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THE LEVEL SETS OF

ITERATED BROWNIAN MOTION

BY

KRZYSZTOF BURDZY1 AND DAVAR KHOSHNEVISAN

University of Washington 6~ University of Utah

ABSTRACT. We show that the Hausdorff dimension of

every level set of iterated Brownian motion is equal to 3/4.

§1. Introduction and Main Result. Suppose (S~, ~, P) is a probability space,
rich enough to carry three independent Brownian motions, X+, X- and Y, all

starting from the origin. Iterated Brownian motion (IBM) is the process defined by
Z(t) = X (Y(t)), where X(t) = The probabilis-
tic and analytical properties of IBM and related processes have been the subject
of recent vigorous investigations; see BERTOIN [B], BURDZY [B1,B2], CSÁKI ET
AL. DEHEUVELS AND MASON [DM], FUNAKI [F], HU ET AL.
[HPS], Hu AND SHI [HS], KHOSHNEVISAN AND LEWIS [KL1,KL2] and SHI [S] to-
gether with their combined references. Define the set-valued x-level set process,

by

(1.1) £x(t) = {0  / t: Z(s) = x}, for all x ~ R1.

The main result of this paper is the following analogue of Paul Levy’s well-
known result for Brownian motion (see ITO AND MCKEAN [IM] and ADLER [A]):

(1.2) Theorem. Let dimH denote Hausdorff dimension. Then, outside a single
null set,

dimH (,Cx(t)) - 3, ,
simultaneously for all t > 0 and all x in the interior of Z((0, t~).

Here and throughout, if f : : R~ is Borel measurable and A C R~ is

measurable, then f(A) = ~y : y = f(x) for some x E A}.
The proof of Theorem (1.2) uses a capacity argument due to Frostman (see

ADLER [A]) and relies on the following which has been discovered independently
and at the same time by CSÁKI ET AL. [CsCsFR2]:
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(1.3) Proposition. There exists an almost surely jointly continuous family of "Io-
cal times", > 0, a E such that for all Borel measurable integrable func-
tions, f : R1 H R1 and all t > 0,

fo f ~Z(s)~ds = 

Acknowledgements. We wish to thank T.M. Lewis for many enjoyable dis-
cussions. Also many thanks are due to J. Bertoin as well as E. Csaki and M. Csorgo
for sending us the articles, [B] and .

§2. Local Times. If B is any Brownian motion, its process of local times will be
denoted by Lf(B). These satisfy the following occupation density formula: for any
Borel measurable f : R~ and all t > 0,

(2.1) fo I(B(r))dr = ~-~ f (a)Lt (B)da.
For a stochastic calculus description as well as many deep properties of local times
see REVUZ AND YoR [RY]. Proposition (1.3) is a consequence of the following real
variable fact:

(2.2) Proposition. Let K(b, da) be the kernel defined by

K(b,da) = + 

Then the local times f are given by

~t = f da). ..
Y 

Proof. Let f : : R1 H R~ be as in Proposition (1.3). Viewing I(Z) as ( f o X)(Y),
we see from (2.1) that for all t > 0, a.s.,.

fo = 

(2.3) = ~0 (f o + o 

By (2.1) and a monotone class argument, for any jointly measurable F : : RI.X 
,

JT F(X~(s), s)ds = fooo F(a, 
Applying (2.3),

t0f(Z(s))ds = I(b)db ~0
+ ~-~ I(b)db ~0
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Since a ~ Lt (Y) is a.s. supported on Y(~0, t~),

fo = J(b)db f 

+ f(b)db ,~ .

~° 

The proposition follows from a change of variables. The joint continuity of if follows
from that of Lt (B) for any Brownian motion, B; see REVUZ AND YOR [RY]. ///

(2.4) Proposition. For any T > 0, almost surely,

lim sup sup sup ~ 23/2, a.s..
~/~ 

~ ~~~~ ~ ~’~’ ’

With more work, one can improve the upper bound of 23~2 in the above. How-

ever, we do not even know whether the power of the logarithm is the correct one.
Therefore, we will be satisfied with our simple proof of the upper bound.

Proof. By Proposition (2.2),

~t+E - ~t = J (Lt+~(Y) - dr)
Y((o,tj)

(2.5) + J dr)

= I(2.5) + ~(2.5).

For all r E Y ( (o, , t + ~j ), = Lt (Y ). Hence, as e - 0+, .

I(2.5) = J (Li+E(Y) - 
’

 sup (Lt+E(Y) - Lr(Y))K(a, t + e~))
r

 (1 + 0(1)) 2~ ln(1/s)K(a, Y((t, t + sj)),
uniformly over all a E R 1 and all 0  t  T . We have used the uniform modulus
of continuity of local times in time; see Lemma 5(c) of PERKINS By Levy’s
modulus of continuity ( ~RYj ), as e -~ 0+,

I Y((t, t + ~~)~  (1 + 0(1)) 2s ln(1/e),

uniformly over all 0  t  T. Hence, by MCKEAN and the independence of
X+ and X ‘ as s --~ 0+, uniformly over all a E R 1 and 0  t  T ,

K(a, Y((t, t + e]))  (1 + [
= (1 + 0(1))21~4s1~4 ( ln(1 s
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This implies that as e -i 0+,

(2.6) I(2.5) _ (1 +0(1))23~4~3~4(ln(1/~))5/4.
The bound for 11(2.5) is very similar. Note that for all r E Y(~0, t + ~~) 1 Y(~0, t~),

= 0. Hence, making similar arguments as above, we see that as e -~ 0+,
uniformly over all a E ~81 and 0  t  T,

II(2.5) = (Lrt+~(Y) - Lrt(Y))K(a,dr)

~ sup (Lrt+~(Y)-Lrt(Y))K(a, Y([t, t + ~]))
r

 (1 + [
= (1 + 0(1))23~4~3~4(ln(1 ~) 5/4.

