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FIRST ORDER CALCULUS AND LAST ENTRANCE TIM

B. Raljeev

Stat-Math Division
Indian Statistical Institute
233, B T. Road, Calcutta - 700 035
INDIA.

Introduction. Let (Xt) be a continuous local martingale,

X, = 0 a.s., <X the quadratic variation process, L(t,0) its

local time at zero. Let T, = max-{s <t X = O} and (ht) a
locally bounded previsible process. The point of departure in

'First Order Calculus' (see [10], page 241) is an interesting

path property of (semi) martingales given by the so called

Balayage formula

h_rt X, = ‘é hrs dX, (%)

This says that h Xt is a continuous local martingale and

then it is not tootdifficult to show that its local time at zero
is f lh |dL(s,0). This is in analogy with the usual second order
(Ito) stochastic calculus where the local martingale j h(s)dx
has the quadratic variation f h2(s )d<x>, . Actually eqn. )
holds in more generality. It holds whenever X 4is an arbitrary

semi-martingale, h a locally bounded previsible process,

rt = max {s <t sce H} » where H 1s a random closed optional

set with xt(u) O for (t,u) € H. After its first appearance in
Azema and Yor [1], it was later studied extensively in a series
of papers [4], [6], [7], R1] ;nd [12]. In particular, conditions
on both the set H and the process h can be further relaxed (see
[4] for the first case, [6] ;hd [11] for the second).

Consider now an equivalen{ formulation of the above

result. Let oy = max {s £tise H} . The condition xt(”) = 0,

(t,u) & H 1is equivalent to X, = O because o, (u) = t 1iff
t
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(t,u) € H. Observe further that, as a consequence X, = (X-Xc)(t)

(= xt'xat)‘ We can write eqn. (#) in terms of (X—XO) rather
than X. What happens if we drop the requirement X, = 0? Note
that in any case we have (X-Xo)(t) = 0 for te H and eqn. (#%)
would hold for (x-xo) provided we can show that (X—Xa) is a
semi-martingale or equivalently that Xo is a semi-martingale.
In analogy with case of measures, we can think of (X-Xc) as the
H-balayage of X. We now give some examples where the condition

Xa = 0 fails, but xa is in fact a semi-martingale.
t

The original motivation behind this work is the following
example . Let (xt) be a continuous semi-martingale, a < b and
assume for simplicity that X, ¥ (a,b) a.s. Let A = {ks,u) .

X (v) € (a.b)} , H= A% and o, as above. In this case Xati o]
and it was shown in [9], that (X-X_) is a semi-martingale and
its decomposition obtained. A typical feature of the process
(X-Xo) is clearly reflected in the above example : (x-xo) is no
longer a continuous process. However we do have the following
for all t > O,

b [[&(X-xo)(s)l = I |AX,(s)| = (b-a) x number of crossings
st s<t

of (a,b) by X in time t

{ o a.s.

Another interesting example is given by A = {ks.u) : Xs(u) > a} ’
X, <a a.s., H= AS, oy = max {s Lt ise AS = H} . Here too
Xc £ O. The process (X-Xo) is however continuous and it is

t
easily seen that (X-X_)(t) = (X.-a)¥. In this case the semi-
martingale decomposition for (x-xd) is Jjust the Tanaka formula.

To return to the question posed in the previous para-
graph : Let (xt) be an arbitrary semi-martingale with respect
to a filtration "}t, A an (Ht optional set with open sections
c(o,=) xf1 , o, = max {s Ltise Ac} - Let A_ denote the
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right end points of the intervals of A and Al = AU Ap. We

show that under the condition, £ IA](S)IZXX (s)]| = 2t1 (s)pgx (s)]|
¢ = a.,s., (x-x ) 1is an ?k semi—martingale. Further, wa obtain

a Tanaka-like formula for (x-xs) involving a continuous process

of finite variation, which is a sort of local time of X on A

(see Section 2, Theorem 1, Corollary 1). Note that the condition

Z I ](s) Lﬁ;x (s)| < = a.s. generalises the condition X t- 0.

The former condition is also neceSsary (see Remarks following

Theorem 3),

The paper is organised as follows : In section 0, we
describe the main ideas of the proof in the case of continuous
semi-martingales. Section 1 contains the notations and other pre-
liminaries, Section 2 the statement of the main result and its
corollaries and section 3 the proofs. In section 4, the final

section, we deduce the usual Tanaka formula for an arbitrary

semi-martingale as a consequence of our main results (Theorem 2),
We thus give a new proof of Tanaka's formula. We also relate the
process of finite variation (or local time of X on A) obtained
in Theorem 1 to the local times at zero of the semi-martingales
(x-xo) and -(X—Xo), thus closing the circle of ideas (see

Theorem 3),

O. The Case of Continuous Semi-Martingales : In this section

we describe our results and sketch the idea of the proof in the
case of continuous semi-martingales. We start however with an
arbitrary semi-martingale X and bring in the continuity assump-
tion only when it is required. We hope this will give a better
understanding of the course we eventually take in section 3 in

the proofs of the main results.

