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On the Hypercontractivity of
Ornstein—Uhlenbeck Semigroups with Drift*

Zhongmin Qian ~and Sheng-Wu He

In the framework of white noise analysis we study an Ornstein—
Uhlenbeck semigroup with drift, which is a self-adjoint operator. Let
(8) C (L*) C (5)* be the Gel'fand’s triple over white noise space (S'(R),
B(S'(R)), p)- Let H be a strictly positive self-adjoint operator in L2(R).
Then

Pflo(z) = / p(e™ "z + V1 - e=2tHy)u(dy), ¢ € (5),£ 2 0,

S'(R)

determines a diffusion semigroup in (LP),p > 1, called the Ornstein—
Uhlenbeck semigroup with drift operator H. We shall show that the
Bakry-Emery’s curvature of (P )e>o is bounded below by

o (HE HE)
~0#12£(R) (HEE)

In particular if & > 0, then (Pf) is hypercontractive : for any p > 1,
q(t) = 1+ (p— 1)e*** and nonnegative f € (L?),

IPF Fllgcey < 1 llp-

The importance of hypercontractivity for classical Ornstein—Uhlenbeck
semigroup in the constructive quantum field theory has already been
shown by E. Nelson (cf. [13], [14], [20] and [21]). Since then it became
an active research field (cf. [6] and [20]). Moreover, it is clear recently
that there are connections between hypercontractivity and spectral the-
ory , and other aspects of operator theory (cf. [2], [6] and [19]). In his
famous paper [9], L. Gross established the equivalence between logarith-
mic Sobolev inequality and hypercontractivity of diffusion semigroups. In
recent, D. Bakry and M. Emery ([3]) gave a local criterion (i.e., only in-
volved with the generator of a diffusion semigroup) for hypercontractivity
(cf. [2] and references there). Thus one way to establish a hypercontrac-
tivity criterion for the semigroup (P;¥)¢>o is to identify the Dirichlet

*The project supported by National Natural Science Foundation of
China and in part by a Royal Society Fellowship for Zhongmin Qian.
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space associated with the semigroup (P/?):>¢. In this paper, however, we

computer the Bakry-Emery’s curvature of the semigroup (P )>o.

A brief introduction to white noise analysis is given in section 1.
More materials on white noise analysis may be obtained from [11] or
[22]. Ornstein—Uhlenbeck semigroup with drift is defined in section 2. A
detailed discussion on Ornstein-Uhlenbeck semigroup may be found in
[10]. A lower bound of the Bakry-Emery’s curvature of the semigroup
(Pi")e>0, then a hypercontractivity criterion are established in section 3.

1. White noise space. Let S(R) be the Schwartz space of rapidly
decreasing functions on R .Denote by A the self-adjoint extention of the

harmonic oscillator operator in L?(R) :
Af(u) = —f"(u) + 1+ v*)f(u), f € S(R).

Put g
en(u) = (—1)"(7r1/22"n!)'1/2e“2/2-(E—;e""z, n > 0.

Then e, € S(R) is the eigenfunction of A, corresponding to eigenvalue
2n + 2, and {en,n > 0} is an orthogonal normed basis of L2(R). Define

1B = 14713 = £ Cnt 2P\ (fen)l’, S € LA(R),

S5p(R) = D(A?) = {f € L*(R):|fl;, <00},  p20,

where | - |2 denotes the norm of L2(R). With {| - |2, p > 0} S(R) is a
nuclear space. Let S/(R) be its dual space. Set

Sp(R)={f € S'(R):If3, = 2 (2n + 2)”7(f, en)l? <0},  pER,
where {-, -) denotes the pairing between S(R) and S/(R). Then

S(R) = pQRS”(R)’ §'(R) = lEJR Sp(R).

The famous Minlos theorem states that there exists a unique probability
measure x on B(S'(R)), the o-field generated by cylinder sets, such that

i(2,6) = exnd —Liep2
Jo ) = exp{ ~51elE}, €€ S

The measure p is called the white noise measure, and the probability
space (5'(R), B(S'(R)), ) is called the white noise space. Set

Xe(z) = (=, §), T € S,(R)’ £ € S(R).
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{X¢, € € S(R)} is called the canonical process on the white noise space.
Under p the canonical process is a Gaussian process with zero mean and
covariance C(¢,7) = (£,1), €,7 € S(R). On white noise space one can
define a Brownian motion B = {B;,—00 < t < oo} such that X, =

[ &(t)dB; and B(S'(R)) = o{B;,— < t < oo}. Each ¢ € (L?) =
L*(S'(R), B(S'(R)), p) has chaotic representation:

o0
b= / / o™ (ty, ..., ta)dBy, ...dB;,, (1.1)

llell = 3 ™3,

n=0
where (™ € I2(R") (the symmetric subspace of L2(R™)), || - ||z denotes
the norm of (L?). We denote (1.1) also by ¢ ~ (¢{™) simply. If for all n,
(™ € D(A®"), and Y2 ; nl|A8"p(M|2 < o0, define

D(A)p € (L?),  D(A)p~ (4876, (12)

T'(A) is a self-adjoint linear operator in (L?), and is called the second
quantization of A. For p > 0, set

(8)p = D(T(A)),

llel,» = IT(A)ellz = 2 o™, o~ (@) € ()

n=

()= N (5,
p20

With {|| - ||2,p» = 0} () is also a nuclear space, each element of () is
called a test functional. Denote by (5)—, the dual of (5),,p > 0, by (5)*

the dual of (), then
(8)" = U (5)-r
p20

Each element of ($)* is called a generalized Wiener functional or Hida
distribution. () is an algebra, and each ¢ € (5) has a continuous version
(in the strong topology of S'(R)), thus each member of (S) is assumed
continuous in the sequel (cf. [23]).

