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1. Introduction.

Let { W(t); t > 0} be a two-dimensional Brownian motion. It is well-known
that the Brownian path is almost surely dense in the plane, but never hits a given
point at positive time. A natural question is thus to study the rate with which the
small values of ||W — z|| (the symbol “|| - ||” denoting the usual Euclidean modulus)
approach 0 for any z € R?. Without loss of generality, we assume W(0) = (1,0)
and = = (0,0). Let

X(t) = if W@, t>o0
The following celebrated Spitzer (1958) integral test characterizes the lower func-

tions of X:

Theorem A (Spitzer 1958). For any non-decreasing function f > 1,
£1/2 0 o dt < 00

P| X(t) < —, io. | = <= / —_—
[ ® f(@) ] 1 tlog f(t) | _ .

Here and in the sequel, “i.0.” stands for “infinitely often” ast tends to infinity.
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Spitzer’s Theorem A answers the how-small-are-the-small-values-of-| W|| question.
We propose to study the corresponding “how big” problem for the small values. Our

Theorem 1, stated as follows, provides a characterization of the upper functions of
X.

Theorem 1. If g > 1 is non-decreasing, then

o ' 0 o0 <00
]P[X(t)>exp(—-lg(—gt)t),1.0.]:{1 (:)/ tg(t‘;—tlogtdt{ o

Theorems A and 1 together give an accurate description of the almost sure asymp-
totic behaviours of X. For example, it is immediately seen from the aboves theorems

that

0 ifa>1;

IP[ X(t) > exp( __(ng{%t)“ )’ o ] B { 1 otherwise.

0 ifa>1;
P [ X(t) < exp( —(logt)(loglog t)° ), i.o. ] =
1 otherwise.

What about the lower functions of the big values of Brownian motion? Let us recall

the classical Chung (1948) integral test for linear Brownian motion.

Theorem B (Chung 1948). Let B be a real-valued Brownian motion. For every

non-decreasing function h > 0 such that t~'/2h(t) is non-increasing, we have
< o0

=00

0 o0
P[osslil;tlB(s)l < %, i.o.] = {1 = / %hz(t) exp(—1r8—2-h2(t)) {

Chung’s Theorem B was obtained for linear Brownian motion. The following natural
question was raised by Révész (1990, p.195): for the planar Brownian motion W,

what can be said on the liminf behaviour of supy<,<, [W(s)|| ?
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The same question can be asked for a Brownian motion of any dimension. Let

{V(t); t > 0} denote a d-dimensional Brownian motion, and let
Y(t)= swp [Vl t>o0.
0<s<t

Our answer to the problem is the following

Theorem 2. Let d > 1 and let h > 0 be a non-decreasing function. Then

<o

1/2 0 ™ h? 2
IP[Y(t) < %, i.o.] = {1 = / dt-htﬁexp(—]—z"-hZ(t)) {= o

where j, denotes the smallest positive zero of the Bessel function J,(z) of index

v=(d-2)/2.

Remarks. (i) Since j_,,, = 7/2, Theorem B is a special case of the above result.
(ii) An interesting feature in Theorem 2 is that we do not suppose t2/h(t) to be
non-decreasing. Thus the latter condition can be removed from Chung’s Theorem
B.
(iii) As usual, Theorem 2 has a “local” version for ¢ tending to 0, of which the

statement and proof are omitted.

Corollary 1. We have, ford > 1,

1/2 ;
(1.1) liminf(lOgiogt) Y(O) =2 as

t—00 - 21/2

with rate of convergence

3/2
liminf —(281087)

g 82 _ v
t—oo  t1/2 logloglogt(Y(t) )_ a.5.

"~ 2 (loglog t)'/? PN

Remark. The LIL (1.1) was previously obtained by Lévy (1953) for d = 2 and by
Ciesielski & Taylor (1962) for any dimension d.

Theorem 1 is proved in Section 2, and Theorem 2 in Section 3.
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2. The proof of Theorem 1.

Let W be as before a Brownian motion in the plane, starting from (1, 0). Define
H(z) =inf{t>0: |[W(t)| =2z}, 0<z<1,

the first hitting time of ||W]| at level z. ‘Obviously the process y — H(1/y) (for
y > 1) is increasing, and it has independent increments by using the strong Markov
property of |W]||. Since

n

H@™) =Y (HE™) - H@*D)),

k=1

using Brownian scaling gives
. n
H(™) =) 272k Ng,
k=1

where (£x)k>1 is an iid. sequence of random variables having the same law as

H(1/2). Consequently,

(2.1) 27X DN g <H(2™) < igk.
k=1

k=1

Let us first establish a preliminary result for the partial sum of (£):

Lemma 1. Let { A(t);t > 0} be a subordinator, and assume that A(1) has the same
law as H(1/2). Then for any function f > 1 such that f(t)/t is non-decreasing, we

. AR [0 © gt [<®
“iﬁiﬂpm"{ ) a8 ‘='/ m{

(o9} =00

have

Proof of Lemma 1. The Laplace transform of H(1/2) is well-known (see Kent (1978

Theorem 3.1)):

