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Abstract. The purpose of this paper is to compute the asymptotic probability that
the solution of a stochastic differential equation with boundary conditions belongs to
a small tube of radius € > 0 centered around the solution of the deterministic equation
without drift.

1 Introduction

Let {X;,0 <t <1} be a continuous stochastic process defined on the Wiener space
(R, F, P). Given a smooth function ¢ belonging to the support of the law of X, we
are interested in the asymptotic behaviour as € tends to zero of the probability that
X belongs to a tube of radius ¢ around ¢.

If X is the standard d-dimensional Wiener process, and ¢ has a square integrable
derivative, we know that the probability P (| X — ¢l < €) is equivalent to

=\ 62 1 1.
cre M/ exp (——2-/0 ¢3ds) R
as ¢ tends to zero, where ¢; is a constant, and ), is the first eigenvalue of the Laplacian
in the unit ball. More generally, if X is the Wiener process with drift b, then we have

P(IX = $lleo < €) ~ 1™/ exp ( /0 ' L(43,,¢,)ds) €l (1.1)

where
Iz,y) = ~5 ) — = - 3(div ()

This is true if the drift b belongs to CZ(R¢), and ¢ is an arbitrary function in the
Cameron-Martin space (cf. Ikeda and Watanabe [3]) and [10]).

The functional L(¢, ) appearing in (1.1) is called the Onsager-Machlup functional
of the process X. In [1] we have computed this functional for the Brownian motion
with drift, and assuming that the initial value is a random functional of the Brownian
path. In this paper our aim is to compute the functional L(¢,¢) when the process
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X satisfies a stochastic differential equation with boundary conditions, of the type
studied in the references [7] and [3]. Like in [1], the main ingredient in computing the
Onsager-Machlup functional will be a noncausal version of Girsanov theorem, due to
Kusuoka (cf. [4]). The next two sections will be devoted to the computation of the
Onsager-Machlup functional for first order and second order stochastic differential
equations, respectively.

2 Onsager—Machlup functional for stochastic dif-
ferential equations with boundary conditions

Let w = {w;,0 < t < 1} be a d-dimensional Brownian motion defined on the canonical
probability space (€2, F, P), where Q = Co([0,1],R?). Suppose that f,g : R? — R?
are two continuous functions. Consider the following stochastic differential equation:

{ Xi=Xo— Ef(X)ds 4w, , 0<t<1

Xo = g(Xl - Xo) (2'1)

That means, instead of giving the initial condition Xy, we impose some nonlinear
relation between Xy and X;. This functional relation could have been written in
the more general form h(Xg, X;:) = 0, but the above condition is more suitable for
our purpose. The existence and uniqueness of a solution to equation (2.1), and the
Markov property of this process have been studied in [7].

Using Theorem 2.3 below, it is easy to prove that the support of the law of X is
the set of continuous functions u in C([0,1], R?) satisfying the boundary condition
ug = g(u1 — ug). Then, smooth functions in the support are of the form ¢ — g(¢1)
where ¢ belongs to the Cameron-Martin space H'. We recall that H' is the subspace
of functions ¢, = f; ¢,ds, and ¢ € L?([0,1],R%).

Given an arbitrary function ¢ in H!, we are interested in the evaluation of the
asymptotic behaviour as € tends to zero of the probability that X belongs to a tube
of radius € around a smooth functions of the support, namely

J(@)=P(IX -8-9(d1)lle <), (2.2)

where || - || denotes the supremum norm in . This will provide the computation of
the Onsager-Machlup functional.

In order to compute the asymptotic behaviour of J¢(¢), we will apply a generalized
version of Girsanov theorem that has been used in [7] to study of the Markov property.
For this purpose we introduce the process Y = {Y;,0 < ¢ < 1} which is the solution
to equation (2.1) when f is zero. That means,

{ Yi=Yo+w, ,0<t<1

Yo = g(¥i — Yo) (2:3)

Clearly, Y; = w; + g(w1).
We define the transformation T': 2 — § by

we + /0 " Flws + gw1))ds (2.4)

wit [ F(¥u()ds.

T(w)q
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We will assume the following conditions.

(h1) f,g:R?— R? are continuously differentiable functions.
(h2) The transformation T' given by (2.4) is bijective.

