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1 Introduction

Let X be a transient Markov process taking values in an interval E C IR, admitting
a local time at each point, and such that points communicate (i.e. every point may
be reached from any other point). Let L* be the total accumulated local time at
z. Then (L*).¢g is a Markov process (indexed by the states of E) if, and only if
X has continuous sample paths and fixed birth and death points. The sufficiency is
the famous Ray-Knight theorem (see [R], [K], [W], [S] and [E]); the necessity was
proved in [E.K].

In the symmetric case, the proof that Sheppard [S] and Eisenbaum [E] gave to
the Ray-Knight theorem uses a centered Gaussian field {¢, : z € E} with covariance
the Green function of X that was introduced in Dynkin’s Isomorphism theorem [D].
They have shown that the Markov property of the local time process can be derived
from the Markov property of the Gaussian field. Dynkin [D] and Atkinson [A] have
shown that when E C IR? the field (4. ).z is a Markov field if, and only if, X has
continuous paths.
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In view of the above, it is natural to ask whether the conditions for the Markov
property of the local time, for processes on E C IR, are also sufficient for processes
taking values in E C IR%, and admitting a local time at each point of E.

The following definition of the Markov property for processes indexed by E C R?
was used by Dynkin [D] and Atkinson [A] in the above-mentioned result.

Definition A process {L* : ¢ € E} where E C R® has the Markov property
provided for every open, relatively compact set A, contained in E, {L* : z € A} and
{L® : = € A°} are conditionally independent given {L* : = € 0A}.

With this definition of the Markov property, the answer to our question is that
continuity and fixed birth and death points are not sufficient for {L* : z € E} to
be Markov. To see this, we consider the Brownian motion X on the unit circle
S! born at (1,0) and killed when the local time at (—1,0) exceeds an exponential
variable that is independent of X. This process has continuous sample paths and
fixed birth and death points. Denoting by 1, 2, 3 and 4, respectively, the points
(1,0), (0,1) (=1,0) and (0,—1) we shall show:

Proposition Given (L*,L3®), L? and L* are not conditionally independent.

Remark Leuridan [L] has considered the local time process of a Brownian motion
on a circle (L% )sex1, killed when the local time at (—1,0) exceeds r > 0. He has
obtained a Ray-Knight type theorem that describes the law of the process in terms
of Bessel processes laws. This may be used to prove our result. It seems to us,
however, that the direct computations presented here are easier.

2 Proof of the Proposition

We consider the process X restricted to the four points {1,2,3,4}. That is, we
let L, = L} + L? + L} + L}, where, for ¢ = 1,...,4, L} is the local time at ¢ up
to time ¢, and (7;) is the right continuous inverse of (L;). The process (X,) is a
pure jump process on S = {1,2,3,4}, and for i € S, L' is also the total time (X,)
spends at ¢. Fori € S, let T; = inf{t > 0 : X,, = ¢}, and E; = E( |Xo = t). For
0= (01)027 03’ 04)a set

w'(a) — E,' (e—ﬁLl—a;Lz—aaLs—o‘L‘) .
Then
$1 (0) = E] (C—olL‘TZ"TC H Tz < T4) 502(0) + E] (C-BIL'I"'N\TC 4 T4 < T2) 804(0)

which by the symmetry is equal to

% B (e—oaLhAn) (92(0) + ©a(0)) .
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Under Py, LT, a1, has an exponential distribution with a parameter which we denote
by A, and by symmetry again

1
X = EI(L}QI\Tg) = Ez(Lg']AT;;) = E‘(L;'IAT;;) M

Further, let o be the independent exponentially distributed random variable, which,
when exceeded by the local time of 3 the process is killed. Then

P3(T2 AT < C) = Pa(lzgvz,\T4 < U) .

We take the parameter of o to be A as well. We thus obtain the following set of
equations:

w0 = 15 {3 w0+ w0
p2(0) = X%l)—; {% e1(6) + % %3(0)}
w0 = 155510 +3 w0

A A 1 1
o) = 357t T {500 +5 00} .

