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1. Introduction.

Let { W(t); t > 0 } be a two-dimensional Brownian motion. It is well-known

that the Brownian path is almost surely dense in the plane, but never hits a given

point at positive time. A natural question is thus to study the rate with which the

small values of ~~W - xii (the symbol "~~ ’ ~~" denoting the usual Euclidean modulus)
approach 0 for any x E Without loss of generality, we assume W (o) = (1, 0)
and x = (0,0). Let

t > 0.

The following celebrated Spitzer (1958) integral test characterizes the lower func-
tions of X:

Theorem A (Spitzer 1958). For any non-decreasing function f > 1,

IP[X(t)  t1/2 f(t), i.o] = 0 1 ~ ~dt t log f(t) ~ = ~.
Here and in the sequel, "i.o." stands for "infinitely often" as t tends to infinity.
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Spitzer’s Theorem A answers the how-small-are-the-small-values-of-~W~ question.
We propose to study the corresponding "how big" problem for the small values. Our

Theorem 1, stated as follows, provides a characterization of the upper functions of

X.

Theorem 1. If g > 1 is non-decreasing, then

= 0  °° 

.L X(t) > ), -’ = 1 
{=} 

~ 

Theorems A and 1 together give an accurate description of the almost sure asymp-
totic behaviours of X. For example, it is immediately seen from the aboves theorems

that

IPX(t) > exp(-lo g lo g t)a), i.o = 1 otherwise.

IP[X(t)  exp(-(log t)(log log t)a), i.o.] = 0 if a > 1;

1 otherwise.

What about the lower functions of the big values of Brownian motion? Let us recall

the classical Chung (1948) integral test for linear Brownian motion.

Theorem B (Chung 1948). Let B be a real-valued Brownian motion. For every

non-decreasing function h > 0 such that t-1/2h(t) is non-increasing, we have

IP[ sup |B(s)|  t1/2 h(t), i.o.] = 0  
0 
~ ~dt th2(t)exp(-03C02 8h2(t)

 

~.
~o ~~~

Chung’s Theorem B was obtained for linear Brownian motion. The following natural

question was raised by Revesz (1990, p.195) : for the planar Brownian motion W,

what can be said on the liminf behaviour of 
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The same question can be asked for a Brownian motion of any dimension. Let

{ V (t); t > 0 ~ denote a d-dimensional Brownian motion, and let

Y(t) = sup t > o.

Our answer to the problem is the following

Theorem 2. Let d > 1 and let h > 0 be a non-decreasing function. Then

IP Y(t)  h t1~2 t , i.o. _ 0 ~ /~"(-~M){~ . ,
where jv denotes the smallest positive zero of the Bessel function J"(x) of index

v - (d - 2)/2.

Remarks. (i) Since = ~r/2, Theorem B is a special case of the above result.

(ii) An interesting feature in Theorem 2 is that we do not suppose t2/h(t) to be

non-decreasing. Thus the latter condition can be removed from Chung’s Theorem

B.

(iii) As usual, Theorem 2 has a "local" version for t tending to 0, of which the

statement and proof are omitted.

Corollary 1. We have, for d > 1, ,

(1.1) lim inf(log log t t) 1/2Y (t) = jv 21/2 a.s. ,

with rate of convergence

lim inf (log log t)3/2 t1/2 log log log t( Y(t) - j03BD 21/2t1/2 (log log t)1/2) = j03BD 21/2, 
a.s.

Remark. The LIL (1.1) was previously obtained by Levy (1953) for d = 2 and by
Ciesielski &#x26; Taylor (1962) for any dimension d.

Theorem 1 is proved in Section 2, and Theorem 2 in Section 3.
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2. The proof of Theorem 1.

Let W be as before a Brownian motion in the plane, starting from (1,0). Define

H(x) = inf { t > 0 : ~~ = x }, 0  x  1,

the first hitting time of at level x. Obviously the process y H H(1/y) (for
y > 1) is increasing, and it has independent increments by using the strong Markov

property of ~ ~ W ~ ~ . Since

n

H(2-n) = 03A3( H(2-k) - H(2-(k-1)),
using Brownian scaling gives

H(2-n) = 03A32-2(k-1)03BEk,l 

k=1

where is an LLd. sequence of random variables having the same law as

H(1/2). Consequently,
n n

(2.1) 2-Z~n-1~ ~ ~k  H(2-n)  ~ ~k~
k=1 k=1

Let us first establish a preliminary result for the partial sum of (~k): :

Lemma 1. Let { A(t); t > 0 } be a subordinator, and assume that A(l) has the same
law as H(1/2). . Then for any function f > 1 such that f (t)/t is non-decreasing, we
have

lim sup (t) f(t) = 

0 ~
, a. s. ~ ~ dt log f(t) ~=~

.

