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Summary. This paper consists of some remarks on an earlier paper of the author
with T.M. Lewis and W.V. Li regarding some almost sure path properties of the fu-
ture infima of transient Bessel processes. In particular, we study the a.s. asymptotic
discrepancy between sups~t Xs and infs~t Xs .

1. Introduction. Let {Xt; t > 0} denote a transient Bessel process starting at
zero. This means that X is a positive diffusion with a (strong) infinitesimal generator
given by the following:

£f(x) = 1 2f"(x) + (d-1) 2x f’(x).

By transience, we must have d > 2 and this condition is assumed throughout this
article without further mention. Moreover, the domain of the above generator is

exactly all real-valued functions, f , which are twice continuously differentiable on

(0, oo) and have the following boundary behavior: - f (o)~ = 0(~2-d), as e -~ 0.
Let It °-- infs~t Xs and Mt --° Xs. Future infima processes such as I occur

quite naturally in a variety of situations: see Aldous [A] for an application to random
walks on trees. Furthermore, when d = 3, 1 appears quite naturally in Pitman’s
theorem: 2It - Xt is a Brownian motion. For the latter, see Revuz and Yor [RY,
Thm. VI.(3.5), p. 234] ; a surprising extension to all d > 2 appears in Chapter 12 of
Yor [Y]. General extensions of Pitman’s theorem to transient diffusions appear in
the work of Saisho and Tanemura [ST].

In an earlier paper ([KLL]), together with Lewis and W.V. Li, we proved
results about the asymptotic behavior of the process I with respect to the process X.
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This, in turn, gives some information on the nature of transience of the underlying
Bessel process X. Motivated by a question of K. Burdzy, this note is concerned
with the size of the "gap" between the processes I and M. More precisely, we offer
the following results:

Theorem 1.1. Suppose : (o, oo) is increasing with limt~~ cp(t) = oo,
Suppose further that t ’-~ cp(t) is slowly varying and that

1 
Then with probability one,

liminf cp t ~ 1- I t ) = 0.t-oo 
( ) ~ t t

Theorem 1.1 has a "converse" which is the following:

Proposition 1.2. Suppose :R1+ ~ (o, oo) is increasing with limt~~03C6(t) = oo.

If

i 
then with probability one,

lim sup 03C6(t).( 1-It Mt) = ~.

We next mention a related result which has to do with the difference between

Mt and It instead of their ratio.

Theorem 1.3. Suppose p : (o, oo) is decreasing. Suppose further that
t ~ 03C6(t) is slowly varying and

~1 03C6(t dt t=~.

Then with probability one,

Mt-It 03C6(t)= 0.

An obvious consequence of Theorem 1.1 is that almost surely,

(ln t ln ln t). (1- It. M-1t) = 0,
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and correspondingly by Theorem 1.3,

(ln t ln ln t).(Mt- It) = 0.

It may at first seem surprising that the above rates are independent of the
dimension, d > 2; but this is not so, since we believe the results above are far from

being sharp. To illustrate the problem, we point out that our techniques cannot
establish that almost surely,

f(t). (1-It.M-1t)=~,

even for a function such as f(x) = which we believe ought to do the job.
Thus it is important to find a more robust method of handling this gap.

The above results are partial attempts at estimating the size of the gap when
it is small; the gap is small when It  Mt. Below we provide the following theorem
which gives a complete characterization of the size of the gap when it is large, i.e.,
when It is much smaller then Mt. .

Theorem 1.4. Suppose ~ : : (0, oo) ~ (0,oo) is decreasing to zero and is slowly
varying. Then with probability one,

liminf 
It Mt03C8(t) ={0, if J(03C8)=~

~ if J(03C8)~, ’

where 

J(03C8) ~1 (03C8(t))
d-2 dt t.

Therefore, almost surely,

(ln t)aIt Mt =0, if a ~ 1 d-2
~ , if a > 1 d-2.