Let then (xt) be a semi-martingale adapted to a filtra-
tion ';t' with rcll trajectories. A will denote an '3t optional
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set with open sections and for simplicity will be assumed to be

contained in (0, ) xSl . 04 = max {s Ltise Ac} . Then

Xo(t) = x°t is an adapted rcll process. Suppose first that A

is a simple optional set with open sections. i.e., A= ; (o457y)
i=1

where o4» Ty are stop times, oy ¢ T £ 0541 and o) —> =

as k —> =, Let Al = 1Ul(ai, ri] and h a locally bounded

previsible process., It is easy to see that

h(ds_) IA](S) 2 h(dk)I(ok'Tk](S)

k_

and that AX(s) (ka - Xak). s = Ty

It follows that h(°s-) I ](s) is a simple predictable pro-
cess and that the process 2 I ](s)[§x (s) 1is of finite
variation on compact intervals. Now from the definition of
the stochastic integral we get

t
s}éth(o I (AKX (s) + h(a,_) (X=X )(t) = ,(f) h(o, ), (s)aX, = (O.1)

Note that when X 1is continuous, £§Xc(s) = - [&(X—Xa)(s).
Taking h =1 1in (0.1) we get

(s) AX(s) + (XX,)(t) = f I,q(s)dX, - (0.2)
s(t Ia) A

It follows that (X-Xo) is a semi-martingale and taking H = AF,
T, =0y » it is easy to see that (O.1l) and (0.2) imply ( #).

In the case of a general optional set with open sections,

we assume 2 I ](s) |[5x (s)| < = a.s. for all t. To show

that (X—X ) 1s a semi-martingale, we approximate A Dby simple

optional sets A, with open sections.

If o, are the entrance times for Ap, the idea is to
replace (o,A) in eqn. (0.2) by (°n'An) and then let n —=> =,
To ensure (X-X_ )(t) —> (X-X_)(t), we choose A,'s such that

9 <
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AnCAn-o-l and A = g A,- This implies that on(t) } o(t) and

(x-xan)(t) —_> (X-Xo)(t) pointwise by right continuity of

X. To ensure the convergence of the stochastic integral and
jump terms in (0.2) a further condition on the A's is
necessary . We demand that that the right end points of the
intervals of AL be contained in those of A. i.e., An,rCAr
where A, .= {df ,t>0f, A = fag tt>0},
dg=inf{s >t :seA ] ,d =inf{s >t :sea]. Note

t =
-(defn)

that A ] =A U A r and A] AU A_ . Under these
’

conditions on AL s it is easy to see that IAn](s) —_> IA](s)
t t
pointwise and hence 6 IAn](s) dX, —> _6 IA](s) dX, in pro-

bability. The jumps IAn](s) Axo (s) are now 'aligned' with
n

that of IA](s) Axo(s) and we can write the jump term in

(0.2) as

I I, ((s)AX (s) + £ I, 1(s)(AX (s) -AX(s)) - (0.3)
s<t Aql ¢ s<t Apl %n o
Now under the assumption £ I, (s) |AX (s)| ¢ = a.s. for
st Al o

all t, the first term in (0.3) converges to I I,.(s)AX (s).

st A o
It now follows from (0.2), with (o,A) replaced by (an,An). that
as n => = , the 2nd term in (0.3) has a limit(- L(t)) given by

t
“L(t) = [Iay(s) Xy - (X=X )(¢) - sEtIAJ(S)AXC’(S) - (0.4)

When X 1is a continuous semi-martingale it is obvious that

the RHS of (0.4) defines an adapted continuous process. In
fact, it is easy to see from the properties of the stochastic
integral, that even in the case of an arbitrary semi-martingale,
the RHS of (0.4) defines a continuous adapted process. We
Still need a crucial result to deduce from (O.4) .that (X-xo)(t)
is a semi-martingale viz. that L is of finite variation. But

if we now introduce the condition
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(X-Xo)(t) >0 teaA - (0.5)

then since A, CA, each of the terms in the second sum in

(0.3) is non-positive. As a consequence the second sum in (0,3)
is non-increasing and so is its limit -L(t). i.e. L(t) is

a non-decreasing process and from (0.4) it follows that (X-Xa)(t)

is a semi-martingale with a decomposition given by (0.4).