Ko(V2))
Ko(v/2/2)’
where K is the modified Bessel function. Recall that A(1) has the same law as
H(1/2). Write

Eexp(-AH(1/2)) = VA > 0,

Eexp(—AA(1)) = exp(—T(N)).
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Thus
¥(N) = log Ko(v/A/2) — log Ko(V2)).
Using elementary asymptotics of Ky, we immediately arrive at the following estimate

2log 2
log(1/X)’

(the usual symbol “a(z) ~ b(z)” (z — zo¢) means lim;_,;, a(z)/b(z) = 1). Now the

T(A) = AW (A) ~

— 0,

statement of Lemma 1 follows by applying a general result for subordinators (see
for example Fristedt (1974 Theorem 6.1)) which tells that limsup,_, ., A(t)/f(t) =0

or oo (almost surely) according as

| (5w~ 1 @)

converges or diverges. 0

Lemma 2. If h > 1 is a non-decreasing function with [* dt/h(t) = oo, then
/°° it
t+h(t)

Proof of Lemma 2. The proof is briefly sketched, since it involves only elementary
computations. Set A= {t: h(t) <t} and B={t: h(t) > t}. Obviously, we have
1

TR 2 25 (710 + 15 R w1 0)

Assume [* 1,4(t)(dt/t) < co. We only have to show 7 1p(¢t)(dt/h(t)) =
Write F4(t) = [ 1.4(s)ds. Using integration by parts for J 14(s)(ds/s), it is seen
that t — F4(t)/t is a Cauchy family for t > 1. Thus lim;—,o, Fa(t)/t exists. If
lim; o0 Fa(t)/t > 0, then flt FA(s)(ds/s?) would diverge, which contredicts the
convergence of [;° 14(s)(ds/s) (the latter is obviously greater than flt Fa(s)(ds/s?)
by integration by parts). Consequently, lim;_,, F'4(t)/t = 0. Thus flt 1g(s)ds > t/2

for sufficiently large t. Again using integration by parts, we obtain

/ 1p(t )h( y 2 ; h(Zs) + a finite term,

which diverges as ¢ tends to infinity. Lemma 2 is proved. 0
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Proof of Theorem 1. Pick 0 < z < 1, and let us write 27" < g < 2~(n-1) (which
means (n — 1)log2 < log(1/z) < nlog2). Then H(2~("~V) < H(z) < H(2™™).
Using (2.1), we have

(2.2) sz(log(l/a:)/ log 2 — 1) <H(z) < A(log(l/z)/logQ + 1).

First, we show the following integral test for H:

0
(2.3) lim sup He) _ { , a8 = / e { e )
0

z—0+  f(T) 0 +zlog f(z) | = o

for any function f > 1 such that log f(z)/log(1/z) is non-increasing. Indeed, assume
that [y, dz/(zlog f(z)) converges. Define f(t) = f (27%/2). Then f(t)/t is non-
decreasing, with [*° dt/log f(t) < co. By Lemma 1, we have limsup,_, o, A()/f(t)
= 0, with probability 1. Thus limsup,_,., A(t)/f(2-®1) = 0. Using the second
part of (2.2), this implies limsup,_,o+ H(z)/f(z) = 0. It remains to verify the diver-
gent half of (2.3). Suppose [y, dz/(zlog f(z)) = co. Then [* dt/log f(2-4t+D)

diverges as well. According to Lemma 2, this implies

/ *°dt

—— = 00,

log f(t)
for f(t) = 22(¢+1) f(2-2(¢+1). Applying Lemma 1 gives limsup,_,, A(£)/f(t) = oo,
which, by means of the first part of (2.2), yields limsup,_,o+ H(z)/f(x) = co. Hence
(2.3) is proved. By noting [H(x) > t] = [X(t) > z] (for any 0 < z < 1 and ¢ > 0),
several lines of standard calculation readily confirm that the integral test (2.3) is

equivalent to that in Theorem 1. O

3. The proof of Theorem 2.

In this section, V' denotes a d-dimensional Brownian motion, which, without
loss of generality, is assumed to start from 0. Let H(z) = inf{t > 0: |[V(¢)|| =z}
(for z > 0). The proof of Theorem 2 is essentially based on the following exact

density function of H(1) due to Ciesielski & Taylor (1962):

P [HQ) € dt] it = — 1 i um ( jlzl,nt) >0
T 2T(v+1) n=1 Jo+1(ju,n) P 27 ,
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where v = (d — 2)/2, and 0 < j,,1 < ju2 < --- are the positive zeros of the Bessel
function J, (and of course J,4+1 denotes the Bessel function of index v+ 1). Let Y

be as before the supremum process of ||V||. By Brownian scaling, we have, for any

x>0,
P[Y(l)<z]=P[H(z)>1]=P [H(l) > 1/2?]
27 < 3on
B F(V + 1) Zl Ju,n y+1(Jy n) XP(_E)’

which implies
21 -V 2

(3.1) P[Y(1)<z] ~ STt exp(—#), as ¢ — 0,

(recall that j, = j,,1 is the smallest positive zero of J,). Write in the sequel p = 57 2/2.

Let h > 0 be a non-decreasing function. In the rest of the note, generic constants

will be denoted by K; (1 <i<9).

