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Some remarks on perturbed reflecting Brownian motion

Wendelin Werner

C.N.R.S. AND UNIVERSITY OF CAMBRIDGE

0. Introduction

Let B denote a one-dimensional Brownian motion started from 0 and L its local
time process at level 0. For fixed p > 0, the perturbed reflecting Brownian motion
X is defined for all t > 0 by

Xt = 

It has aroused some interest in the last few years (see Le Gall-Yor [7], Yor [13],
chapters 8 and 9, Carmona-Petit-Yor [2], Perman [8]). We are going to make a few
remarks concerning this process and give short elementary proofs of some known
results, such as the generalized Ray-Knight Theorems for X. Let us just stress that
none of the results derived here is new, and that our modest aim is to shed a new

light on them, which we hope can improve our understanding of these identities.

We now recall a few relevant facts: For all a E R, Ta = inf ~t > 0; Xt = a} will
denote the hitting time of a by X. . Except when ~c = 1, X is not Markovian;
however, for a > 0, T-a is the hitting time of by L and hence a stopping time
for B. The strong Markov property then yields that the processes (Xt, t > 0) and
(a + t > 0) have the same law. We will refer to this property as the ’strong
Markov property’ for X.
Note also that for p = 1, Levy’s identity (that is: if St = Bs, then the
processes (S, S - B) and have the same law) shows that X is in fact a
Brownian motion.

1. A hitting time property

In (11~, we used the following result: For all a > 0, b > 0,

. (1 )
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This is a generalization of the classical hitting time property for Brownian motion

(which is in fact (1) for  = 1): .

P(03C3-a  03C3b) = b a + b, (2)

where 03C3x = inf {t > 0, Bt = x}.

In (11~, we derived (1) from the explicit law of LTl derived by Carmona-Petit-Yor [2]
(corollary 3.4.1 there) (one has P(T-a  Tb) = P(LT6 > a~~)). As briefly pointed
out in [2], the law of LT, (and therefore (1)) is in fact also a direct consequence of
the explicit solution to Skorokhod’s problem by Azema and Yor [1] (see also exercise

(5.9) chapter VI in Revuz-Yor [10]) in a very special case: One just has to compute
the right-hand side of (5.9) in [10] for an affine function y and then use Levy’s
identity.
We now give an alternative elementary short proof of (1): First, for all x > 1 we

put
9(x) =  T1).

For x > 1 and y > 1, one has immediately T1-x  Tl _xy. The ’strong Markov

property’ at time Tl-x and the scaling property imply that

9(xg) = P(Ti-x   Tx) = 

Moreover, g is continuous decreasing on and g(1) = 1. Hence, for some fixed

° (3)

It now remains to show that c = 1/~: We look at the asymptotic behaviour of

f(x) = P(T_1 > Tx) =1- g(1 + 
’

as x  oo. (3) implies that f(x) = 1 - (1 + c~x as x -; oo. On the other

hand, Levy’s identity implies that

 ~ f(x) ~ P(a_x  

and consequently (using (2)), as z - oo, and (1) follows.

2. The generalized second Ray-Knight Theorem as a consequence of (1)

In [2] (see also Yor [13], chapter 9), Carmona-Petit-Yor have derived a generalized
second Ray-Knight Theorem for the local times of X (Theorem 3.3 in [2], Theorem

9.1 in [13]; we refer to Yor [13], chapter 3 or Revuz-Yor [10], Chapter XI for the Ray-

Knight Theorems for Brownian motion). They then derive the law of LTi (which
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implies (1)) as a consequence of this Theorem. We now briefly point out how this
generalized second Ray-Knight Theorem for X can in fact be derived ’backwards’,
as a consequence of (1), using a general result of Lamperti [5] on semi-stable Markov
processes we first recall.

Suppose (Yt, t > 0) is a non-deterministic continuous Markov process in (0, oo),
started from x E [0,oo) under the probability measure Px. Suppose furthermore
that Y is semi-stable of index 1 (in the sense of [5]), that is 0) under
Px and (Yi, t > 0) under have the same law for all c > 0. Then, Theorem 5.1
in Lamperti [5] implies that Y is a multiple of a squared Bessel process (of index
b E R), which is either absorbed or reflected at 0. This result is the key to our

approach.

We now put down some notation and state the generalized second Ray-Knight
Theorem. Let .~t denote the local time of X at level a and time t, and let T denote
the right-continuous inverse process of ~°. Then:

Theorem (Carmona-Petit-Yor). The processes (~Tl, a > 0) and 0) are
independent and:

(i) (~~1, a > 0) is a squared Bessel process of dimension 0 started from 1 and absorbed
at 0.

(ii) a > 0) is a squared Bessel process of dimension 2 - 2~~ started from 0 and
absorbed at 0.

Let A+(t) = Jo 1 {x, >o } ds and A- (t) = f o Let also ~+ (respectively
7") denote the right-continuous inverse of A+ (resp. A-). We put for all u > 0,

= X~+ and X; = In other words and loosely speaking: X+ (resp. X - )
is obtained by glueing the positive (resp. negative) excursions of X together. Then:

Lemma The two-processes X+ and X- are independent. Moreover X+ is a

reflected Brownian motion.

There are various possible proofs of this lemma. Yor ([13], Chapter 8) indicates
a proof based upon Knight’s Theorem on orthogonal martingales. Mihael Perman
suggested an excursion-theoretical approach The last part of this note provides yet
another possible justification.