The existence of sets A, satisfying 1) A, C An+l
2) A= g A, and 3) An,r C A, is easily shown Ifn .
is an enumeration of the rationals we can take A,= U (r;»D_ ).

i=1 Ty

If in addition (0.5) holds, there is a further choice viz.

o
An = kUI(as.'r:) where o:, r? are the successive crossing
times of 1/n and O by (x-xa)(t). In fact in the proofs of
the general case we shall use the latter choice, mainly for its
geometric appeal. At this point we note that our proof is a

generalisation of the 'down-crossing' proof of the Tanaka formula

(see [5], [8] and [9]).

Thus far we have proved the following result @
Suppose X - any semi-martingale, A an optional set with open

sections such that £ I, (s) JAX (s)] < = a.s. for all t.
st A] g

Suppose in addition that (U.5) holds. Then there exists a
continuous, adapted increasing process L(t) such that
t
- = - 0.6
T I,108) AX (s) + (X=X )(t) = [ I9(s) aXg + L) (0.6)
sSt o)
We now demonﬁtrate how condition (0.5) may be dropped
in the case when X 1is continuous, Introduce the sets
Au = {(s,u) . (x-xo)(SpU) > o} » Ad ={(S.U) . (X-xo)(s,u) < 0}
observe that A, and A, are optional sets with open sections

(because X is continuous), contained in A. Let o, and oy
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be entrance times for A, and Ay Tespectively. Obviously
(x-xa) and A, satisfy (0.5). Further because X is
u

ti ’ X = X 1 < o
continuous sé} AN ou(s)l sé}lé& S (s) (s) }

{s:Ax (s)%

a.s. for all t. Then by the above result, there exists a
continuous adapted non-decreasing process Lu such that (0,6)
holds for (X-Xou) » A, and L, . Applying the same arguments
to =X, there exists a continuous adapted increasing process
Ld such that (0.6) holds for (x,xod) » Ay and —Ld . Hence,

(X=X, (t)

(X=X )F(t) = (X=X )7 (t)

(X=X, )(t) + (X=X, )(t) (" * X is continuous)
u d .

t
= - - s X (s
ngAu]U Ad](s) dXg + L, - Ly s,(:tIA]( VAN 5(s)
Now it can be shown (see remark following Corollary 1l to

Theorem 1) that
d <x%> (A] - AJUAGD) = 0 a.s.

t
Let L(t) = x_u(t) - Ld(t) -.(/)' s) dv

IA]-A‘ﬂ U(Ad] s

where X = M4V,
L is a continuous adapted process of finite variation
such that (0.6) holds for (x-xo), A and L. In particular,

(X-Xa) is a semi-martingale,

1. preliminaries. We continue with the notation and

terminology of Sec, O. We have the filtered probability
space ( a R (3 R rﬁi' P) satisfying usual conditions.
(X,) 1is a given Fat semi - martingale, fixed for the
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rest of the discussion, A(::(O, =) x 1 is an optional

set with open sections. I1f A(uv) = U (“i(“)’pi(“))' let

A] be the previsible set with sect;ons A)] (u)

= g (ai(u),Bi(u)}. Let ct(u) = max { § Ctise AF(u)} ,
max{(P} = 0 . Henceforth we suppress the dependance

on © and write, for example, t € A instead of t e A(u).
For any adapted rcll process (Yt) we define the adapted
rcll processes (Yo(t)) and ((Y - Yo)(t)) by

Y (t) = Yot and (Y - Y )(t) =Y, - th. For h > O,

let D, =inf {s >h I (X=-X;)(s) <O} . The optional
set A, is defined by A, = g (h’Duh)' Let

o,(t) = max {sctise Aﬁ }. We similarly define

Dgp = inf {5 > h 1 (X=X )s) 20} » Ay =V (h,Dgp)

and o,(t) =max {{s <t ise A }. Here the suffix u
stands for 'up' and d for 'down'. In particular A, (Ay)
is the set of times in A at which the process X is
above (below) X, - Let Ay = A, U Ay Let AT (A!)
denote the set of right (respectively left) end points

of the intervals of - A, Aﬁ,Aé,Aé,Ag have similar meanings

c
as usual denotes

relative to the sets A, and Ay. X
the continuous martingale part of X, IA will denote the

indicator function of the set A.

Fix n » 1. Define T, =0 andlet

o = inf{s >T:-l' (X=x)(s) 2 1/n} k= 1,2,...
Tp = inf{s > a: (X-X_)(s) £ 0 } k=1,2,...