We begin with the convergent part of Theorem 2, which is an immediate con-
sequence of the tail estimation (3.1). Indeed, pick a sufficiently large initial value
to and define the sequence (tk)k>1 by tkt1 = (1 + h~2(tk))tx for k = 0,1,2,---,
and write hx = h(tx) for notational convenience. Obviously t; increases to infinity
(as k — 00). Assume that [*(dt/t)h%(t) exp(—ph?(t)) converges. This implies, by
several lines of elementary calculation, the convergence of 3, exp(—phi). From
(3.1) and scaling it follows that
t1/2

]P[Y(tk) < -W]

1
Y1) < ———

[ (1)< hk—l/hk]
< Ky exp(—p(hx — 1/hi)?)
< Kaexp(—ph}),
which sums. According to Borel-Cantelli lemma, (almost surely) for large k, Y (tx) >

1/2/(hk — 1/hg). Let t € [tx,tk41]. Then by our construction of (t),
1/2

i s by o 82
h -l/hk (1+1/h2)(hi — 1/hg) = hx ~ h(t)’
which yields the convergent part of Theorem 2.

Y(t)>Y () >

It remains to show the divergent part. Let h be such that

(3.2) [ S0 exp(-oh*(0) = oo
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In view of (1.1), we assume without loss of generality that

(loglogt)'/2 <h(t) < (2loglog t)1/2
@p)iz ="MY= o1/ :

Define tx = exp(k/logk) (for k > ko) and write as before hy = h(tx). In what

(3.3)

follows, we only deal with the index k tending ultimately to infinity. Therefore our
results, sometimes without further mention, are to be understood for sufficiently

large k’s. Obviously (3.2) is equivalent to the following

(3.4) Zexp(—phﬁ) = 00.
k

Using (3.3) gives

(3.5) % < hi < logk.

Fix an € > 0, then

(3.6) K <2,

(for k > ko). Consider the measurable event Ay = { Y (t) < t1//hx }. From (3.1)
it follows that for k > ko,

21—!/
L(v +1)jv™" J+1(v)

(37 PA)=P[v()<-]>(1-¢)

L exp (ot

which, by means of (3.4), yields

(3.8) ) P(4) = .
k

Let k < £. Since V has independent and stationary increments, we have
£1/2 (/2
P(4xAr) =P sup [Vl < 2=, sup V(1) < L]
0<t<t hi " o<t<t, he

1/2
t
<P(Ax) sup IP[ sup  ||[V(t) +z|| < £ ]
lzll<ey/* /hy - OStSte=th he
Using a general property of Gaussian measures (see for example Ledoux & Talagrand

(1991 p.73)), it follows that

1/2
P(AcA) <P(AJP[ suip V(1) < t-;r]
0<t<te—tx 7
{172
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For every n > ko, define
Em)={ko<k<f<n:f—k<(logk)},
Fn)={ko<k<t<n:f—k>(logk)®}.

It is seen that when k < £ < k + (log k)3,

L k  fLlogk—klogt
log¢ logk  logk log?
(é—k)logk—klog(1+(l—k)/k)
- log k log ¢

{—k
logk’

<o (31057 )

Let (k,£) € £(n). From the above estimate it follows that

(k — o0),

which implies

._t.Z2___ < (1 — exp(—

(te —tx)¥/2 ~
which, by means of (3.5), yields
t, ) <
(te — ti)/2hy = (te — te)/2hy ~

From (3.9) and (3.1) it follows that

1/2

-k ))—1/2 < [Kamin((e—k)/logk’l)]_ ’

2logk

1/2

[K4 min (¢ — k, log k) ] i

P(AkAs) < KsP(Ax)exp(—Keo(£ — k)) + KsIP(Ag)k™Xe.

Obviously,
Zexp(—-Ks(Z —k)) < Ky,
>k
k=Ko < k~Ke(logk)® < K.
k<€<k+(log k)3
Therefore,
(3.10) DY P(AcAl) < Ko ) P(Ax).
(k,L)EE(n) k=kq

Now let (k,£) € F(n). In this case, £—(log £)? > k+(log k)3 —(log(k+(log k)%))? > k,
thus £ — k > (log £)%. Since

£k _(E—k)logk—klog(l+(£—k)/k) t—k
log¢  logk logk log ¢ ~ Togt’
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we have
t3/? < 1 < 1
(te — tk)/2he ~ [1—exp(—(£-k)/2log¥) ]1/2 (1- Z"1/2)1/2hz'

By means of (3.9), (3.1), (3.6) and (3.7), this implies

21—1/

P(AxA) < TP(Ak)(1+¢)exp(pl™ 1/2h2) Mo+ 07" hona o) exp(——phi)

< (14 3¢)e’IP(AL)P(Ay).
Combining the above estimate together with (3.10) and (3.8) yields
n n
lim inf kg ;ko P(ArAg) / ka:o P Ak)
According to a well-known version of Borel-Cantelli lemma (see for example Révész

(1990 p.28)), we have IP(Ag,i.0.) = 1. The proof of the divergent part of Theorem
2 is completed. 0
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