(h3) We have
det(I — @19'(w1) + ¢'(w1)) # 0,

a.s., where {®,,0 <t < 1} is the fundamental solution of the linear system

dq)t = —f’(Yt)qndt
Qo = I

In (7] some sufficient conditions on the functions f and g are given for the hy-
potheses (h1) to (h3) to hold. An example of such conditions would be:

a) f is a monotone function of class C? such that

1
lim - = 0.
oim, g sup 1f(z)| =0

b) g is a monotone function of class C* and there exists a constant C > 0 such that
lg(z)] < C(1 + |=])-

The bijective property of T is equivalent to the existence and uniqueness of the
solution to equation (2.1).

As it is proved in [7, Theorem 3.6], under hypotheses (h1) to (h3) one can apply
a generalized version of Girsanov theorem due to Kusuoka [4]:

Proposition 2.1 Suppose that hypotheses (h1) to (h3) hold. There exists a proba-
bility Q on (9, F) such that QoT~! = P (namely, T(w) is a Brownian motion under
Q), and Q is given by

% = |det(I — B1'(wr) + ¢'(w))]

1, ., 1 1p ) }
xewp {5 [ T - [ 1) 0doi =3 [ If(XPat},
where J§ f(Y:) o dw; denotes the extended Stratonovich integral (cf. [6]).

We can state now the main result of this section.

Theorem 2.1 Suppose that the above hypotheses (h1) to (h3) hold, and, in addition,
the following conditions are satisfied:

(h4) f € C}(RRY).
(h5) det( — ¢'(z)) #0, a.e.
(h6) Either g is linear (g(z) = Gz) or ¢ is of class C}.
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Then, for any ¢ € H', we have

P(”X -¢ —g(¢l)"oo < 5) ~ L1(¢1)€—%
x| det(I — ®1()g'(¢1) + 9'(61))]

xexp (3 [ T b+ g@)it = 3 [ b+ 9(8) +dia),

as € | 0, where )\, is the first eigenvalue of the Laplacian in the unit ball, f; is the
associated eigenfunction, and

Li¢) = [ A (@A + g (0)u)du.

{lg'(¢1)ul<1,|(I+9'(¢1))ul<1}

Proof: Fix a function ¢ € H'. Consider the transformation T% :  —  defined by

Td’(w),

1l

wot gt [ St 8t glen +)ds (25)
= kbt [ F(Y(o+9)ds.

In other words, T%(w) = T(w + #). Applying Proposition 2.2 and the ordinary
Girsanov theorem one can show that there exists a probability @* on (2, F) such
that Q¢ o (T%¢)~! = P (namely, T%(w) is a Brownian motion under Q%) and

dQ? . '
9P = |det(] — @1(w + ¢)g' (w1 + ¢1) + ¢'(w1 + 1))

xexp (5 [ Tef (Bl + 8)dt = [ Sl +9)) 0 du
1. .
= [} o= 5 [ 1w + ) + it}
The process Y (w + ¢) satisfies the equation

{ Yiw+¢) =Yo(w+8) + T#w): — fs f(Ys(w+¢))ds , 0<t<1

Yo = g(Y; — Yo) (2.6)

Therefore, the law of the process X under the original probability P coincides with
the law of the process Y (w + ¢) under the probability Q¢. This allows us to write the
functional J¢(¢) in the following form

J(#) = P(IX -¢-9(¢1)lleo <€)

QY (w+¢) = ¢~ 9(d1)lleo < €)
Q*(lw + g(wr + ¢1) = 9(¢1)leo < €)-

Define the set
Ge = {|lw+ gg(wr1)lloo < €},
where g4(z) = g(z + ¢1) — 9(é1). Then J(¢) can be written as

f@)=z%§§wgma)
= ay(€)as(e).

In order to prove the theorem it suffices to prove the following facts:
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(C1)
lciﬁ()lal(e) = | det(I — (®1(¢) — I)g'(¢1)|

xexp {3 [ Tef (@t - 5 [ F09) + b}

(C2)  limeoeFag(e) = Ly(4y).

Proof of (C1): Consider the following Wiener functionals:
Ar(w) = [det(I - (1(w) — I)g'(wn)]
1, 1 -
xexp (5 [ Tef (vt - 3 [ 1F(¥iw)) + diat}

Aaw) = exp {= [ f(¥io + 8)) 0 dir}

Asw) =exp{~ [ buder}.
We have
|E [(a1(€) — Ar(8))IGe|
= |E[(Ai(w + ¢)A2(w)As(w) — Ai(9)) | Gell

< (B (Ao +¢) - 4:(8)7 16)" (ElAs(w)* As(w)? | G.])
+A1(9) |E[Ax() As(w) | G] - 1].