where :e take inf{Q} =, For n > 1, let
_ n _n
A, kl;ll(ok,'rk), n 21 and on(t) = max {s Ctiisce A;} .
It i i i
1s easy to see that A, (:An+l which implies that
Onp1ls) S op(e) .
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Proposition 1. a) i) A, C {s : (X-xo)(s) > O} C A
i1) Ay C{s : (X-x,)(s) < o} C a

b) 1) A, = n:-;lAn

) 1) A=Ayl Cfseatx_=x(s)}
11) (Al-A DN {s * Ax, # 0} Calu AL,

Proof. a) i). It is easy to see that for t € A,
(x-Xo)(t) > O. The second inclusion in a) i) follows
from the observation that (X-xo)(t) =0 for t ¢ A. The

proof of a) ii) is similar,

b) It is obvious that (o;, T:) CAu for n 21, k >1.
Hence : A, CA, - To see the reverse inclusion suppose
se A and s¢ A, for all n > 1. Thus for all n )1,

there exists kn such that s € [r: -1’ o: J. In fact
n n
there exists n, such that for all n 2 ngy S = o;: :
n
otherwise s € ['t‘{(1 _1,02 ) for infinitely many n,
n n

1

Hence (X - X_)(s) < for n, => « . This implies
g n k

(x - XC)(s) £ 0, contradicting the first inclusion in

a) i). Since Au has open sections, there exist q, B,

a < B such that (a,B)CA.u.a<s=o;: < g for all

n >n,. But s = clr: for all n > n, ir?uplies, from

the definition of " o:'s that (X—Xo)(s—) 0. 1In
particular there exists s, € (a,B) such that (X-XO)(so)
£ 0, which contradicts a) i),

c) i) If s e A] and s ¢ A,gq] then there exist

sequences s, t. , s As, t 1s, such that

Xsn < Xo(sn) = Xo(s) and xtn _)_Xa(tn) = Xo(s).
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It follows that Xs_ = Xos

ii) If s e A] - A,4] and Axs # 0, it follows from

c) i) that either Xs > Xo or X, < Xo . This, together
S s

with s ¢ A 4] implies that, in fact s ¢ A£ U Aé - (&, U AY).

2, The Main Results. Let X, A, o, A, Ad’ Aud all be
as in section 1. We can now state our main result., All
the proofs are deferred to the next section, The following

hypothesis is fundamental :

for all t, I IA](S)|Z§X (s)] ¢ = almost surely - (*).
s<t o
Note that I,3(s) AX (s) = 1 x(s) Ax (s).

Theorem 1. Suppose (*) holds. Then

a) for every t,

r 1

(s)|Z§X | < = almost surely.
st Al-Auq) s

b) XO and X - Xo are semi-martingales.

c¢) There exists a unique continuous adapted process of
finite variation, denoted by L(.), such that almost

surely,

L I Ax(s) - ZlAla,) () AXg + (X=X )(t)

= ét I‘\.d](s) dXg + L(t) (1)

for all t >0 .
d) If in addition to (*), (X - xo)(t) 2 0 for all t,

almost surely, then L(.) is an increasing process.

(e) The process L(.) is supported on the complement of
the set Aud]' In other words, almost surely,
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t
'é' Il\‘d](s) dL(s) = O

for all t > 0.

Eqn. (1) can be reduced to a simpler and more

elegant form under an additional 'hypothesis' which we

now state

c
almost surely, [ 1 (s) <X"> =0 - (**)
"o TAlA4] s

Corollary 1. Suppose (*) and (**) hold. Then there
exists a continuous adapted process of finite variation,

denoted by L*(.), such that almost surely,
¢ 2
- 1
s:(:t Ipy(s) AX (s) + (X=x_)(t) = ,g Ipj(s)dxg+Lle(t)  (2)
for all t > O. Moreover, almost surely,
t
' =
é IA](S) dL*'(s) (o)

for all t )0,

Remark. The condition (*%) is actually redundant i.e.

it is always satisfied for any semi-martingale X and

any optional set with open sections. This is a consequence
of the occupation density formula. We indicate a proof of
this below. In particular we recover the results of [9]

from Corollary. l. However for an arbitrary semi-martingale,
there are certain sets for which we can prove (**) holds
without using the occupation density formula., We take

this approach in section (4) to prove the Tanaka formula,

To prove (**) is actually redundant, we observe
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that as a consequence of the occupation density formula,

.

the following holds :
c .
almost surely, d <X7> { s o Xs_ = a} = 0 for every a ¢ R.

From Propn. 1 c) we have
A) - A4l C{s P X = Xos} N A

Since the set {Xo , S E A-} is countable, (**) follows.
s

3. The Proofs. The proof of Theorem 1l is rather long.

For simplicity and to keep track of the main ideas, we
break it up into different steps which we state as lemmas.
The proof leans heavily on the notion of the stochastic
integral and its various properties, We refer to [2],
Chapter VIII for these. A few steps involve a construc-
tion in terms of A,» o, etc. and then a symmetrical
construction for Ad’ 94 etc. We prove only the former
of proposition (1) which

case. We recall the sets A,

play a key role in the proof,

Lemma 1, For every n, there exists an increasing adapted,
purely discontinuous process nn(.),nn(o) = 0, for which

the following equation holds ! almost surely,

1 n X n X - X t
kil Acﬂ[O,t](Tk) D S(Ty) + ( °n)( )

-n,(t) +

t
=L 1, g(e) axg (3)

for all t > 0.

