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STRONG AND WEAK ORDER OF TIME DISCRETIZATION SCHEMES

OF STOCHASTIC DIFFERENTIAL EQUATIONS

YAOZHONG HU*

This note is taken from lectures at Oslo University based on the book [KP], ,
Numerical Solutions of Stochastic Differential Equations by Kloeden and Platen.
We will give a condensed presentation of time discretization schemes, strong order
estimation and weak order estimation. Besides the interest of the subject itself, we

would like to give a much simpler proof of the weak estimation scheme.

Thanks are due to Prof. B. 0ksendal for bringing him to this subject, Profs.

M. Emery, P.A. Meyer, P.E. Platen and Marta Sanz for comments and Profs. M.

Emery, P.A. Meyer and Marta Sanz for editorial help.

1. General Ideas. Let Bl, ... Bm be m standard (real) independent Brownian
motions on some time interval [0, T] (bounded, and kept fixed below). Let

(5~,.~’, P) be the canonical Wiener space with the natural filtration 
On ]Rd consider the following stochastic differential equation in Ito’s sense

(1.1) Xt = x + 03A3t0bj(x,Xs)dBjs , t ~ [0,T] , x ~ IRd ,

0

where bj are some given regular functions from [0,T] x IRd to md, and we use
the convention dB0s = ds to simplify notation.

A time discretization method consists in dividing the interval [0,T] into

smaller subintervals, applying the Ito-Taylor formula (to be described later) on
each subinterval, keeping a given number of terms, and piecing out these approx-
imations to get an approximate solution. We then expect these approximations
will converge to the true solution when the subintervals become finer and 

finer.

To describe the Ito-Taylor formula, we introduce the following operators on

functions h : [0, T] x IRd ~ IR

(1.2) Ljh(s,x) = 03A3bkj(s,x)~h ~xk(s,x), j = 1,...,m,

L0h(s,x) = ~h ~s (s,x) + 03A3bk0(s,x) ~h ~xk(s,x)
* Supported by an NAVF postdoctorship, Department of Mathematics, Univer-

sity of Oslo, POB 1053, Blindern, N-0316 Oslo. Institute of Mathematical Sciences,
Academia Sinica, WuHan, China.
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(1.3) + 1 203A303A3bkj(s,x)blj(s,x)~2h ~xk~xl(s,x),

where bj is the k-th component of the vector bj (k =1, ... , d).
Consider a partition of the interval [0, T] , 0 = to  ti  ...  tN = T and

put 03B4 = supi(tz+i - ti), the step of the partition. On each subinterval [tn, 
we may write (1.1) as

m t 
(1.4) bj (s, Xs) dBs .

j=o tn

For a sufficiently differentiable function h : [0, T] x IR,, an application of
the Ito formula to h(t, Xt) gives

(1.5) h(t,Xt) = h(tn,Xtn) + 03A3ttnLjh(s,Xs)dBjs .

This is the first order Ito-Taylor formula. To define higher order Ito-Taylor formulas
we introduce the following notation

a = (ai, ~ ~ ~ ai) (0  ai  m) (a multi-index) ,
d (a) = l, n(a) = the number of zeroes among ai, ... 03B1l ,

(1.6) (j~ -1~ ... ~ d)~ ... 

(1.7) = / 
...si 

9(sl) dBs 1... ,

where g(. ) is an adapted process. We put simply = Ia in the case
g( . ) = 1. These are the standard multiple integrals (including dt ). They replace
the monomials in the classical Taylor expansion.

Now the general scheme for Ito-Taylor formulas is the following : In formula
(1.4), we apply the Ito formula (1.5) to some processes bj (t, Xt) - usually to all,
but the coefficient bo(t, Xt) may play a special role. Then in the new formula we
apply again (1.5) to some coefficients of the stochastic integrals, etc. Then we get
a general formula with the following structure of a main term plus a remainder
(1.8)
Xt = Xtn + L fa(tn~ Xtn)Ia,tn,t + ~ (t E ,

aEr aEr’

The "main term" is a sum over a finite set r of multi-indices, which has the
following property : if a = (ai, ~ ~ ~ al) E r, then -a : = (a2, ... , al) E r. On the
other hand, r’ is the set {a : a ~ r, -a E r} . This structure comes from the fact
that each term is obtained by applying (1.5) to a preceding term.
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Now a so called discretization scheme is obtained by discarding the remainder
in (1.8). Since Xtn is not known in the recursive computation, we replace it by its
approximation Y~, (Throughout this paper we will omit its explicit dependence
on partition 7r to simplify notation), and then we get the following approximation
scheme, starting at Yo = x

(1.9) Yt = Ytn + L f03B1(tn,Ytn)I03B1,tn,t , (t ~ [tn,tn+1]) .

aEr 

This recursive formula lends itself to explicit computations (the multiple
integrals can be even handled by a computer). In practice we have to choose which
terms are included in r. The concrete choices for strong and weak convergence
scheme are different. See the details below.