1/2

Therefore, the proof of the convergence (C1) reduces to establish the following three
facts:

imE [(Ay(w+¢) - Ax(9)) | G =0, 2.7)
s€1>1[o> E[(A243)* | G < oo, (2.8)
lim E[A,45 | G = 1. (2.9)

The convergence (2.7) is immediate because A; is a continuous functional of w,
and on the set G we have |g(w; + ¢1) — g(¢1)| < € and, therefore, [|w||o < 2¢. We are
going to prove the relation (2.9) and the proof of (2.8) would follow the same lines.
Using the arguments of Ikeda and Watanabe ([3], page 449), which are still true if we
condition by the set G, instead of {||lw|l < €}, in order to prove (2.9) it suffices to
show that for any ¢ in R, we have

lims{llltl)) E [exp (c/ol f(Yy(w+¢))o dwt) | GC] <1, (2.10)
lims:(;))E [exp (c/o1 d'ndw,) | GC] <l1. (2.11)

The inequality (2.11) follows from the results of Shepp and Zeitouni (cf. [10]) if we
assume that the function g is linear. In fact, in this case the set G is convex and
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symmetric, and we can use the arguments based on the correlation inequalities. On
the other hand, this inequality is also true by an integration by parts argument if the
function ¢ is of class C7.

In order to show the inequality (2.10) we will use the same arguments as in [1].
We write

F(Ya(w + 8)) = f(de + g(wr + 1)) + f'(¢e + g(wr + 1)) + Ry,

and hypotheses (h4) implies that |[R;| < Cé® on the set G.. Then, using again the
arguments of Ikeda and Watanabe, it suffices to show that

limsup E [exp (c/o1 f(de + glwi + 1)) o dw,) | GC] <1, (2.12)

€l0

lims:g)E [exp (0/01 fi(¢e+ g(wr + ¢1))ws 0 dwt) | Gc] <1, (2.13)

and
1
limsup £ [exp (c/ R;o dwt) | Gc] <1, (2.14)
0

cl0

for all ¢ € R. The proof of these inequalities would follow the same lines as the proof
of Theorem 2.1 in [1]. For this reason we omit the details of this proof and we just
indicate the method of proof. The inequality (2.12) is obtained using the integration
by parts formula of the nonadapted Stratonovich calculus (see [6]). The inequality
(2.13) follows by the same arguments as in Ikeda and Watanabe ([3], page 451) with
the help of the Lévy area and exponential inequalities. In order to handle inequality
(2.14) one uses uniform exponential estimates and the susbstitution theorem for the
Stratonovich integral (see [6]).

Proof of (C2): We have to estimate the probability

0

s = P (up, b+ su(or) <

when ¢ goes to zero. Note that g4 is continuously differentiable and g4(0) = 0,
94(0) = g'(¢1). Using an idea of Le Gall we can express a;(¢) in terms of the exit time
of Brownian motion. More precisely, let us denote by B,(r) the open ball in R¢ with
center a and radius 7 > 0. Then, if T, , is the exit time of this ball for the Brownian
motion starting at zero, the above probability can be written as

ay(€) = P (T_gyun)e > 1) - (2.15)
For any b € R?, |b| < € and any Borel set A C Bj(€) we can write
P(Ty > 1,0 € A) = /A . e()dx,
where the function 3 is obtained as follows. Let @, be the semigroup whose generator

is —1A on the ball By(¢) with Dirichlet boundary conditions. Then, for any bounded
measurable function f on Bj(¢), and for any z € By(€), we have

E; (f(wt)l{T5,¢>t}) = Q:f().
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Therefore,
P (Tye > 1,w; € A) = Q114(0).