Lemma 2. Suppose (*) holds. Then there exist increasing

adapted processes nu(.),nd(.),nu(o) = n4(0) =0 and

satisfying : almost surely,
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n,(t) + £ I (s) AX_(s) + (XX, )(t)

st AT A
: X (4)
=é‘ IAuJ(S) d s
ng(t) + sé}IAg(\AF(S)Zxxo(S) + (XX, ) (8)
: )
= 1,00 ax, (5

Lemma 3. Suppose (*) holds. Then for every t > 0O,
z (I (s)IAX. (s)] +1 (s )]Ax (s)]) ¢ = almost surely
s TR NAX (] + 1y (2)AX,

and there exists continuous adapted increasing processes

Lu(.).Ld(.),Lu(O) = Ld(o) = O and satisfying ! almost

surely,

t
oL Ta 1) Ax, () + (X=X J(®) = [ L, q(s)aXg w1, (2) ()

t
EIaq(s) AX (s) + (X=X_ ) (t) = [ 1, 1(s)dX. - Lo(t (7)
s<t Agl % % 0 Adl s~ kat)
Lemma 4. Suppose (*) holds. Then, for every t,
L (IAMX. =X )*s)] + (X_ =X )7(s)]) ¢ » almost surely
s<t 4 9 © L+ 14 % © !
and we have almost surely,

(X=X )*(t) = (X=X, () + sitzﬁ(xou-xa)*(s) (8)

(X=X )7(t) —(X—Xod)(t) + sitA(X"d-x")-(S) (9)

for all t >0,

Proof of Lemma 1. From the definition of the stochastic

integral, we have
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(s )ax X(TRAL) = X(ay At)

I
k=1

t
£ 1a,

kill[o't](r:)(x(rﬁ) - X(op)) + (x-X, ) (t)

kill[o,t]f\;\( T:)(X( T;:) - x(o:))

* kil [0,t]NAS (Tﬁ)(X( 1—2) - X(o:-))

+ (X=X )(t) (10)
n

Note that for T € A, X(T}) - X(of) € 0. For The A

we can write

X(TD) - X(a]) = X(Tp) = X (TR) + X, (T) = X(op)

AX (TR + X (T)) = X(o)

n n n c
where XO( rk) - X(ok) < 0 for T € A

befine  n(t) = = I Lnpo,e)(TRE(TR = X(o)

T e [0, TR XK TR) = X))

n,(.) is an adapted, increasing, purely discontinuous
process and nn(O) = O. Eqn. (3) is obtained from eqn. (10)
by rewriting it in terms of e This completes the proof

of Lemma 1.

L]
proof of Lemma 2, From A, = U A, (Propn. 1 b)),
n=1

condition (*) and the well known properties of the stochas-

tic Integral, it follows that the three terms in eqn. (3)

viz,



275

h n My (X=X_ (.
{ a0 B L (T Ax (T (XX, ()

Converge in probability to
[Ia0%er T T (o) DX (8D, (6% )(-)

respectively, It follows that the fourth term in eqn. (2)
viz, nn(.) converges to an adapted increasing
process nu(.) and obviously eqn. (4) holds. The existence
of ng and eqn. (5) follows by applying the previous

argument to - X,

Proof of Lemma 3. We break up n, into its continuous

part and its purely discontinuous part denoting them
by L, and [,  respectively. From eqn. (4), equating

Jumps on either side at time s we get,

AL, (s) + IA:_n < JAX (s) + AX(s) - Axou(s)
= IAu](s)AXs

If s ¢ Al AX(s) = Axou(s). IAf,nA°(s) =0

and it follows that A[ (s) =0 .

If se¢ Au]’ but s ¢ Aﬁ, then Z&Xo (s) =0 and
again [&[u(s) =0, ¢

If se¢ Au] and s e Ai{“\A then [&[u(s) = - [§x° (s).
u

(11)

If se A,] and s¢ Ailﬂ AS then AL (s) - Zxxo(s) = -Z&XOU(S).

Note that A" M A° C AT CA]. In particular, it follows
that for every t > 0,

oL I ) AX, ()] < AL+ 2 1) IAX ()]
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{ o almost surely,

Moreover,

= - - 1 X
sgt IAu](s)Axcu(S) (sitAI“(S) sit AjnAc(s)Ao(s))

=L, () + e 1Az nAc(s) Ax_(s)

Also
n,(t) = L (t) + L, (t)

Eqn. (6) now follows from eqns. (4), (11), (12) and (13).

Eqn. (7) is proved in a similar manner.