From now on, t > 0} denotes the natural filtration of the process X and
for any measurable A C C([0,oo)), PX(A) is a nice version of the probability of A
conditional on {cv : Xo = x}. Unimportant finite positive constants are denoted as
Ko and K and their value may vary from line to line.

I wish to thank Chris Burdzy for introducing me to this problem as well as for

interesting conversations on this topic. Also many thanks are due to Yuval Peres,
Russ Lyons, Marc Yor and an anonymous referee for several useful suggestions.
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2. The Proofs. Define the first hitting times, by the following:

Q(t) --° inf {s > 0 : Xs = t}.

Supposing that ~ : : (0,1) increases to one as t --~ oo, let us define

measurable events, E(t) = by

(2.1) E(t) °-- {c~ : 

Lemma 2.1. . In the above notation,

P(E(t)) = 1 - 

Proof. First condition on and then use the gambler’s ruin problem for X,

using the fact that X2-d is a continuous martingale. D

Lemma 2.2. Let 03C8 be as in the statement of Lemma 2.I and let E(t) be defined

by (2.I). Suppose that t > s > 0 are such that > s. . Then

P(E(t)~E(s)) = P(E(t))P(E(s))  1 1-(s03C8(s)/t)d-2.

Proof. By a gambler’s ruin calculation,

Ps (03C3(t)  03C3(s03C8(s))) = 
(s03C8(s))2-d - s2-d (s03C8(s))2-d - t2-d

- 

1- 
- 

1- (s~(s)/t) d-2
(2.2) = P(E(s)) x 

1 
d-2’

1- 

by Lemma 2.1. On the other hand, by another gambler’s ruin calculation,

= 00) = 1 -’t~d-2(t)
(2.3) =1~(E(t)),

by Lemma 2.1. By the strong Markov property,

P(E(s) n E(t)) = P~(~(t)  u ( s1/J ( s ) )) . ~t~~(t’~(t)) _ 00).
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The lemma follows from (2.2) and (2.3). Q

Proof of Theorem 1.1. Without loss of generality, we shall assume that ~() ~ 1
for all t > 0. Otherwise, we let t’ = ~(~) ~ 1} and shift everything by ~. With
this in mind, fix 6- ~ (0,1) and define ~() ~ (l - (Note that ~() ~ 
since w > 1.) Also define

and 

Recalling the definition of E(t) from (2.1), it follows from Lemma 2.1 that as n -~ oo,
6-(~ - 2)’ In particular, there exists some constant, K, such

that for all n ~ 1, > Hence,

)

= ~ B~ dt
. 

~~°~~ ~f~-. 
by assumption. On the other hand, since -~ oo, for all integers k and all

integers n large enough,

tn+k03C8n+k tn= ek(1-~/03C6(tn+k))~ 1,

since c ~ (0,1). This means that Lemma 2.2 applies. More precisely by Lemma 2.2,
for all k > 1 and all n large,

P(E(tn)~E(tn+k))=P(E(tn))P(E(tn+k)) 1 1-(tn03C8k/tn+k)d-2

~ (1-e2-d)-1 P(E(tn)P(E(tn+k)),
since d > 2 and 03C8k ~ 1 for all k ~ 1. By the Kochen-Stone lemma ([KS]), (2.4) and
the above together imply that

i.o.)>(l-e~).

By Kolmogorov’s 0-1 law, , i.o.) = 1. In other words, with probability one,

i.o.
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Hence for every c ~ (0,1), almost surely,

~).(l-~l)., i.o.p tn . 

B tn / 
~ ~, 1.0.

Since t ~-~ Mt is a.s. continuous, = t. Substituting Mt for t,

(2.5) (1 - = 0, a.s.

B tn /

It, therefore, remains to prove that for some K > 0,

(2.6) ) a.s.

