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Meyer’s Topology and Brownian motion in a composite
medium

Weian Zheng
Department of mathematics

. University of California, Irvine, CA 92717, USA

Resume-- On associe au probleme de propagation de la chaleur
dans un milieu composite un processus de diffusion qui est une
semimartingale. On étudie surtout le probleme de Stefan.

1 Introduction

Let’s first consider one dimensional case. When we consider heat transfer on an
infinite rod, we use real line (-00, oo) to replace the rod. Suppose that -oo =
xo  xl   oo are n+2 points such that each interval Ii = xt+1)
is made of one material. Then the temperature u(t, x) satisfies the equation (see
[12] [17])

ai ax2 ( ~ l ~ l Zi  Z  +

subjected to the boundary condition

= ki 8x a + u(t’ 2 = 1, ..., n, .

and the initial condition

u(x, 0) = ~~ (x), x~  x  x~+1

11991 Mathematical Subject Classification: Primary 60J65; secondary 60J60, 60J35,
58G32, 58G11. 
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where we use ~ ~x- (~ ~x+) to denote the left (resp. right) derivative. ki is the thermal .
conductivity and as is the thermal diffusivity of the material of which is made.
To compare with the engineering literature ([12] [17]), we put a constant factor
2 in (1) and thereafter for the convenience of probabilists. In fact, the standard
Gaussian density satisfies (1) when ai = 1.

The above boundary problem may be formulated in terms of Dirichlet forms
(see [11], [1], [2] for examples). Let be a collection of disjoint simply con-
nected open sets (made of different materials) in Rd and are their closures

respectively. Suppose (J: Ai = Rd. Let ai and kt be the termal diffusivity and the
thermal conductivity of the material of which A; is made. Denote

a(x) = b(x) = IAi(x). (1)
i=0 =_~ ai

We call b; = intrinsic thermal conductivity. Then the temperature u(x, t)
satisfies the heat equation

- a u = 1 203A3b-1(x)~ ~xj[a(x)b(x)~ ~xj u].

It is well known that there is a symmetric diffusion process {Xt}t with generator
(see [6])

f = -b 1 _1 (x) 
a a 

f (x)] (2)

such that Xt has t) as its density function with respect to b(x)dx. Generally
speaking {Xt}t is just a Dirichlet process. However we will prove in Section 2
that {Xt}t is a semimartingale when the complements have locally finite
lower Minkowski contents [21] [3]. More precisely the following Skorohod type of
decomposition holds:

(3)

where Bt is a standard Brownian motion and Lt is a process of bounded variation
supported only on the boundaries ~~ A difference between the ordinary re-
flecting Brownian motion and the process constructed here is the latter may cross
the boundaries (Ji 

Then we show in Section 4 that there is a martingale process associated to
Stefan’s moving boundary problem. The moving boundary is the set of all the
discontinuous points of the clock of that martingale and the density function of
that martingale is related to the enthalpy. We hope that further studies will enable
us to get more information about the free boundary.
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Meyer’s pseudo-path topology for weak convergence is the major tool for prov-
ing the above diffusion process is a semimartingale in Section 2. Let’s recall the
latter here for the readers’ convenience. Given a sequence of semimartingales

Xtnl = + + c [o, r]

where are martingales with 0-initial values and are pro-
cesses of bounded variation such that 

’

sup -I- | + Var[0,T][A(n)]}  oo. (4)

Then their laws are tight on T] under seudo-path topology. Moreover, any
of their weak limit is still a semimartingale 16] [10]. .

2 In a fixed composite medium

In [21], we introduced a condition (C.1) to the boundary of a domain, under
which we proved reflecting Brownian motion in that domain is a semimartingale.Z.Chen [3] independently proved the same result under the condition that the
domain has finite lower Minkowski content. It is easy to see that if we allow
to take any subsequence instead of the special sequence in (C.1), then the finite
lower Minkowski condition is equivalent to (C.1). So let us recall the definition
of Minkowski content here. Let m(.) be the Lebesgue measure. Denote for each
bounded set F,

Fr = {x E Rd, 0  r}.
We say that a set F has locally finite lower Minkowski content if

liminf m(Fr ~x~  n}) 
 o0 5

r-o r 
( )

for each fixed n.