Proof of Lemma 4. We note that A(X -X )'(s) #0 iff
' u

s € Ai U Aé i.e. when s 1is a left or right end point
of Au‘ Moreover the jumps of (Xo —Xo)+ at successive end
u

points of A, are equal but of opposite sign., Hence

sitlA(x‘,u-x‘,r'(s)l €2 sitl,\f(s)'A(xou'xo)+(5)'

+ 1A, X))

and
- + = X =X *
521 I/{(S)IA(XOU X )(s)| si;tl T A(s)lA( o, %o ()1

s{t

(12)

(13)

+ = IA:nAc(s)lA(xou-xa)*r(s) |

A

I

1 ) X_(s)
szt AunA(s 1A "usI

+ L IAﬁr‘AF(|[§X°u(s)|+|[§X0(s)|)

st

si}IAu](S)lexou(S)l
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+ £l rﬂAc(S)leo(S)l

s<t A

¢ » almost surely

because of condition (*) and lemma 3. It is easy to see

that

(XXT(E) = (XX, )(t) + (X, X, (t) (14)

and that
Xy X T(1) = sitA (X, %) T(s) (15)
Eqn. (8) follows from eqns. (14) and (15). Eqn. (9) is

proved in a similar manner.

Proof of Theorem l. a) Using proposition 1 c¢) it is easy to

see that

e A 1NAX L€ 2 A, X)) HIAK, X)) ])

< e almost surely

This proves a). The proof of b) is immediate from Lemmas (3),

(4) and the identity x = x* - x~ .
Proof of c)  To begin with we note the following pathwise

identity viz. almost surely,

+
"I OAK, (2 ¢ B AL X)* ()

" LAK K@) = 21, () AX, ()

= —sitIA](S)Axo(S) + sgtIA]-‘\.a](s)Axs (16)

_The identity is proved by verifying it separately at each
se (AL UA)DNA s¢e (AT UADNAS, se (A{UA(‘,)(']A.
We then have using eqns. (6), (7), (8), (9) and (16),
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(X = x )(t)

(X=X )¥(t) + (X=X )7(t)

(X=X, )(t) + SE;ZX(XOU-XO)*(s) + (%X, )(1)

- SE;ZX(XOd'xo) (s)

t
= £ IAud](S)dxs + (L-Lg)(t) - sgtIA](s)AXd(s)

+ I IA]'AQ_,d](S) Axs

st

which is egn. (1) with L(t) = Lu(t) - Ld(t). That L is

unique is obvious and the proof of ¢) is complete.

To prove d) we note that when (X-XO)(t) 2 0 for all
t, almost surely then Ay = ¢ almost surely and Ly =0

almost surely.
To prove e) recall that A 4= (U (h,D , ))U( U (h,Dg. ))
ud h>0 ?*“uh h>0 ’“dh
where

Duh

inf {s >h 1 (X-X)(s) <O} and

Dyn

inf {s > h 1 (X=X )(s) >0} .

From eqn. (1) and well known properties of stochastic inte-

grals it follows that almost surely

L(t A Duh) - L(tAh)=0
and L(t A\ Ddh) - L(tA h)=0

for all t > O . This proves e).

Proof of Corollary 1. We first observe that the process
f. 1 (s) dx_ - I (s) AX is a continuous
0 Al-A,] s 7 s¢ Al-A) s

semi-martingale. The condition (**) ensures that martingale

part is identically zero. Denoting this process by V(.),
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eqn. (2) follows from eqn. (1) with L'(.) = L(.) - v(.).
It follows from eqn. (2), in the same way that Theorem 1 e)

follows from egqn. (1) that L'(.) is supported outside A] .

4. The Tanagka Formula. The conditions (*) and (**) are
satisfied by all semi-martingales for certain choices of

the set A. The tanaka formula is a result of this situation,

Let (Xt) be a semi-martingale, For h > O,

let
Dlh=inf{s>htxsgo}
52h=inf{s>h:xsgo}
Let
Ai =h§0(h’Dih) i=1,2
d t) = <t s < i=1,2
an oy ( -max{s_ : eA-l}, = 1,2,

Let Alu'AQu'Ald'AQd be defined for A and A2 as A Ay

were defined for A in section 1. Let
Ajud = Ay U Ay i=1,2.

Lemma 5. For any semi-martingale X, condition (*) and (*+)
holds for the sets Al and A2.

Broof. It is easy to verify the following inequality @

For every t 20, and i = 1,2

A

LI 0] )(X)F + I[0,e)(Xs ) (Xg)™

sitl‘i](s) le"i(s)l s<t

It is well known that the RHS sum is finite almost surely ~
(see [2]). This proves (*) for A} and A,.