If we denote by ¢,(z,y) the kernel of Q;, we have ¥ (z) = (0, z).
Suppose that 0 < A; < Ay <--- < A, < -+ are the eigenvalues, and {f,,n > 1}
an orthonormal sequence of associated eigenfunctions of the problem

1 =
{ }jj;:)t'{)" ’ (2.16)
Then,
%(z,y) = f:le‘éfe_dfn <IT_b) fa (y—:—é> ) (2.17)
and "

hoe(z) = i e Eedf, (—g) fa (I — b) . (2.18)

n=1 €

It holds that

P (T gyun)e > 1) = Yo gy(a)e(2)dz. (2.19)

/(|y¢(z)l<cylr+g¢(r)l<c}

In fact, we have that

Bre(z) = P (Tye > Loy = z) fun (2), (2.20)

where f,, is the density of w;. Moreover, 1 (z) is a continuous function of the
variables (b, €) on the set {|b] < ¢, |z —b] < €} (this follows from (2.17)). Consequently,
we can substitute b by —g4(z) in (2.19) and we obtain

boge@e(@) = P (Togyre > lor = 2) fur (a)

P (T"gé(“’l):‘ > llwl = x) Jon (z),

which implies (2.18).
Finally, from (2.15), (2.18) and (2.17) we get

— = —%\9‘ -d gd’(z)) (x+g¢(z)) dzr. 291
a(e) =2 e e /{Iw(z)l<<,lz+y¢(z)l<c} f"( e )P € = (22)

02 , (££040))

€

Set

{Uss(@)I<els+24(z)|<e} "( €

Using the change of variables £ = ue we can write

fa ('1'.%("6)) fa (u + %g¢(ue)) du.

Lig)=c* [

L) = [

{I2ag(ue)l<t lutLgq(ue)l<1}

Taking into account that the functions f, are bounded we deduce that the limit

Lo($1) = lj{}} L;(é1)
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exists and it is expressed as

La(¢1) = /

{lg5(0)ul<1,](I+94(0))ul<1}

Fn(95(0)u) fu((T + g4(0))u)du.

It is well-known that f; is strictly positive (see [2]). Consequently, L;1(¢;) > 0 and
from (2.21) we obtain the exact asymptotic behaviour

P
as(€) ~ Li(¢r)e™ 2,
and the proof of the theorem is complete. O

Remarks:

1. When g =0 we get

L = f1(0 d
1(¢1) = £1(0) {Mq}fl(“) u,
which is the usual constant for the Onsager-Machlup functional with given initial
value.

2. The periodic boundary condition Xo = X;j is not covered by the equation
Xo = g(X1 — Xo). Nevertheless with minor modifications and using the ideas of [7]
one can also obtain the Onsager-Machlup functional for this and related cases.

3 Onsager-Machlup functional for second order
stochastic differential equations

In this section we will assume that d = 1, namely, Q is the space of real valued
functions on [0, 1] which vanish at zero. Let f : R — R be a continuous function and
consider the equation

Xo=Xo— [l f(X)ds+w, ,0<t<1 (3.1)
X0=X1=0 ’

This equation has been studied in [8] and [9]. There exists a unique solution for each
w € () provided the function f is continuously differentiable and f' < 0.
Let us denote by {Y;(w),0 < ¢t < 1} the solution of the above equation when
f =0, that is, )
Y=Yo+w ,05t<1
Yo=Y1=0

Clearly, Y, = [lw,ds —t [ w,ds and ¥, = w; — [ w,ds.

From Proposition 3.1 below it follows that the support of the law of X is the set
of continuously differentiable functions on [0,1] which vanish at 0 and 1. Given a
function ¢ in the Cameron-Martin space H?, the path

(3.2)

V(@)= [ dds—t [ 4.ds
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belongs to the support of the law of X and we are interested in the asymptotic
behaviour as € tends to zero of

J(8) = P(IX = Y(#)ll100 <€)- (3:3)

In the above expression we have used the seminorm || - ||;,c0 defined by

l¥lli,0 = sup l5(t)l,
tefo,1)

for y € C*([0,1]), instead of the usual supremum norm. This seminorm is well fitted
to the process X because X; behaves as a Brownian motion.

As in the previous section the computation of the asymptotic behaviour of J¢(¢)
is based on the application of the extended Girsanov theorem to a suitable transfor-
mation T on the Wiener space. This transformation will be defined as follows

Té(w) =it gt [ S+ §))ds. (34)

From the results of [8] and [9] we have the following result:
Proposition 3.1 Suppose that f is continuously differentiable and f' < 0. Fiz
é € H'. Then the transformation T defined by (3.4) is bijective and there ezists
a probability Q* such that Q% o (T*)™! = P and

do?¢ 1 1.