For if we proved (2.6), (2.5) implies the following: ’

03C6(t).(1-It Mt)~03C6(tn). (1-Itn Mtn)
=03C6(e-1tn+1).(1- Itn Mtn)

~ K003C6(tn+1) .(1- Itn Mtn)
~ K0K.03C6(Mtn).(1-Itn Mtn) = 0,
~ tn /

for some Ko > l~ since p is slowly varying. As this proves Theorem 1.1, it suffices
to prove (2.6). It is pointed out to us by Marc Yor that (2.6) can be obtained as
a consequence of Chung’s law of the iterated logarithm. We shall provide a direct
proof for the sake of completeness.

Recall that for any c > 0 there exists some K = K (c) > 0 and T(c) > 0, so that
for all t > T(c), > ~"~(~). Since p is increasing, by standard calculations
for any c e (1/2,1), and all T(c),

P(03C6(Mtn)~K-103C6(tn+1))~P(Mtn ~tcn+1)

~ (t1/2n tcn+1 )
~ec .-exp(-n(c-0.5)),

which sums. An application of the easy half of the Borel-Cantelli lemma proves
(2.6) and hence finishes the proof of the theorem. Q

Proof of Proposition 1.2. By considering ~~(~) A (In t), we might as well
assume that 03C6(t) ~ In t for all t > 1. By Theorem 4.1 (2) of Khoshnevisan et al.
[KLL] ,Xt-It 2t ln ln t 

= 1, a.s.
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Hence for any c > 0,

(2.7) Mt-It 2t ln ln t~(1-~), i.o., a.s.

By the usual law of the iterated logarithm for Bessel processes (see Revuz and Yor
[RY, Ex. XL(1.20), p. 419], for instance),

lim supMt 2t lm ln t = 1,

almost surely. Hence almost surely, Mt  B/2Hn7, eventually. By (2.7), the above
immediately implies Proposition 1.2. Q

Proof of Theorem 1.3. The proof of Theorem 1.3 is very similar to that of

Theorem 1.1; the main difference is the choice of the subsequence along which one
can use the Borel-Cantelli lemma. To this end, define

03C8(t)1-03C6(t) t.
Recalling (2.1), we see from Lemma 2.1 that

(2.8) ~(d-2)~.
n

Therefore,

n n 
’~

(2.9) (2.9) ~1 = 00,

by assumption. It now follows from Lemma 2.2 and (2.8) that

E(~ + ~)) ~)) ("~~V’l’’
~ ~ - ~3~) , ~ 

n n+k 

 ~ - ~3~) . ~)

~(~-2)~~.~
- (d-2)P(E(n))P(E(~)),
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where the penultimate line follows from the fact that t ~ cp(t) is assumed to be

decreasing. This development implies the existence of some ~N --~ 0, such that

N N-n N N-n

~ ~ n E(n + k)) _ (d - 2)(1 + L., ~ P(E(n))P(E(k))
n=l k=1 n=1 k=1

N 2

(2.10) ~ (d-2)(1+~N)(P(E(n))).

By the lemma of Kochen and Stone [KS], (2.9) and (2.10) together imply

P(E(n), i.o. ) > (d - 2)-1.

Hence, by Kolmogorov’s 0-1 law, P(E(n), i.o. ) = 1. Since M~~~,~ = n, we have
shown that with probability one,

i.o..

By Chung’s law of the iterated logarithm, for each c > 0, almost surely we have:

Mt > t1/2-ë, eventually. By the assumed properties of cp, for each K > 1,

Mt - It  K op(t), i.o.

Replacing cp(.) by ecp(.) and letting ~ --~ 0, the result follows. D

Proof of Theorem 1.4. Let tn -°- en, and ~n °-- Since --~ 0 as t ~ oo,

we might as well assume that  1. We begin with the elementary observation
that  oo if and only if En  oo. Arguing as in Lemma 2.1, there exists
some K > 1 such that for all n ~ 1,

 

Hence, if  oo, then by the Borel-Cantelli lemma,

> , eventually,

almost surely. Now suppose t is large. Then there exists some large n such that

tn  t  tn+1. . Since t t-~ and t ~-~ are both increasing, it follows that

with probability one, > eventually. Now if converges, also

converges no matter the value of K > 0. Hence applying the above to K . Q(t)
instead, it follows that with probability one: > K ~ . Q(t), eventually. In other
words, we have argued that if  oo, then almost surely,

(2.11) lim = oo.
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Now supppose = oo and define,

En °-- {w : I03C3(tn)  

As in Lemma 2.1, it follows that there exists some K > 1 such that for all n > 1,

K-103C8d-2n ~ P(En) ~ K03C8d-2n.