Ne now prove (**), Firstly it is easy to see that
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(X)) - (x)*

- X +
(x xol)(t) + sié_tA( °1) (s) (17)
(mr-(%r=-u4%nw+éﬁﬁu%r(u

Thus X© = (X-xcl)c + (x-xo )€ and from egn. (1) applied
2

to (X-X_ ) and (X-X_ ) we get
01 02

t
& = [ 1

(s) d<x®>
o} Alud] v A2udJ s

Condition (**) for A) and A, follows from the above

equation,

Lemma 6. The process L', occurring in the decomposition
of the semi-martingale X-Xal given by egn. (2), is an

increasing process.

Proof. Eqn. (2) applied to X - X, gives
1

t
sitIAl](S) /_\,xol(s) + (x_xcl)(t) =é‘ IAl](s)dXs +L'(t) (18)

Let A = {(t,u) : Xal(t-) >0, Xdl(t) > o} . Then Aj,

is an optional set with open sections and A, (C A} . Let
Ajp = A - A} so that' A} = A}y U A, . Note that Ao is
also an optional set with open sections, Let 6, and G190

be the entrance times for All» and A12 . Then

(=X )(8) = (X% (8D + XXy (8 (19)

Also,

sitIAnJ(s) '/_\‘X“n(s)l * IA12](S) IAX"lz(S)I
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=L In1(s) IAX, ()] <=

almost surely by lemma 5. Hence (*) holds for A and Ao
Also Ajp 4 = Ay, = A, and (X—Xdl2)(.) > O. Hence from
Theorem 1 c) and d) we get a continuous adapted increasing
process le(.) such that
JAN )(t) ft (s) (t) (20)
rl (s)AX_  (s) + (X=X (t) = I s)dX_ + L, (t 20
s<t A12) o), %12 o Al s 12

Let Ay, = {(t,0): xol(t-—) > 1/n, Xol(t) >1/n} n=1,2,....

Then Ay are optional sets with open sections, A, C:Alln+l

and All = nglAlln . Let 911n be the entrance times for

Ay1ne Then °lln(t) T cll(t) as n —> o , -‘We also have

t
$ I X X=X t) = [ 1 dx
s<t Ann](s)A oy1nl®) ¥ oy D) = [Ty 100

Letting n —=> « we get,

t
sitIAll]LS)Ax"ll(S) + (x-xoll)(t) = é IAll](s)dXs (21)

Comparing eqn., (18) with eqns. (19), (20) and (21) it follows

that L'(.) = le(.), which is an increasing process.

Theorem 2. For every a e R, there exists a continuous in-

creasing adapted L(.,a) such that almost surely,
(x,-a)* = (x_-a)* 4+ j‘t 1 (X, _)ax r1 +
t o 5 (a,=)\s-/%%s + sct (_m,a](xs_)(xs-a)

+ I e (X ) (Xma)T + 5 L(t,a) (22)

Proof. We first prove the case a = O. Eqns. (18) and (17)

gives
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. t
(X (X)* = [T, y(s)oX, - T In3¢%) Ax, () + L1(t)

+ L AKX )T (s) (23)

)
s<t %

where L'(.) is a continuous increasing process by lemma 6.

It is easy to see that

ad= {s:ix_>0} us (24)
where B is a scanty previsible set given by
B= {sea :x =0, x>0 u{D X, _=0,X 50h>o}
{ 1 0 Xs= 0 A } {lh Dyp- 0,

It is also easy to see that for all t 20,
X ] ¢ 1 (X, (X))t eI X X))
R e 7 Io,m) (%))
(L almost surely.

It follows from [3), page 378, that

* (s) (s) D (25)

J I (s)ax, = I Ig(s X

o B s s<t B s
Hence from eqns. (23), (24) and (25) we get

+ + t t AN
- = X dX I dx_ - 1 X s
(X)* = ()T = [ T(0,m)(Xs )% + [Tp(e)dh = 2, a1 () DX, (<)
+ T AX T (s) + (L)
s<t 1

t
= ,c/)‘ I(o,)(Xs)Xs + sE_tIB(S) JAS

-k Ta) Dx, (o) + si;tA(x°1)+ (s) + L'(t)

(206)

Using the definition of B following eqn. (24) and noting
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that the jumps of s —) (Xol)+ (s) occur at the end points

of A, we can write

Lo Ig(s) Axg - L 1A Axy (s) + o A, )T (s)

T o TN {s1%,_=0,x 50} ($)DX +s§t1A{(s) DX, )7 (s)

+ I Ir(S)A(X;l)(S)

s<t Ay

T+ I I . = < 0 h>O0 (S) Axs
s<t {olh. XDlh’ o, xDlh_ ’ }

- L I, 1(s) DX (s) (27)
s<t Al o)

It is easy to see that

1

+
sct A0 {5t x,_=0, x> 0] ()OXg + cot IA{(S) ACPRANCY

= 1 X x )t (28)
st T(==0) s-)0%

and that

}(s>Axs + LT (A%, )7 (5)

b . _
{Dlh. Xp =0, X <O t AT

sct 1h~ D)y~

B sgt IA1](S)AX°1(S) ) s§t1<0.~>("s-)("s)" (29)

Eqn. (22) for the case a = O, now follows from egns. (26),
(27), (28) and (29) with L(.,0) = 2L'(.). The case a #£0
is proved by considering the semi-martingale X - a.

