Converge in probability to

0 IAu](s)dXs ,  IAru~Ac(s) 0394X03C3(s), (X-X03C3u)(.)
respectively. It follows that the fourth term in eqn. (2)

viz. r~n(.) converges to an adapted increasing

process  u (.) and obviously eqn. (4) holds . The existence

of qd and eqn. (5) follows by applying the previous

argument to - X.

Proof of Lemma 3. ~Ne break up ~u into i ts continuous

part and its purely discontinuous part denoting them

by Lu and ~u respectively. From eqn. (4), equating

jumps on either side at time s we get,

- + I 
(~ A 

+ ~X(s ) - QX 
ou 

(s )

= ]ts) (11)

If QX(s) = 0394X03C3u (s), I 
n A 

= 0

and it follows = 0 , .

If s E Au], but then 0394X03C3u (s ) = 0 and

again = 0 . . 

If s E Au] and s e Au (~ A then ~~u(s) _ - (s).

If s e I~] and s e Au (~ Ac then (~~u(s) - QX (s) = (s). °

Note that A~ n Ac C Ar C AJ. . In particular, it follows
that for every t > 0 , ,

 I + I
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 « almost surely.

Moreover,

IAu](s)0394 X03C3u (s) = -( 03A3 0394lu(s) - 03A3 IA
ru~A c(s) 0394X03C3(s))

= -lu(t) + I 

Aru ~(s) 0394X03C3(s) 
(12)

Also

= Lu(t) + (13)

Eqn. (6) now follows from eqns. (4), (11), (12) and (13).

Eqn. (7 ) is proved i n a s imilar manner.

Proof of Lemma 4. we . note t hat 0394(X03C3u -X03C3)+(s) ~ 0 iff

s e r i.e. when s is a left or right end point

of Au. Moreover the jumps of (X03C3u - X03C3)+ at successive end

points of Au are equal but of opposite sign. Hence

E ~~(Xa -XQ)+(s)~  2 E I -XQ)+(s)~st u ° ~ 

st Au u °

+ ~ ~ XQ +( t ) ]

and

s E t I °u ’X ° )+(s ) ~ - s E t (~ u -XQ)+~s) ~
+ E I r I

s~t Aru ~ A u

~ IA
ru~A (s) |0394X03C3u (s)|

+ IAru~A(|0394X03C3u (s) |+|0394X03C3(s)|)

= I
Au](s)|0394X03C3 u(s)|_ "U u
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+ 03A3 IAru~Ac(s)|0394X03C3 (s)|

 « almost surely

because of condition (*) and lemma 3. It is easy to see

that

(X_Xa)+tt ) _ )(t) + _XQ)+(t ) (14)

and that

(XQ XQ) (t) - ~ -XQ) (s) (15)
u 

a 
st u °

Eqn. (8 ) follows from eqns. ( 14 ) and (15 ). Eqn. ( 9 ) is

proved in a similar manner.

Proof of Theorem 1, a ) Using proposition 1 c ) it is easy to
s ee that

E I  E ,-X )-(5) I )st st u ° Qo Q

 ~ almost surely

This proves a ). The proof of b) is immediate from Lemmas (3),
(4) and the identity x = x + - x- , .

Proof of c) : To begin with we note the following pathwise

identity viz. almost surely,

-IAu](s)0394X03C3u (s) + 0394(X03C3u -X03C3)+ (s)

- 0394(X03C3d -X03C3 )-(s) - IA ](s) 0394X03C3 (s)
st d ° 

si,t d d

= - IA](s) 0394X03C3(s) + 03A3 IA]-Aud](s) 0394Xs (16)

.The identity is proved by verifying it separately at each
se s e se 

We then have using eqns. (6), (7), (8), (9) and (16),



278

(x - xQ)(t) - {x-xQ)+(t) + 
= ){t) + E -XQ)+{S) + )(t)

u s5,.t u 
a a

- 0394 (X03C3d -X03C3)- (s)

= t0 IAud](s)dXs + (Lu-Ld)(t) - IA](s)0394X03C3(s)

+ IA]-Aud](s) 0394Xs

which is eqn. (1) with L(t) = Lu(t) -Ld(t). That L is

unique is obvious and the proof of c) is complete.