Theorem 1 If each bounded set only intersects a finite number of and if all
(Ai)C has finite lower Minkowski content, then Xt with genemtor (~ is a semi-

martingale with the decomposition

Xt = t0a(Xs)dBs + Lt

where Lt is a process of bounded variation. Moreover, Lt is supported only on
Ui 8Ai.
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Proof. Without losing generality, we assume that each Ai is bounded and
r = gives the lim inf in (5). Let be a sequence of C~ functions such
that

1) = 1 when |x|  n and = 0 when |x| > n + 1;
2) ~  ~n(x) - 1 and SUPn 2.
Denote by the Stein’s regularized distance function to A= (see Lemma 2.1

of [21] ). Take a decreasing function fm(r) E C°° for each integer m such that

f m ( U ) =1 , fm(s) =o ( dS> 1 m).
Let

(1 - ~n-1(x)) + 4’n(x) 
i

and

b x - 1- x + nx 
ki

fm(03B4i(x)) .

i *

Then and bm,n(x) are differentiable. Denote by the diffusion process
associated to the Dirichlet form

on L2(Rd, bm,n(x)dx). By [13], we know that {{X~m’"1}}m converge weakly to the
diffusion {X9n~ } associated to the Dirichlet form

+ ~)~))(1 - + a
on L2(Rd, (1- + On the other hand,

dX(m,n)i = dMm,nt + 1 b-1 
where {Mm,n} are martingales with bounded quadratic variations and the drift
parts satisfy the inequality:

El T (X(m,n)s)~ ~x[-1m,n(X(m,n)t)bm,n(X(m,n)s) l ldsl

~ Cl,nTl / + / 
 C2,nT (6)
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where Ci,n and C2,n are constants independent of m and T. The last inequality
is from Lemma 2.2 of [21] and the remark we gave before the description of this
theorem. Therefore from (4) we know the laws of form a tight
sequence under Meyer’s pseudo-path topology on D[0, T] and any limit process
is still a semimartingale. Thus is a continuous semimartingale. Since

xin) = before they hit the ball {x, Ixl  n}, we get (3) when n ---~ oo. As
{Xt}t is just ordinary Brownian motion while it stays away from ~i aAi, we get
the last conclusion of the theorem..

3 Regularizing enthalpy
Let’s consider the case where some phase transitions are involved. Suppose there
are n + 1 possible phases with their thermal diffusivities and intrinsic
thermal conductivities respectively. Suppose are the fusion

temperatures between the (i - l)-th state and the i-th state and suppose ui = 0.
Denote

n-l

= + L + 
i=1 

’ ’~ ~’

and
n-i

a(u) = + L + anI(un, oo)(u).

Let Li > 0 be the latent heat of fusion at temperature ui. Then an enthalpy
function is defined by

(7)
~ 

{t, 

and the temperature u(x, t) satisfies the following equation in the weak sense:

~ ~tH(u(x,t)) -1 a 
[b(u(x,t)) a(u,(x,t))

a 
uxt 8

with the initial condition u(x,O) = uo(x) (see f5], [9], for example).
Withou losing generality, we will assume = 1. In fact, we may always

realize that assumption by changing the variable u to

v(x,t) = u(x,t)0 a(03BE)b(03BE)d03BE.
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See (p.497, [11]) for details. Thus (8) becomes