This lemma shows immediately that (.~Tl, a > 0) and a > 0) are independent;
(i) then follows from the second Ray-Knight Theorem for Brownian motion (it
actually also follows from (ii) with ~c === 1). It remains to show (ii).
The ’Markov property’ for X and the lemma show that > 0) is a Markov
process (one just has to apply the Lemma to (a + t > 0)). As X is a

continuous semi-martingale, Theorem (1.7) in Chapter VI of Revuz-Yor [10] yields
that a ~ 0) is continuous. The scaling property for B (which is also the scaling
property for X) implies that (.~Tla, a > 0) is a semi-stable Markov process of index 1
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in the sense of Lamperti [5]. Hence, Lamperti’s result mentionned at the beginning
of this section shows that (.~Tla, a > 0) is a multiple of a squared Bessel process Y.
Let 03B4 denote its dimension and y = Yo. Y is absorbed at 0 since otherwise, is

not identically 0 for all sufficiently large a. It remains to identify 6 and y, which

can be done using section 1: As fO increases,

P(T-a  Tb) =  .~Tb).

But l0Tb depends only on X+ whereas l0T-a depends only on X -; hence, these
two random variables are independent. It is well-known that ~T6 is an exponential
random variable of parameter 1 /2b (see e.g. Proposition (4.6), Chapter 6 in Revuz-
Yor [10]). Consequently, if ~ denotes an exponential random variable of parameter
À = 1/(26), if p denotes the hitting time of 0 by Y and Z~ a Gamma-random variable
of index y > 0 (that is with density on R+),

= P(l/p  0 =  --) 
(4)

=P(l0T-1  l0Tb) " 1 + b b 1p - ( 1+2a ) -lla 
( )

which is the Laplace transform of (2Z1~~). Hence, p has the same law as 1/(2Z1~~).
On the other hand, if p(a, x) is the hitting time of 0 by a squared Bessel process
of dimension 2 - 2a started from x > 0, then it is well-known that p(a, x) has the

same law as x2 /(2Za ) (one can for instance compare the Laplace transforms, using
the results of Kent [4], and equation (15) section 6.22 in Watson [12]; alternatively,
one can note by time-reversal that p(a, x) is the last passage time at x by a Bessel

process of index 2 + 2a started from 0, and use the results of Getoor [3], see also

Yor [14]). Hence, y == 1 and 8 = 2 - 2/~c, which completes the proof of the theorem.

3. The generalized first Ray-Knight Theorem

We now briefly point out how the same approach also yields the generalization of

the first Ray-Knight Theorem for perturbed reflecting Brownian motion derived by

Le Gall-Yor [6] (see also Yor [13], Section 3.3). However, in this case, the original

proofs are shortish anyway.

Theorem (Le Gall-Yor).  a  1) is a squared Bessel process of

dimension 2/~ started from 0 and reflected at 0.

By time-reversal (since (Bt, t  T 1 ) and t  T_1 ) have the same law), one

can consider the process IBul + Lu and its local times taken at infinite time:

la = ~~(X), for a > 0, and remark that a  1) and a  1)
have the same law. As previously, l is a continuous Markov process, which is self-
similar of index 1 because of the scaling property of X. l is henceforth (using again
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Theorem 5.1 in Lamperti [5]) a multiple of a squared Bessel process {3 of dimension
6: l = aQ, with a > 0. This time, ,0 has to be reflected at 0, since almost surely,
for all rational a > 0, 0. We now identify 6 and a using (4). On the one hand,
one has for all A > 0 (see e.g. Revuz-Yor [10], line before Corollary (1.4) in Chapter
XI):

(1 + 2aa)-a~2.
On the other hand, (4) implies that (using the same notations as in (4)),

= P( > a~i ) = > = > T 1 ) _ (1 + 2~)-1/~
and the Theorem follows.

4. The discrete approach

We now mention an approximation of X by a random walk, which converges towards
perturbed reflecting Brownian motion as the simple random walk does towards
Brownian motion. We define (Sn, n > 0) as follows: We fix p, > 0 and we put

Let In = min~So, S1, ... , Sn} and So = 0. By induction, for all n > 0, if So, ... , Sn
are defined, then the law of Sn+i is the following:

P(Sn+i = Sn + 1) = = ~ - 1) = 1/2 if 
and

Using for instance Levy’s identity and Proposition 2 page 137-138 in Revesz [4], one
can show that the processes

converge weakly towards (Xt, t E [0,1~) as n - oo, where [x~ denotes the integer
part of x. With little extra work, this approach provides another possible proof
of the Lemma, since the independence of the positive and negative parts of the
random walk (Sn, n > 0) is trivial. Equation (1) can also be deduced, since (if
Np = inf{n > O,Sn = p}),  Np) and consequently  Np) and

 N[bp]) can be very easily explicitely computed, when p > 0, p’ > 0,
a > 0, b > 0: Indeed, it is a good undergraduate exercise to see that

P(N_1  Np) _ (1- q) ~ -1) = (1 + ~>o B P /

and consequently as  Np) =  Np)P(N-i  Np+l)... P(N-1 
Np+p’-1 ),

 = - + 1/( k)) ~ 1 log (b a+b)
as p ~ oo, which yields (1).
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Note added in proof. I would like to mention the two recent preprints by Burgess
Davis [15] and Darryl Nester [16], which are very closely related with Section 4 of
this note.
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