]

We may, without loss of generality, assume that A = 1, and solve the system. The
result

9) = 246,40,
PO = ST+ 0.)2 + 03)(1 + 02)(1 + 6a) — (2 + 02 + 02)(3 + 0 + 03)

First, note that

1
1+36, °’
from which it follows that L! has an exponential distribution with parameter 1/3,
and

901(01’ O’ Oa 0) =

) el®= [ eE (B ) Pt e )
and also
p1(0) =

246,40, 1

X .
TR 00400 - CF BT RETE) T30 ()

Set,
t 4(2 + 05)(1 + 0)(1 4 64) — (24 63 + 604)(3 + 65)
4(2+03)(1 4 02)(1 4+ 04) — (2+ 02+ 04)

Then it can be easily checked that A(62,83,04) > 0 for all (6;,03,60,) and that

A(02,03,064) =

0) = 2+40,+0,
“0) = T 0 T 0+ 0) = @+ 02 7 653+ 65)

L N0, 00, 0)e e,
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which, when compared with (1) gives
E, (e—osz-—o;L"—G,L‘l I = l)

3(24 02+ 64) e~ {M62,03,00)-1}¢
4(2+ 03)(1 + 05)(1 + 04) — (2 + 82 + 04)

In particular, for 6, = 6, = 0 we obtain

E, (e—asleLl _ Z) _ ﬁ% e—%t(wﬁ-ﬁ-) '

1 [2 1 3/2
e—a‘(mm) = e's‘l(l“/'La 2+03)

which is the Laplace transform of a compound Poisson process with rate 1/6 and
jump distribution exponential (3/2) at time £. Therefore, given L' = £ the law of
L3 is the convolution of an exponential law with the above compound Poisson at
time £.

But

Set
6+ 7(02 + 64) + 80,8,
05,04) =
A (62,00 4(1+ 6)(1 + 64)
£ 2+5(0,+0 80,0
(0, 04) +5(602 + 04) + 80,04

6 201+6)(1406,)

and for ) and S positive, let f(s)(m) be the density of a convolution of an exponen-
tial law with parameter § and of a compound Poisson law with jump distribution
exponential with parameter 8, and Poisson parameter A. Then

(2) El (6—02L2—03L3—04L‘|L1 — e)

/o “ B (e %=L L = ¢, [’ =m) e®™P(L° € dm| L' = ¢)

= /0 E, (e—ong—&L‘l L'= L, L3 = m) fp(o,o),,\,(o,o)(m) e %" dm

On the other hand, by our above computation

(3) E, (6—02L2—03L3—94L’|L1 - [)
_ 3(2+0; + 6,4) _ £ 8(02 + 64) + 166,64
61 7(0; +0a) + 8020, P\ 3 6+ 7(02 + 64) + 80,0,

1 1
X ———5— exp{ —A(02,04) (1 - "‘T) }
1+ 5,0 { 1+ 55,0

_ 3(2+6,+6,) £ 8(0; + 04) + 166,64
6 + 7(02 + 04) + 86,0, 3 6+ 7(02 + 64) + 80,0,

(o o]
XA e_oamfﬁ(é’zﬂq)./\1(92,94)(m)dm'
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Comparing (2) and (3) we obtain
E (e-o,z}—o.vl '=¢ 3= m) =

3(2+ 6, +6y) exp {_ £ 8(6; + 6,) + 160,0, } S8(62,00) (02,00 (M)
6 +7(02 + 04) + 80,0, 36+7(02404)+80204)  fao0)ro0)(m)

Suppose now that conditioned on (L!,L3), L? and L* are independent, that is
for almost every (m,£) € R?

E, (e-o,[,?_o.ulLl =, I® = m) =E, (e-o,LzlLl =, I3 = m) E, (e—o.ulLl =, I3 = m)
Using the above computation, this is equivalent to

3(2 + 02+ 0,) £ 8(6; +64) + 166,06,
{ 3 64100, +0,) + 80,0, | Toeaonson(m) Saooinn(m)

6+ 7(6; + 02) + 80,0, ©
_ 3(2+6,) 3(2+6,) e[ 80, 80,
T6+70, 6+70, “P\73 (6476, T 6+76,|) ee@osdalicadon -
(4)
Recall that

faa(m) = Be~(+8m) E (A\Bm)"

n=0 (n'
Thus, since (4) has to hold for every (m,£), the constant terms have to be equal,
which amounts to

3(2 4 6; + 0,) 6+7(0; 4 04)+ 80,0, 3

6+7(02+6,) + 8020,  4(1+06,)(1+0,) 2

92+6,)(2+06,) 6+70,  6+76,
(6+76)(6+70,) 4(1+6s) 4(1+6)

This is equivalent to

224024 04)=(24+6:)(2+64)
which is absurd. 0
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