29 1t e (= [ S0+ 9)) o o = [ dud

1 .
— 5 [ 1+ 9) + i},

where Z; is the solution at time t = 1 of the second order differential equation

{ Zi+ f'(%)2, =0, ,0<t<1

Zo=0,2,=0 (3:5)

The process Y (w + ¢) satisfies the equation

Yl + 6) = Yolo + §) = TH) = [ (Vo + ).

As a consequence, the law of the process X solution to (3.1) coincides with the law of
Y(w + ¢) under @*. This allows to write the functional J*(¢) in the following form

J{(¢) = P(IX-Y(#)llheo <€)
= Q*(IY(w+¢) - Y()lle <€)

Q*(llw — /0  wdt]]on < €).

In the sequel we will use the notation

1
H, = {||lw —/0 widt]|oo < €}.

Now we can state the main result of this section.
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Theorem 3.1 Suppose that f is continuously differentiable and f' < 0. For any
¢ € H we have, as ¢ tends to zero,

PAIX =Y (O)lheo < ) ~ PUI (O exp {5 [ 7)) + e}
Proof: We have
J¢) = E (%%wc) P(H.).

So in order to prove the theorem it suffices to show that

llmE( ]H) |
= [Z@lexp {5 [ 15(%i(8) + d'dt}

Consider the following Wiener functiqnals
1 -
Bi(w) = |z()lesp {3 [ 1F(¥i(w)) + diPat}

Biw) = exp{~ [ f(¥ifw+4)) 0 dus}

1,
Bs(w) = exp{— /D $edir).
We want to show that J0°
lilxgnE< Q IH) = By(¢).

Using the same technique as in the previous paragraph we have

(2 s
= |E[Bi(w + ¢)B2(w) Ba(w) ~ S ) | Hl

< (B [(Buw+4) - Bi(¢)? | 1)) (E1B2B | 0.]) "
+B4(¢) |E[By(w)Ba(w) | H] - 1],

and it suffices to show that

lim E [(By(w + ¢) = Bi(¢))* | H] =0, (3.6)
sup E[(B,B3)" | HJ < oo, (3.7)
lim E[By;B; | H] =1. (3.8)

The convergence (3.6) is immediate because B; is a continuous functional of w,
and on the set H, we have |Jw||. < 2e. Using the arguments of Ikeda and Watanabe
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([3], page 449), in order to prove (3.7) and (3.8) it suffices to show that for any ¢ in
R, we have

limsup £ [exp (c / (Y +¢)) o dwt) | He] <1, 39

1.
limsup £ [exp (c/ ¢tdw,) | Hc] <1 (3.10)
€lo 0

The inequality (2.11) follows from the results of Shepp and Zeitouni because the set
H, is convex and symmetric with respect to the origin.

In order to show the inequality (3.9) we will use the same arguments as in the
proof of (2.10)

The following lemma, whose proof was given to us by Wenbo Li (cf. [5]), provides

the asymptotic behaviour of the probability of the set H, as € tends to zero.

Lemma 3.1 We have

1 2
lcigl é*log P (Osup1 we —/0 w,ds| < e) = _ng_,

<<

Proof: Set p. = P(H,). We have

1 1
p.> P (sup Jwy —/ wyds| < e,I/ wyds| < 63)
0<t<1 0 0

<

1
>P ( sup fwe| < (1— 62)6,1/ wsds| < 63)
0<t<1 0

> p (sup o] < (1— ez)e) p (; /olw,ds| < e") ,

0<t<1
where the last step is due to the correlation inequalities (see Shepp and Zeitouni [10]).
Finally, we deduce the inequality
2
pe > Cele s, (3.11)
for some constant C > 0 and for € small enough.
To obtain an upper bound we write

1 1
pe= , P (sup Jw —/0 wsds| < e,|/0 w,ds — 2ke’| < 63)

0<t<1
Mstpen) SIS

1
< Z P (sup |we — 2k€] < (1 + 62)6,l/ wyds — 2ke®| < 63)
<1 0

[kl<(3e?)

< Y P (suE1 |we — 2k€®] < (1 + 62)6)

ki<ie?  \OS

< L5+ P ( sup fod < 01+ &)

0<t<
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This implies that

x2
p. < Ce?eTaa, (3.12)
for some constant C > 0 and for € small enough. O

We conjecture that the estimates (3.11) and (3.12) can be improved in the sense
that the polynomial term in € can be replaced by a constant.
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