For £ € L?(R), exponential functional £(§) is defined as

£(6) = exp{(&) - 51¢l3} ~ (¢°")-
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If £ € S(R),then £() is a test functional. Let F' € (§)*. The S-transform
of F is defined as

(SF)&) = (FE€)), €€ S(R),

where ((-,-)) denotes the pairing between (.5)* and (S5).
A functional U on S(R) is called a U-functional, if
1) for each £ € S(R) the mapping A — U(A£) has analytic continuation,
denoted by u(z,£), on the whole plane;
2) foreach n > 1

Unl61®-®6) = 3 S (-I"™* F 0,6+ +6s)

I <<l 42"

is multilinear in (&,---,&5) € (9)™;
3) there exist constants C; > 0, C; > 0, p € R such that for all z and ¢

|u(z, €)| < Crexp{Calz[*|¢[3,_,}-
Potthoff and Streit (cf. [15]) have proved that a functional on S(R) is
the S-transform of a Hida distribution if and only if it is a U-functional.
Each Hida distribution is uniquely determined by its S-transform. For
any F,G € (5)* there exists a unique Hida distribution, denoted by F : G
and called the Wick product of F' and G, such that S(F : G) = S(F)S(G).
Let v be a probability measure on (S'(R), B(S'(R))). If under v the

canonical process X = {X¢,£ € S(R)} is a Gaussian process, we call v a
Gaussian measure (cf. [IO]E). In this case, the mean functional

(m,,&) = /ngv, £ € S(R),
is a generalized function, i.e., m, € S'(R), and the covariance functional
Cu(E, "7) = /Xfxndl/ - (mmE)(mu’ 77), 5,77 € S(R)’

is a nonnegative-definite continuous bilinear functional on § (R) x S(R).
The characteristic functional of Gaussian measure v is

. . 1
[ é=tuida) = exp{itm,, ) - 3606, 6)), €€ S(),
and it is not difficult to see

[e@w =exp{ -3l +(m, 0+ 2060} (3)
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is a U-functional. For any affine transform T on S'(R), vT'~! remains a
Gaussian measure (see Theorem 2 in [10]).
Let y € S'(R) and ¢ € (5). The derivative Dy¢p of ¢ in direction y is
defined by
_po ety —o
Dyp = lim t ’

where the limit is taken in (5). For any F € (5)*

(F, Dyp) = (F: Li(y), ¢, (1.4)
where I;(y) ~ (0,9,0,---) € (5)*. For any ¢, ¢ € (5)

Dy(¢p) = (Dyp)¥ + @(Dyp), Dy(p:9) = (Dyep): ¥+ @: (Dyth). (1.5)

2. Ornstein-Uhlenbeck semigroup. Let H be a strictly positive self-
adjoint operator in L?(R). Set

My=eH — Ty=+1-e2H=1/1-My, t>0. (2.1)

We make the following assumptions:

(H,) S(R) C D(H) and H is a continuous mapping from S(R) into
itself.
(Hz) Vt> 0 M; and T; are continuous operators from S(R) into itself.

Then M; and T3, t > 0, can be extended onto S'(R) : Yz € S'(R),

(eS(R),
(Mtz,f) = (:1:, Mt&)) (thag) = (‘E’th)' (2'2)
Now for all ¢ > 0,z € S'(R) and ¢ € (5) define

PHp(z) = / (M + Tey)p(dy) = / el (dy),  (23)

where ,uf,t is a Gaussian measure with mean functional (M;z,£) and

covariance fuctional ((1 — e~2*#)¢, 7). Hence the definition (2.3) makes

sense.
Let T'(e~*H) = I'(M;) be the second quantization of M;. Then we have

PtH = F(e_tH) = e"tdr(H), t>0, (24)
where dT'(H) is a self-adjoint operator in (L?):
o0
dr(H)=3 O{HQIQ - QI+IQH®IQ ---®I+
n=t n fa‘gors n fa:;ors

...+I®...®H}
N e’

n factors
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ie., {PH,t > 0} is a Markov semigroup with infinitesimal generator
Ly = —dI‘(H ). {PE,t > 0} is called the Ornstein-Uhlenbeck semi-
group with drift operator H . When H = I, the identity operator, it
reduces to ordinary infinite dimensional Ornstem Uhlenbeck semigroup
(Refer to Theorem 8 in [10]). To help the understanding the definition of
semigroup (Pf?)¢>0, the reader may think of its finite dimensional ana-
logue. In this case, the Hilbert space L2(R) is replaced by R", u is the
standard normal measure on R™ and H is a positive symmetric matrix,
eg., Hz = Y Ai(z,e;) e;, where (e;) is the standard base of R", so

that
P f(z) = / f (e‘”’w +V1- e‘”“y) p(dy)
Rn
and

L= XA_ i Nz 2o

H = 2 s e axi-

The following properties of Ornstein—Uhlenbeck semigroup are imme-
diate.