~ ~tH(u(x,t)) = 1 2~2 ~x2ju(x,t). (9)
Since H(.) is a function with jumps, (9) should be understood in the sense of

distribution. Now let us regularize it. Denote by Jm,v(u) the regularizing sequence
of the 6- function at v + 2m such that Jm,v (u) E Ca [v, v + ,~~ and J Jm,v (u)du =1.
Let

n u

bm(u) = bo + ~(bi - bi-l) / 
i=1 0

Denote Lm(u) = and = + Lm(v))dv. Then 
and Hm(u) are smooth functions tending to b(u) and H(u) respectively on their
continuous points. Thus (8) is regularized to

(bm(u(x,t)) + Lm(u(x, t)))~ ~tu(x, t) = 1 2 ~2 ~x2u(x, t). (10)

Denote = u-1Hm(u) and am(u) = p-1m(u). Then the above equation becomes
Fokker-Planck equation (see Lemma 1 of [23]):

u~ ~tpm
(u) + pm(u

)~ ~tu 
= 1 2

~2 ~x2j
u. (11)

We also give a restriction on the initial value (z) through the following assump-
tion. We assume that there is a sequence of functions -~ a.e. such

that = 1; 2) are uniformly bounded
in m.

Let um(x, t) be the solution to (11) with the initial condition 0) = 
Then it is not difficult to see that for each fixed m, t)pm(um(x, t)) is the
density function with respect to Lebesgue measure of a Markov diffusion process
with the following decomposition:

Xm,t - Xm,0 = t0am(um(Xm,s, s))dWm,s (12)

where {Wm,s}s is a d-dimensional Brownian motion (see [8]). Since am is bounded,
the laws of are tight and any limit process is still a continuous martingale
([22])
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4 Towards Stefan’s problem
Now let us consider in more details the limit process. By (12) and Ito’s formula,

E lUm xm,t , t)Pm Um (xm,t , t) ) 1 ~ E lUm (xm,0 , 0)Pm (Um (xm,0 , o > >j
t a

= t0 E{ ~ ~s (um(Xm,s,s)pm(um(Xm,s,s)))}ds

+ t0 E{1 2pm(um(Xm,s)) ~2 ~x2j [um(Xm,s,s)pm(u(Xm,s,s))]}ds.3 
0 Pm Um m,s Xj

That is,

ElUm xm,t, t)Pm (Um xm,t , t) )1 2014 ElUm xm,0, 0)Pm Um xm,0 , o) )i

= 1 2 t0 um~2 ~x2j [umpm(um)]dxds

+ t0 umpm(um)~ ~s(umpm(um))dxds
= 1 2 t0um~2~x2j [umpm(um)]dxds

+ 1 2 t0umpm(um)~2 ~x2jumdxds
= - t0 (bm(um) + L(um)) ~ ~xjum~ ~xjumdxds.

Since E[um(Xm,t, t)pm(um(Xm,t, t))] > 0, b(um) > 0 and L(um) > 0, we deduce

sup{03A3 t0 |~ ~xjum|2dxds} ~sup{u(0)m(x)pm(u(0)m(x))}  ~. (13)
m ; o ; m,x

Define on [0, T] x Rd a Hilbert space H with the norm

~ f ~= T0|~ ~xjf(x,s)|2ds dx+ T0|f(x,s)|2dsdx.
;_~ 

o ; 0

Then from (13) , um(., .) is contained in a bounded ball in H. Since H is reflexive,
the bounded ball in H is weakly compact. So we can find a weakly convergent
subsequece still denoted as um (z, t) such that um converge weakly to some u e H.
Furthermore, it is standard to find an almosl everywhere convergent subsequenceon
of (um)m in the space-time (see [7] and [23] for details) and denote by u(z, t) their
limit. Thus we conclude our discussion with the following
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Theorem 2 There is a martingale diffusion process

Xt = Xo + ~ 
with the enthalpy H(z, t) as its density function with respect to Lebesgue mea-
sure. In the above formula, IVt is a standard d-dimensional Brownian motion. The
generator of Xt may be formally written as

1 2uH-1 (u(x, t)) ~2 ~x2j.
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