To prove d) we note that when (X-XQ)(t) > U for all

t, almost surely then Ad = ~ almost surely and 0

almost surely.

To prove e) recall that Aud = ( U(h,duh))U( U (h,Ddh) )

where

Duh - ’  0~ and

Ddh = inf ~ s > h : > 0 ~ . .

From eqn. (1) and well known properties of stochastic inte-

grals it follows that almost surely

L(t ~~1 D{t n h) = 0

and L(t /B h) = 0

for all t > 0 . . This proves e ).

Proof of Corollary 1. We first observe that the process

0
IA]-Aud](s) 

dXs - 03A3 IA]-Aud](s)0394Xs is a Continuous

semi-martingale. The condition (**) ensures that martingale

part is identically zero. Denoting this process by Y{.),
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eqn. (2 ) follows from eqn. (1) with L’ (. ) = L(.) - V(.). .

It follows from eqn. (2), in the same way that Theorem 1 e)

follows from eqn. (1) that L’(.) is supported outside A] .

4. The Tanaka Formula. The conditions (*) and (**) are
satisfi ed by all semi-martingales for certain choices of

the set A. The tanaka formula is a result of this situation.

Let (Xt) be a semi-martingale. For h > 0,

let

Dlh = inf .~ s > h : Xs 
D2h = inf { s > h : 0~

Let

Ai = U (h,Dih) i = 1,2

and 03C3i(t) = max { 3 ~ t : s ~ Aci } 
, i = 1,2.

Let Alu,A:2u,.Ald’A:2d be defined for Al and A2 as Au,Ad
were defined for A in section 1. Let

Aiu U Aid i = 1~2.

Lemma 5. For any semi-martingale X, co ndition (*) and (**)
holds for the sets Al and A2,

Proof. It is easy to verify the following inequality :
For every t > 0, and i = 1,2

IAi](s) |0394X03C3i(s)| ~ I(-~,0](Xs-)(Xs)+ + I[0,~)(Xs-)(Xs)-
It is well known that the RHS sum is finite almost surely -
( see [2]). This proves (*) for Aj~ and A~.

now prove (**). Firstly it is easy to see that
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(xo)+ _ (X_xo )tt) + E ~ (X )+ (s) (1~)o 1 st 1

(Xt)- - (Xo)- - 2 )(t)+ s E t 2 )- (s)
2 _ 2

Thus Xc = (X-X03C31 )c + (X-X03C32 )c and from eqn. (1) applied

to (X-X03C31) and (X-X03C32) we get

Xc >= t0 IAlud] U A2ud](s) dXc >s

Condition (**) for A1 and A2 follows from the above

equation,

The process L’ , occurring in the decomposition

of the semi-martingale X-XQ 1 given by eqn. (2), is an

increasing process.

Proof. Eqn. (2 ) applied to X - X03C31 gives

t

IA1](s)0394X03C3 1(s) + (X-X03C31)(t) = 0 IA1]dXs + L’(t) (18)

Let A11 = {t,03C9) : X03C31 (t-) > 0, X03C31 (t) > 0} . Then A11

is an optional set with open sections and A11 ~ A1 . Let .

A12 ~ All So that. A1 = All U A12 . Note that A12 is

also an optional set with open sections. Let all and Q12

be the entrance times for All 
~~ 

and A12 . ° Then

(X-XQ1)(t) - + (x-XQ 12 )(t) (19)

Also,

IA11](s) |0394X03C311(s) | + IA12](s) |0394X03C312 (s) |
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= IA1] (s) |0394X03C31(s)|  ~

almost surely by lemma 5. Hence {~) holds for All and A12.
Also A12ud ~ A12u ~ A12 and {X-XQ 12 ){.) > 0, Hence from

Theorem 1 c) and d) we get a continuous adapted increasing

process L12(.) such that

t

~ IA {s) + {X-XQ Jet) = f IA + L12(t) (20)
s t 12 

. 12 12 0 12

Let A11n - l {t,u) : X o 1 {t-) > 1/n, X 
Q 1 

(t) > n = 1,2, ....