Proof of Lemma I . The Laplace transform of H(1/2) is well-known (see Kent (1978
Theorem 3.1 ) ) :

E exp(-03BBH(1/2)) = k0(203BB) K0(03BB/2), ~03BB > 0,
where Ko is the modified Bessel function. Recall that A(l) has the same law as

H(1/2). Write

lEexp(-aA(1)) = 
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Thus

W (A) = 

Using elementary asymptotics of Ko, we immediately arrive at the following estimate

~-~’-i~)- ~°’
(the usual symbol ~)" (z -~ ~o) means = 1). Now the

statement of Lemma 1 follows by applying a general result for subordinators (see
for example Fristedt (1974 Theorem 6.1)) which tells that lim supt~~ A(t)//(t) = 0

or oo (almost surely) according as

f(~’-7e)~)"
converges or diverges. j]

Lemma 2. If h > 1 is a non-decreasing function with ~°° dt//t(t) = oo, then

7 /’°° t + dt h(t) °°°

Proof of Lemma 2. The proof is briefly sketched, since it involves only elementary

computations. Set A = { ~ : : h(t) ~ } and B = { ~ : : h(t) > ~ }. Obviously, we have

~~(~~~))’ °
Assume  oo. We only have to show = oo.

Write F.A(t) = J~ Using integration by parts it is seen

that t ~ F(t)/t is a Cauchy family for t > 1. Thus limt~~FA(t)/t exists. If

> 0, then would diverge, which contredicts the

convergence of ~11A(s)(ds/s) (the latter is obviously greater than t1 FA (s ) ( ds / s2)
by integration by parts). Consequently, limt~~ F.A(t)/t = 0. Thus t11B(s)ds > t/2
for sulficiently large t. Again using integration by parts, we obtain

t1 1B(t)ds h(s) ~ 1 2 t1 ds h(s) + a finite term,
which diverges as t tends to infinity. Lemma 2 is proved. []
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Proof of Theorem I, Pick 0  x  1, and let us write 2-n  x  2-~’~-11 (which
means (n -1) log 2  n log 2). Then H(2-~n-1~)  H(x)  H(2-n).
Using (2.1), we have

(2.2)  H(x)  

First, we show the following integral test for H:

(2.3) lim sup H(x) f(x) = 

0~
, a.s. ~ 0+ dx x log f(x) ~=~

,

for any function f > 1 such that log f (x)/ log(1/x) is non-increasing. Indeed, assume
that fo+ dx/(xlogf(x)) converges. Define f (t) = f (2-t~2). Then f (t)/t is non-
decreasing, with f °° dt/ log f (t)  oo. By Lemma 1, we have lim supt~~ A(t)/ f (t)
= 0, with probability 1. Thus lim supt~~ A(t)/ f(2-(t-1)) = 0. Using the second

part of (2.2), this implies limsupx-+o+ H(x)/ f (x) = 0. It remains to verify the diver-

gent half of (2.3). Suppose = oo. Then 

diverges as well. According to Lemma 2, this implies

~ dt log (t) 
= ~,

for /(t) - 22(t+1) f (2-2(t+1) ) . Applying Lemma 1 gives lim supt~~ A(t)/ f (t) = oo,
which, by means of the first part of (2.2), yields limsupx-+o+ H(x)/ f (x) = oo. Hence

(2.3) is proved. By noting ~ H(x) > t ~ _ ~ X (t) > x ] (for any 0  x  1 and t > 0),
several lines of standard calculation readily confirm that the integral test (2.3) is

equivalent to that in Theorem 1. []

3. The proof of Theorem 2.

In this section, V denotes a d-dimensional Brownian motion, which, without

loss of generality, is assumed to start from 0. Let H(x) = inf{ t > 0 : = x }
(for z > 0). The proof of Theorem 2 is essentially based on the following exact

density function of H(l) due to Ciesielski &#x26; Taylor (1962): 
’

P[H(1) ~ dt]/dt = 1 203BD0393(03BD+1)j03BD+103BD,n J03BD+1(j03BD,n)exp(-j203BD,n 2t), t> 0,
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where v = (d - 2)/2, and 0  jv,i  jv,2  ... are the positive zeros of the Bessel

function Jv (and of course denotes the Bessel function of index v + 1). Let Y

be as before the supremum process of By Brownian scaling, we have, for any

~ > 0,
IP [Y(1)  x = IP [ H(x) > 1] = IP [ H(1) > 1/x2]

= 

21-03BD 0393(03BD+1)
1 j1-03BD03BD,nJ03BD+1(j03BD,n)

exp(-j203BD,n 2x2),

which implies

(3.1) IP [ Y( 1)  x] ~ 

21-03BD 0393(03BD+1)j1-03BD03BDJ03BD+1(j03BD)
exp(-

j203BD 2x2)
, as x ~ 0,

(recall that jv = is the smallest positive zero of Jv). Write in the sequel p = 

Let h > 0 be a non-decreasing function. In the rest of the note, generic constants

will be denoted by Ki (1  i  9).