2. Strong approximation scheme. We give ourselves a parameter (denoted 03B3
in [KP)) which is called the strong order of approximation, and which is an integer
or half-integer. Our purpose is to have a norm estimate like (2.1) below. Then the
number of terms to take in the Ito-Taylor formula, i. e. the choice of r, is

r = (a + n(a)  2y or l(a) = n(a) _ ~y + 2 } . .
Then we have the following theorem - denoting by C as usual some constant
whose precise value doesn’t interest us, and may change from line to line. It may
depend on several parameters (T, ~y, ...) but never on the partition (ti) . .

THEOREM 1. Let 03B3 be defined as above and let Yt be defined by (1.9). Assume
that for a E ,A~y the coefficients fa defined by (1.6) satisfy Lipschitz conditions

I ~ ~ C y~

and
’ I fa(tn) I  ~‘(1-~’ (x~)

for all t E [0, T] and x, y E ]Rd. Then we have

(2.1) IE( sup IXt - Yt~2  .

otT ’

To prove this theorem we need two lemmas.

LEMMA 1. Let g(s) be an adapted process. When l(a) = n(a), t E [tn, ,

(2.2) sup C(t - tn)l(a) _ 1~2 ( t I2d~, 1~2 tn

and when n(a) , ,
t

(2.3) IE sup [~(.)]t.,.)’  C (t - l2du .

tn
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Here C may depend on a, but since a ranges over a finite set Ay this

dependence is not important.

PROOF. 1) By the definition (1.7), l (a) = n(a) means that there is no stochastic
integral in Ia [g(~)]tn,s . Formula (2.2) is obvious.

2) When (o;) 7~ n(a), we prove (2.3) by induction on the length lea) of
a. We define a- := (al, ~ ~ ~ al) if ’ a = (al, ~ ~ ~ al, al+1) . The case l ( a ) = 1
is easy by discussing n(a) = 0 and ~(of) ~ 0 separately. For the passage from
a- = (03B11,..., 03B1l) to 03B1 = (03B11,...,03B1l, 03B1l+1) we also handle al+1= 0 and 03B1l+1 ~ 0
differently. In the first case Ia = ftn . Thus by Holder’s
inequality 

"

E sup (Ia [gB’)]tn~s)2 ~ C(t - tn) / t tn

~ C(t - tn)l(03B1-)+n(03B1-) ttn stn IE|g(u)|2duds

(2.4) ~ C(t - tn)l(03B1-)+n(03B1-)+1ttnIE|g(u) |2du.

But in the case = 0, l(03B1) = l(03B1-) + 1, n(03B1) = n(03B1-) + 1. So l(03B1-) +
n(a-) + 1 = d (a) + n(a) -1. This shows (2.3) in this case.

When al+1 ~ 0, = ftn . By Doob’s inequality,
we have 

"

E sup  C / t tnst tn

~ C ttn (u - tn)l(03B1-)+n(03B1-)-1 utnIE|g(v)|2dvdu
(2.5) ~ C(t - tn)l(03B1-)+n(03B1-)ttnIE|g(u)|2du . 

But in this case l(03B1) = l(03B1-) + 1 and n(03B1) = n(03B1-). Thus l(03B1-) + n(03B1-) =
l (a) + n(a) -1. This proves (2.3) in the case a~+1 ~ 0 . ,

LEMMA 2. Let g(s) be an adapted process. Put n(s) = n if tn  s  tn+1 and

n(s)-l

(2.6) F03B1t := IE(sup|03A3 I03B1[g(.)|tm,tm+1 + I03B1[g(.)|tn(s),s|2) .

Then

(2. 7) F03B1t ~ { C03B42(l(03B1)-1) t0 R0,udu l(03B1) = n(a)
C03B4(l(03B1)+n(03B1)-1) t0 R0,udu l(03B1) ~ n(03B1),
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where

(2.8) R0,u := IE ( sup |g(s) |2) ~ ~ .

osu,

Again C is independent of the subdivision but may depend on a . .