We now return to our original set up. X is an arbi-
trary semi-martingale, A an optional random set with open

sections and (X,A) satisfying (%) A,s o, Ayg» o4 all are

u
as defined in section 1. L, and Ld the increasing processes
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‘occuring in the decomposition of (X-xou) and (X-Xcd) respec-
tively (see section 3, lemma 3).
Theorem 3 The increasing processes 2Lu and 2Ld are the

local times at zero of the semi-martingales (X—Xo) and —(X-Xo)

respectively,

Proof. The proof is similar in spirit to the proof of Theorem 2.
We shall do the computations only for Ly» the case L, being
similar, We first observe that

{s D(x=X )(s=) > o} =A)-B - (30)

where B is a scanty previsible set given by

B = Bl U B2
B, = {s €A, (X-xa)(s—) =0, (X-X)(s) > 0}
B, = {5 & AT (x)(s0) = 0, (X-X)(s) < O]

We also see that by the result of C.S. Chou [2], applied to

the semi-martingale (X—XO) that,
+
sgtla(s) [AX=-X_)(s)| < sit(l(_m'o](x-xc)(s..)(x.xo) (s)
* 110,0) (XX )(s=) (XX )7(s)) < = a.s.

Now applying the Tanaka formula (22) to the semi-martingale
(X-XO)+ and using eqn. (30) and Cor.l of Theorem 1 to expand

the stochastic integral, we get

t ' _
(KX )(8) = [T, J(8)aXt 1) (8) + Ip(t) + 13(t) + 3 L(£,0) - (31)

where I,(t) = -s}étIBl(S)A(X-XO)(S) + sz:-tl(_‘,,'o](x-xc,)(~'-—)(X—XC,)"(s) '

I,(t) = 's§t192(s)A(x'xo)(‘) + sgtl(o,.,,)(x-xq)(s-)(x-xa)“(.e.)
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I5(t) = —sitIAu](‘A(shﬁsxo(s)

On the other hand by Lemma 4 and Lemma 3 we get

(X—xo)"'(t) = (X—Xau)(t) + sitA(XGU-X°)+(S)

t
= é IAu](S)dXs + L (t) - SétIAu](S)Axou(S)

+ sitA(xc,u-x‘,r‘(s)

t
='(§Il\u.](5) dXs

I I -x )t
+ sit als) _x°)+(s) , OjS) A(xau X;)7(s)

{} : (xo

u

sgtIAu]r\A(S)Zxxou

LTI, (s)1 -x )t
* s<t A(s {s: (Xo -Xo)+(s) <0 s) Zx(x"u Xa) (s)
u

b IAUJ(]AC (s) [ﬁxou

st

LI (s) A =X )t (s) + L (¢t -
sct aC YA oy o) (s) u(t) (32)
Comparing eqns. (31) and (32) it is a matter of verification
to see that the second term in the RHS of (32) equals Il(t),
the 3rd and 4th terms equal 12(t) and the 5th and 6th terms

equal Ia(t). The result.follows.

Remarks : 1) One can improve the statement regarding support

of the process of finite variation L'(.), occurring in Cor, 1

of Theorem 1 at no extra cost. In fact the same proof shows
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that Supp L* C (AU A*)® where At =uU (h,D;) where
h
D;::inf{s>h:seA}.

2) If Xy = X° + My o+ Vt where (Mt) is a local martingale
and V is of finite variation, then it is easy to see that
AV _(s) + ( )(t) ft (s)
L. /AV (s) + (V-v t) = I s) dv
st © ° o Al s

Hence from Cor.l we get

1

t
L ta) (s) AM(s) + (M=M_)(t) =_(/)‘ Ipy (s) aMg + L'(t)

3) Let X and A be as in Theorem l. The condition (%)

is also necessary for (X-Xc) to be a semi-martingale. For
suppose (X-Xo) and hence X, is also a semi-martingale.

Let A  be the approximations of A, as in Proposition 1,
We note that xo is constant across the intervals of A,

and jumps only at those end points of A, which are also end

points of A. Now it is easy to see using Au =U An' that
n

t
sé; (Z&xo(s))+ IA](S) = £ IAu](S) dX° (s) < = a.s.

Similarly I ([SXU)'(S) IA] (s) ¢ = a.s. and condition (%)
st

holds.
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