Then Alln are optional sets with open sections, Alln ~A11n+1

and All = U Alln . Let alln be the entrance times for

Alln’ Then 03C311n(t) ~ 03C311(t) as n ~ ~. We also have

t

E IA ~(s ) QXQ (s) + {X-Xa Jet) = f IA 
st lln lln 03C311n 0 lln

Letting n -> ~ we get,

t
E IA (s) + {X-XQ Jet) = f IA {21)
st 11 11 all 0 11

Comparing eqn. {18) with eqns. {19), {20) and {21) it follows

that L’(.) = L12{.), which is an increasing process.

Theorem 2. For every a e ~ , there exists a continuous in-

creasing adapted L(.,a) such that almost surely,

{Xt-a)+ - (Xo-a) + + f 
t 

+ E I -~ a (Xs-)(Xs-a)+0 -00, a s- s

+ + 2 L{t,a) (22)

roof. We first- prove the case a = 0. Eqns. (18) and (1?)
gives
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(X,)~(X~ = ~~ 
L.(t)

+ )"(s) (23)
s~t ~1

where L’(.) is a continuous increasing process by lemma 6.

It is easy to see that

Aj = {s : I X~_ > 0} U B (24)

where B is a scanty previsible set given by

B = {. e A, : X,_= 0, X, ) 0} U X~~_= 0, 0, h ~ 0}

It is also easy to see that for all t ~ 0,

IB(s)|0394Xs| ~ I(-~,0](Xs-)(Xs)+ + I[0,~)(Xs-)(Xs)-
 ~ almost surely.

It follows from [3], page 378, that

t0 IB(s)dXs =  IB(s) 0394Xs (25)

Hence from eqns. (23), (24) and (25) we get

(Xt)+ - (Xo)+ = t0 I(O,~)(Xs-)dXs + t0 IB(s)dXs - IA1](s)0394X03C31(s)
+ 03A3 0394(X03C3 )+ (s) + L’(t)

s~t ’1

= t0 I(O,~)(Xs-)dXs + IB(s)0394Xs
- IA1](s)0394X03C31(s) + 0394(X03C31)+ (s) + L’(t)

(26)

Using the definition of B following eqn. (24) and noting
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that the jumps of s -> (Xo 1 )+ (s) occur at the end points
of A, we can write

IB(s)0394Xs- IA1](s)0394X03C31(s) + 0394(X 03C31)+ (s)

= 

IA1~{s:X s-=0,Xs>0}(s)0394Xs + I All(s) 0394(X03C31)+ (s)

+ IAr1(s)0394(X+03C31 )(s)

~ + s E  t I (, ~’D 1 h : X Dl h- =p, X Dl h  0, 
- r I ~(s) ~Xa ~s) (2?)

s~t °1

It is easy to see that

IA1~{s: Xs- =0, Xs> 0} (s)0394Xs + 
I All(s ) 0394(X03C31)+ (s)

= 

I(-~,0](Xs-)(Xs)+ (28)

and that

I{D1h :XD1h- =0, XD1h ~ 0} (s)0394Xs + IAr1(s)0394(X03C31)+ (s)

- IA1](s) = I(O,~)(Xs-)(Xs)- (29)

Eqn. (22) for the case a = 0, now follows from eqns. (26),

(27), (28) and (29) with L(.,0) = 2L’(.). The case a ~ 0

is proved by considering the semi-martingale X - a.