Since  oo if and only if En  oo, we have shown that En = oo.

Suppose we could prove the following:

(2.12) lim inf 03A3Nn=103A3N-nk=1P(En~En+k) (03A3Nn=1P(En))2~.

By the Kochen-Stone lemma ([KS]) and Kolmogorov’s 0-1 law, it would then follow
that almost surely, infinitely often. However, diverges if and only
if diverges, for any choice of c > 0. Hence, applying the above discussion to

t -~ we see that = oo implies the following:

It Mt03C8(Mt) =0, a.s.

Together with (2.11), this shows that if we could prove (2.12), then we have shown

the following: .

(2 13) It Mt03C8(Mt)= 0~, if J(03C8) = ~.

Supposing (2.12) for the time being, let us see how (2.13) implies Theorem 1.4. For

any 03B8 > 0, let 03C8(t03B8). Note that 03C803B8 satisfies the conditions of the theorem if

and only if ~ does. Moreover, = and hence = oo if and only

if = oo.

Suppose = oo. By (2.13), for any 0 > 2,

It Mt03C8(M03B8t)
=0, a.s.

Refining the proof of (2.6) (alternatively, using Chung’s LIL), t, eventually,

a.s.. Since t ~ 03C8(t) is decreasing, it follows that

(2.14) if J(03C8) = ~ then It Mt03C8(t) = 0, a.s.
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On the other hand, if  oo, then  oo for 9 E (0, 2). Applying (2.13) to

J8 for such a B, it follows that

It Mt03C8(M03B8t)
= ~, a.s.

Another argument (e.g, the LIL or a refinement of the argument leading to (2.6))
shows that almost surely: t, eventually. Therefore we have shown that (a.s.),

if J(03C8)~ then It Mt03C8(t)=~.
This and (2.14) together prove the theorem. It therefore remains to prove (2.12).

In the course of the proof of (2.12), there are potentially two seperate cases to
consider: (1) when k is so large that tn+k1/Jn+k E ~tn, tn+k], and (2) when E

tn]. Both estimates follow the guidelines of the proof of Lemma 2.2 and one

gets the same estimates (modulo some constant multiples) in both cases. Therefore,
we shall be content to handle case (1) only. In this case, by the gambler’s ruin

problem (cf. Lemma 2.1) and the strong Markov property, for all n, k > 1,

 

+P(I03C3(tn) tn03C8n , tn03C8n  I03C3(tn+k)  tn+k03C8n+k)

=(tn03C8n tn+k )d-2 + Ptn(03C3(tn03C8n)  03C3(tn+k)) .Ptn+k(03C3(tn+k03C8n+k)  ~)
. Ptn+k03C8n+k(03C3(tn03C8n) = ~

= Ti + T2.

Evidently, there exists some K > 0 such that for all n > 1, T1 ~

Likewise, T2 is estimated as follows,

T2 = td-2n+k-td-2n td-2n+k-(tn03C8n)d-2 03C8d-2n03C8d-2n+k(1- (tn03C8n )d-203C82-dn+k)
~ 203C8d-2n03C8d-2n+k

~ KP(En)P(En+k).

Hence there exists some K > 1 such that for all k and n satisfying case (1), we have
P(En n En+k)  K . +1P(En+k)). Since a similar estimate holds for k and
n satisfying case (2), (2.12) follows from the fact that 03A3n P(En) = ~. This proves
Theorem 1.4. 0
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