PROOF. The case L(a) - n(a) is easy. We only need to discuss the case

l(a) ~ n(a) . When the last index of a isn’t equal to 0, in the sum of (2.6)
the multiple integral is a martingale. By Doob’s inequality, we have that

m(t)-1 

Ft ~ C ~ ~ Ia + Ia 
m=0

n(t)-1
= C ( 03A3 [IE |I03B1[g(.)tm,tm+1|2] + IE|I03B1[g(.)]tn(t),t|2 ) .

m=0

Estimating the second moment of each of the above multiple integrals on each
interval by Lemma 1 (2.3) and then taking the sum we will get the desired
inequality (2. 7) .

If the last index of a is 0 we have

n(s)-1

| F03B1t |2 ~ 2CIE( sup 03A3 I03B1[g(.)]tn,tn+1)2 + 2CIE sup|I03B1[g(.)]tns,s}2.
~ 

ost n=o , 

’ 

0st t 
~ ’

We estimate separately these two terms. The first one is

r

2CIE ( sup 03A3I03B1 [g(.)]tn,tn+1)2.
0rn(t)-1 n=0

Now 03A3rn=0 Ia [9(’),tn,tn+1, r = 0,..., n(t) -1 can be considered as a discrete
martingale and we can then use Doob’s inequality to complete the proof as in the
case the last index isn’t equal to 0. The second term can be handled as follows

(see Kloeden and Platen’s book, p.37o) :
s

IE sup ~ sup / 0st ost t9
s

= E sup (s - rts) / 0st t8
t

~ b % ~~ja-~9(’~~t8,s~2ds.
Applying Lemma 1 to estimate IE~ (g’(’)~ts,s (2 we get the result. ,
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REMARK. A Lp version of lemma 2 is proved in (HW~, Lemma 4.1.

PROOF of Theorem 1. From (1.8) and (1.9) we have

(2.9) Z(t) = lE sup Ys ~2  C( ~ Rta + ~ Ut ,

where Rt and Uf are defined and estimated as follows :

n(s)-1

(2.10) Rt := IE sup I ~ Ia - 

Ost m=0

+ I03B1[f03B1(tn(s), Xn(s)) - f03B1 (tn(s), Ytn(s))]tn(s),s |2)
~ Ct0 IE sup |f03B1(tn(s), Xn(s)) - f03B1(tn(s),Ytn(s)|2du ~ C t0 Z(u)du.

0 0

n(s)-1

U03B1t := IE( sup | 03A3 I03B1 [f03B1 (., X.)[tm,tm+1 + I03B1 [f03B1(., X.)]tn(s),s|2)
(2.11) ~C03B403C6(03B1),

where 03B1 ~ A’03B3 and

(2. 12) 03C6(03B1) = { 2(l(03B1)-1 : l(03B1) ~ n(03B1) .l(03B1)+n(03B1) -1 : l(03B1) ~ n(03B1)
Since 03B1 ~ A’03B3 which implies 2 (l(03B1) -1) > 203B3 if l(03B1) = n(03B1) and l(03B1)+n(03B1) -1 ~
2~y if l(a) ~ n(a) we have

(2.13) Ut  

From (2.9), (2.10) and (2.13) we have

Z(t) ~ Ct0Z(u) du + C03B4203B3 .

Then we deduce the theorem from Gronwall’s inequality. ,

REMARK. Let us return to Lemma 1, Formula (2.3). In next section we will need
the following extension to higher moments : If lE  ~, then

(2.14) E sup (Ia ~ C(t - .

tnst

The easy proof is left to the reader.
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3. Weak Ito-Taylor scheme. Now we want to treat the weak convergence
rate problem, that is to say, to estimate 1Ej h(XT) - h(YT) ] ~ for a continuous
function h of polynomial growth. Note that the absolute value sign is outside
the expectation. We could also estimate I 1Ej h(Xt) - h(Yt) ] ( without
essential modifications. To get a weak convergence rate of order, (here, an
integer), we take from now on

r = ~~y = {a, l (a)  ’Y} .

Then we put 

We have the following theorem.

THEOREM 2. Let, be an positive integer. Assume that all coefficients bj
(j = 0, 1 , ... m) are Lipschitz continuous and their components belong to C~~~’+1)
(the space of functions from IRd to lR, whose derivatives of order  2(~y + 1)
are continuous and of polynomial growth). Assume that for all a E r, , f a =
L«1... ~ define by (1 . 6), is of linear growth :

I fa (x) I _ C(1 + .