We now return to our original set up. X is an arbi-

trary semi-martingale, A an optional random set with open

sections and (X,A) satisfying (~). ~, Qu, Ad, Qd all are

as defined in section 1. . Lu and Ld the increasing processes
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occuring in the decomposition of (X-XQ ) and (X-XQ ) respec-
tively (see section 3, lemma 3).

Theorem 3 The increasing processes 2Lu and 2Ld are the

local times at zero of the semi-martingales (X-X ) and -(X-X )
a a

respectively.

roof. The proof is similar in spirit to the proof of Theorem 2.

We shall do the computations only for Lu, the case Ld being

similar. We first observe that

s : I (X-XQ)(s-) > 0 = ~~ - B - (30)

where B is a scanty previs1b1e set given by

8 = B1 U 82

B1 - ~s e t = 0, 0
B 2 = s E = 0,  0

We also see that by the result of C.S. Chou ~2~, applied to

the semi-martingale that,

s E t ~4(X-Xa)(S) ~ ~  s E t 

. +  °° a.s. .

Now applying the Tanaka formula (22) to the semi-martingale

and using eqn. (30) and Cor.l of Theorem 1 to expand
the stochastic integral , we get

(X-X03C3)+(t) = t0 IAu](s)dXs + I1(t) + I2(t) + I3(t) + 1 2 L(t,O) - (31)

where I1(t) = - IB1(s)0394(X-X03C3)(s) + I(-~,O](X-X03C3)(s-)(X-X03C3)+(s)st 1 a 
st ~ ’ ° °

I2(t) = -IB2(s)0394(X-X03C3)(s) + I(O,~)(X-X03C3)(s-)(X-X03C3)-(s)



285

= - z I~ 
st u

On the other hand by Lemma 4~ and Lemma 3 we get

(X-X~)~(t) = )t) + z /x -x >+s >a 
u st °u °

t
= 0 IAu](s )dXs + Lu(t) - IAu](s )0394X03C3u (s)

+ 03A3 0394(X -X )+(s)
~~ a~ a

t
= 0 IAu ] (s) dXs

+ IA(s) 

I{s : (X03C3u -X03C3)+(s) > o}(s) 0394(X03C3u-X03C3)+(s )

- IAuJ~A(s)0394X03C3u

+ 

IA(s) I{s: (X03C3u -X03C3)+(s) o}(s) 
0394(X03C3

u 
-X

03C3 )+(s)

- 

IAu]~Ac (s) 0394X03C3
st ."U °u

+ z 1 £(x -x )+ (s ) + L (t ) - (32)st A °u ° U

Comparing eqns. (31 ) and (32) it is a matter of verification
to see that the second term in the RHS of (32) equals 
the 3rd and 4th terms equal I2(t) and the sth and 6th terms

equal I~  t ) . The result follows.

Remarks: t I ) One can improve the statement regarding support
of the process of finite variation L ’(. ), occurring in Cor. I
of Theorem I at no extra cost. In fact the same proof shows
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that where where

D+h = inf { s > h : s ~ A } . 

2) If Xt - Xo + Mt + Vt where (Mt) is a local martingale

and V is of finite variation, then it is easy to see that

t
+ (V-VQ)(t) _ ,~ (s) dVs

sit a a 0

Hence from Cor.1 we get

t

IA] (s)0394M03C3(s) + (M-M03C3)(t) = 0 IA] (s) dMs + L’(t)

3) Let X and A be as in Theorem 1. The condition (*)

is also necessary for to be a semi-martingale. For

suppose (X-XQ) and hence X is also a semi-martingale.

Let An be the approximations of Au as in Proposition 1.

We note that XQ is constant across the intervals of Au
and jumps only at those end points of ~ which are also end

points of A. Now it is easy to see using Au = U An, , that

E (~XQ (s ) )+ = f dXo (s )  ~ a.5.

st 0 3 0 ø

Similarly s E t (OXQ ) (s ) IA] (s )  ~ a.s. and condition (*)

holds. 
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