We begin with the convergent part of Theorem 2, which is an immediate con-

sequence of the tail estimation (3.1). Indeed, pick a sufficiently large initial value

to and define the sequence by tk+i = (1 + for k = 0,1, 2, ~ ~ ~,

and write hk = h(tk) for notational convenience. Obviously tk increases to infinity

(as k - oo). Assume that converges. This implies, by

several lines of elementary calculation, the convergence of ~k exp (-phk) . From

(3.1) and scaling it follows that

IP[Y(tk)  t1/2k hk - 1/hk] = IP[Y(1)  1 hk - 1/hk ]
~ K1 exp(-03C1(hk -1/hk)2)

~ 

which sums. According to Borel-Cantelli lemma, (almost surely) for large k, Y(tk) >
Let t E ~tk, Then by our construction of (tk),

Y(t) ~ Y(tk) ~ t1/2k hk - 1/hk = t1/2k+1 (1 + 1/h2k)(hk - 1/hk) ~ t1/2k+1 hk ~ t1/2 h(t),

which yields the convergent part of Theorem 2.

It remains to show the divergent part. Let h be such that

(3.2) ~dt th2(t) exp( -ph2(t)) = ~.
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In view of (I . I ) , we assume without loss of generality that

(3.3) (log log t)1/2 (203C1)1/2 ~ h(t) ~ (2 log log t)1/2 03C11/2.
Define tk = exp(k/log k) (for k ~ k0) and write as before hk * h(tk). In what

follows, we only deal with the index k tending ultimately to infinity. Therefore our

results, sometimes without further mention, are to be understood for sufficiently

large k’s. Obviously (3.2) is equivalent to the following

(3 .4) £ exp( - ph( ) = oo .
k

Using (3.3) gives

(3.5) (log k)1/2 (303C1)1/2 ~ hk ~ log k.
Fix an e > 0, then

(~ ~) j~~-1/2 ~2 ~’ ~  P ’ ~
(for k > ko). Consider the measurable event Ak = ( Y(tk)  /hk ) . From (3. I)
it follows that for k > ko,

(3.7) IP(Ak) = IP[Y(1)  1 hk ] ~ (1-~) 21-03BD 0393( 03BD + 1)j1-03BD03BD J03BD+1(j03BD)exp(-ph2k),

which, by means of (3.4), yields

(3 . 8 ) £ P (Ak ) = m .
k

Let k  I. Since V has independent and stationary increments, we have

IP(AkAl) * IP[ sup~V(t)~  t1/2k hk , sup~V(t)~  t1/2 l hl ]
~ IP(Ak) sup IP [ sup ~V(t) + x~  t1/2l hl ] .

Using a general property of Gaussian measures (see for example Ledoux &#x26; Talagrand

(1991 p.73)), it follows that

P(AkAi)  P(Ak)P llv(t) 11  t1/2l hl )
(3.9) = IP(Ak)IP [Y(1)  t1/2l (tl -tk)1/2hl].
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For every n > ko, define

~(n)={kok.~n: ~-k(logk)3},
~’(n)={kok~n: ~-k>(logk)3}.

It is seen that when k  ~  k + (logk)3,

log l log k 
" 

log k log l

= (l-k)logk-klog(+(l-k)/k) 

log k log l

~ l-k log k
, (k ~ ~),

which implies

tk tl ~ exp(- l-k 2 log k)
.

Let (k, ~) E E(n). From the above estimate it follows that

(ti 1 exp ( 2 1 o g k ) 
- 1/2 

~ ~n (~ k)/ log k’ 1 -1/2 ’
which, by means of (3.5), yields

t1/2l (tl-tk)1/2hl ~ t1/2l (tl-tk)1/2hk ~ [K4 min(l-k,log k)]-1/2 .

From (3.9) and (3.1) it follows that

IP(AkAl) ~ K5IP(Ak)exp(-K6(l- k)) + K5IP(Ak)k-K6 .

Obviously,
_ K7~

~>A:

K8.
k)3

Therefore,

(3.10) ~ ~ K9 L P(Ak).
k=ko

Now let (k’ ~) E .~’(n). In this case, k+(log k)3))2 > k’
thus l - k > (log ~)2. Since

~ k 
_ l - k

log l log k log k log l 
~ 

log l,
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we have

- 

[l-exp(-(~-~)/21og~)]~ ’ (1-~-1/2)~’
By means of (3.9), (3.1), (3.6) and (3.7), this implies

 
F(V + 21-03BD 0393(03BD+1)j1-03BD03BD J03BD+1 (jv)exp(-03C1h2k)

Combining the above estimate together with (3.10) and (3.8) yields

lim inf E E / (E ~(~))’  i-n-o 

k=ko ~ k=ko

According to a well-known version of Borel-Cantelli lemma (see for example Révész

(1990 p.28)), we have = 1. The proof of the divergent part of Theorem

2 is completed. []
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