Together with (2.5) and (2.6), the above implies the result. ///

§3. . The proof of Theorem (1.2). Once there is a modulus of continuity of local
times (in t), we proceed by Frostman’s capacity method as outlined in ADLER [A],
for example. Recall from KHOSHNEVISAN AND LEWIS [KL] that for any T > 0,
almost surely,

(3.1) |Z(t+~)-Z(t)| ~1/4(ln(1/~))3/4
=1, a.s..

In particular, we see that Z is Holder continuous of order,  1/4. By Proposition
(1.3) and Lemma 7 of [A], simultaneously over all x E HI 3/4. More-
over, by Proposition (2.4), t t2014~ If is Holder continuous of order,  3/4, uniformly
in a By Frostman’s lemma, (see the proof of Lemma 6 of [A]), simultaneously
over all x in the interior of Z( ~0, t~ ), dimH ,Cx (t) > 3/4. This proves the result. ///

We conclude this section with some open problem.

Problem 1. Define Z+(t) = Z(s). BERTOIN [B] proves that for all T > 0,
almost surely, 

lim sup |Z+(t+~)-Z+(t)| ~1/4(ln(1/~))3/4 = 
1 21/4.33/4.

In light of (3.1), this says that Z+ is smoother than Z. Is there a probabilistic
explanation for this, in terms of (say) path decompositions?

Problem 2. Define

S+(t) ~ e [0, 1] : Z(t) > Z(s) for all s  }.
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According to BERTOIN [B], the Hausdorff dimension of S+(t) is almost surely 1/4.
This is in sharp contrast with Theorem (1.2) and the analogous result for Brownian
motion which is a consequence of Levy’s characterization of Brownian motion. Is

there a probabilistic explanation for this apparent difference?

Problem 3. By being more careful, it is possible to show that 03C6-Hausdorff measure

of is a.s. (strictly) positive, if cp(e) = ~3~4 ( ln(1/~)) 5/4. Is this sharp? For the
corresponding problem for S+(t), see BERTOIN [B].

References.

[A] R.J. ADLER (1978). The uniform dimension of the level sets of a Brownian

sheet, Ann. Prob. 6 509-515.

[B] J. BERTOIN (1995). Iterated Brownian motion and Stable (1/4) subordinator,
to appear in Prob. and Stat. Lett.

[B1] K. BURDZY (1993). Some path properties of iterated Brownian motion. Sem.
Stoch. Proc. 1992, 67-87 (Ed. K.L. Chung, E. Çinlar and M.J. Sharpe) Birkhäuser,
Boston.

[B2] K. BURDZY (1994). Variation of iterated Brownian motion. Measure-valued

Processes, Stochastic Partial Differential Equations and Interacting Systems, (Ed.
D.A. Dawson) CRM Proceedings and Lecture Notes, 5 35-53.

[CsCsFR1] E. CSÁKI, M. CSÖRGÖ, A. FÖLDES AND P. RÉVÉSZ (1995). Global 

Strassen type theorems for iterated Brownian motion, to appear in Stoch. Proc.

Their Appl.

[CSCSFR2] E. CSÁKI, M. CSÖRGÖ, A. FÖLDES AND P. RÉVÉSZ (1995). The local
time of iterated Brownian motion, Preprint.

[DM] P. DEHEUVELS AND D.M. MASON (1992). A functional LIL approach to
pointwise Bahadur-Kiefer theorems, Prob. in Banach Spaces, 8, 255-266 (eds.:
R.M. Dudley, M.G. Hahn and J. Kuelbs)

[F] T. FUNAKI (1979). A probabilistic construction of the solution of some higher
order parabolic differential equations, Proc. Japan Acad. 55, 176-179.

[HPS] Y. HU, D. PIERRE LOTTI VIAUD AND Z. SHI (1994). Laws of the iterated
logarithm for iterated Wiener processes, to appear in J. Theor. Prob.

[HS] Y. HU AND Z. SHI (1994). The Csörgö-Révész modulus of non-differentiability
of iterated Brownian motion, to appear in Stoch. Proc. Their Appl..

[IM] K. ITÔ AND H.P. MCKEAN (1965). Diffusion Processes and Their Sample
Paths, Springer, Berlin, Heidelberg.



236

[KL1] D. KHOSHNEVISAN AND T.M. LEWIS (1995). Chung’s law of the iterated

logarithm for iterated Brownian motion, to appear in Ann. Inst. Hen. Poinc.:

Prob. et Stat.

[KL2] D. KHOSHNEVISAN AND T.M. LEWIS (1995). The modulus of continuity for
iterated Brownian motion, to appear in J. Theoretical Prob.

[Mc] H.P. McKEAN (1962). A Hölder condition for Brownian local time, J. Math.
Kyoto Univ., 1-2, 195-201.

[P] E.A. PERKINS (1981). The exact Hausdorff measure of the level sets of Brownian
motion, Z. Wahr. verw. Geb. 58, 373-388.

[RY] D. REVUZ AND M. YOR (1991). Continuous Martingales and Brownian Mo-
tion, Springer, New York.

[S] Z. SHI (1994). Lower limits of iterated Wiener processes, to appear in Stat.

Prob. Lett.

K. BURDZY

Department of Mathematics
University of Washington
Seattle, WA. 98195
burdzy@math.washington.edu

D. KHOSHNEVISAN

Department of Mathematics
University of Utah

Salt Lake City, UT. 84112
davar@math.utah.edu