Then for each h E C~~~+1) there is a constant Ch independent of 8 such that

(3.1) h(YT) ] I _ Ch ~~ .

We need two lemmas to prove this theorem. We introduce the following
notation : Xs,x. is the solution of the s.d.e.

(3.2) Xs,xt = x + 03A3 t0 bj(Xs,xr) dBjr , s ~ t ~ T

and put Xs = for tn  s  tn+1. .

LEMMA 3. Let /(-) be adapted and for any 1  p  oo .

Then for tn  t  tn+l , , 
~ ~

(3.3) _ t >
where and in what follows denotes a positive generic random constant
independent of partition (which may vary from line to line) such that  oo

for any 1  p  oo.

PROOF. Easy.
LEMMA 4. Under the assumption of Lemma 3, we have for tn  t  tn+l,

(3.4) := _ 
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PROOF. We shall prove this lemma by induction on l (a) It is easy to see that
(3.4) is true when l(a) =1. Let (3.4) be true for L (a}  k. We are going to prove
that it is true for l(a) = k + 1.

Let l(a) = k + 1. Applying the Ito formula (1.5), we have

_ 

m t 
, _ ,

h(Xt) - h(Ytn) = ~ f , tn - t - tn+1.
j=o tn

When al = 0 ( 1(a) = k+ 1 ), by the Ito formula (1.5), Lemma 3 and the induction
assumption we have

|M03B1| ~ ttn |IE{[h(s) - h(Ytn)]I03B1-[g(.)]tn,s|Ftn}|ds
+ttn|IE{[L0h(s) = L0h(Ytn)]I03B1[g(.)]tn,s|Ftn}|ds

+ ttnIE|L0h(Ytn)~IE{I03B1[g(.)]tn,s|Ftn}|ds

(3.5) ~ C(03C9)(t - tn)k+1 + ttn|IE{[L0h(s) - L0h(Ytn|I03B1[g(.)]tn,s|Ftn}|ds.

Applying (3.5) repeatedly, we obtain

|M03B1| ~ C(03C9)(t - tn)k+1 + tn~s1...sk+1t|IE{[(L0)k+1h(s1)
-(L0)k+1h(Ytn)]I03B1[g(.)]tn,s1|Ftn]|ds1 ...dsk+1.

Now it is easy to see that the conditional expectation inside the above multiple
integral is in LP for any 1  p  oo . This proves (3.4) for al = 0. In the same
way we can prove (3.4) for 0 a

PROOF of Theorem 2. Set = (see (3.2)). Then for h E
we have u(s, .) E C~2~+1~ (this can be shown easily by Malliavin calculus

for example). We have IE[h(XT)] = and

IEu(tn, = IEn(tn_1, n > 1.

We compute the following expectation

~ ~[ h(YT) - h(XT) 1 ~ _ ~ YT) - XO)] ] ~ = YT) - Yo) ] ~ [
N N

 I = J I
n=1 n=1
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(3.6) = | IE 03A3u’(tn,Xtn-1Yn-1tn)(Ytn - Xtn-1Yn-1tn)
n=1

- - 1 N t~,, Ze~’1’1,) >

2 n=1

where u’ and u" are derivatives of u(s, x) w.r.t. x, := + 

and 0  8  1. By (2.14) we know that the last term is dominated

by the sum of

)4 )112 ~ C ~ ~9

 C £ (t~,+1 - tn)2~1~a)+n~a)))1~2  C (tn+1 - .

03B1~B’03B3 03B1~B’03B3

But when a E we have L (a) > ~y + 1, so the last term of (3.6) is at most

.

As for the first term of (3.6), first we note that by the assumptions of Theorem

2, we have sup0~t~T|f03B1(t,Xt)|p  ~ for any 1 ~ p  ~ and 03B1 ~ B’03B3. We have

l

(3.7) ~ | IE 03A3 u’(tn,Ytn-1)(Ytn - Xtn-1Yn-1tn) |
n=1

+ I IE I ~
n=i

By Lemma 4, the second term of (3.7) is dominated by

03A303A3 |IE{IE([u’ (tn,Xtn-1,Yn-1tn) - u’(tn,Yn-1]I03B1[f03B1(. ,X.)]]tn-1,tn |Ftn-1)} |
n=1 

.

N N

 £ - ~ C ~(tn ~ 

This gives the necessary estimate for the second term of (3.7). It is easy to see
that the first term of (3.7) is also dominated by C6’~ . This proves the thoerem.

1
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