Proposition 2.1. For any ¢, P € (§) andt >0
1) |1PHF |2 < el
2) [ (P ¢)du f (P o)pdp,
3) lim;_o ”Pt }lz =0,
4) im0 “Pt ©— | @dpll> =0.
In particular, for any p > 1, (PH)i>0 can be uniquely extended to be a p-
symmetric, contractive, strongly continuous semigroup on (LP), and the
above properties remain true.

We need also the properties of operator dI'(H). For any n > 1, let
H(™ be the self-adjoint operator in L?(R™) such that

HMe®™ — HeRe - - RE, (2.5)

n factors

and H®) = I. Then for any ¢ ~ (¢(™) € D(dT(H)) by definition we
have
dT(H)p ~ (nH™M M), (2.6)

In particular, for any € € S(R)

dT(H)E(£) ~ ( (HOREE™ ™) = L(HE:E(E).  (2.7)

1
(n—1)!

Proposition 2.2 (§) C D(dT'(H)).



208

Proof. Let p > 0. Since H is a continuous mapping from S(R) into itself,
there are ¢ > p and Cp, > 0 such that for all £ € S(R)

[HEl2,p < Cpl€l2,q-
Let ¢ ~ (¢(™) € (S). Then

HP M, < 2 1(6™, e @@ e, )1 HMes, @+~ @ i, |2,y

t1,°**ytn

n
< T ™, 6,0 ®e,)InC, I (26 +2)°
=0

11, °%tn

a —211/2;, (n
< nCp[kz-:o(2k+2) ] P 2,415

(o4 (o
140l < CF 55 min[ 3 (2642 6 41 < el g1

where a > 0 is taken such that for all n

nCp2"[ 3 (2 +2)7Y" < 1.
k=0

Thus dT'(H)yp € (5).
From the definition of dI'(H) it is easy to verify directly the following

Proposition 2.3. For any ¢, 1 € D(dI'(H)), we have ¢: v € D(d['(H))

and
dD(H)(: %) = (d(H)p): -+ s (dT(H)).

Lemma 2.4. Let ¢ € (S). Then

[$(dT(H)#)](€) = (Dre(e), E())- (2.8)

Proof. By the symmetry of dI'(H) , (2.7) and (1.4)
[$(d(H)p)](€) = (dT(H)p, £(€)) = (i, dT(H)E(E))
= (o, Ll(HE): E()) = (Dre(¥), E(E))-
Corollary 2.5. For any £, n,( € S(R)
[S(E(m)AT(H)EQ))](€) = (HE, n+ £)eeDT OGO - (2.9
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that is
E(n)dT(H)E(C) = {(H{, m) + L(HO:{EME} (2.10)

Proof. Note that for any &, n € S(R)
E()E(n) = E(£ +m)el®m, (2.11)

and by (2.7)
[S(dT(H)EM)](€) = (Hn, £)e&™. (2.12)

Now from (2.11) and (2.12) we have
[$ (Em)dT(H)E(C))](€) = (EmATEH)EE), EE))

= (dT(H)E(Q), £(€ + e
=(H¢, n+ f)e(e,n)+(n,0+((,£).

Then (2.10) follows from (2.9) and (2.11).
Denote A = sp{€(&), £ € S(R)}.

Lemma 2.6. For any ¢ € A we have
dT(H)¢® = 3¢dT(H)p? — 3p*dT(H ). (2.13)

Proof. At first, note that for any positive integer k£ and £ € S(R)
E(6)F = E(kE)er W -RIE;, (2.14)

It can be shown by induction and (2.11). By means of (2.9) and (2.14) it
is easy to calculate

[§(dT(H)E(n)*)](€) = 3(Hn, &) exp{3|nl} + 3(n, £)} (2.15)

[S(E(mdT(H)E)?)](€) = 2(Hn, 0+ ) exp{3|nl3 + 3(n, £)}(2.16)

[S(E()*dT(H)E(n))](€) = (Hn, 21 + &) exp{3|nl3 + 3(n, £)}(2.17)
Let o = >, ¢;€(mi), i € S(R), ¢c; € R, 1 < i < n. Then (2.13) follows
from (2.15)—(2.17) by straightforward computation.

Since the strong topology of S'(R) is generated by .4, by making use
of a Bakry and Emery’s result in [3] from Lemma 2.6 we get the following
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Theorem 2.7. The semigroup (PH) is a diffusion semigroup, i.e., for
anyh(,ol, ~ooyon € D(Ly)" and @ € C’Z(R") with ®(p1,---,¢n) € 'D(LH)
we have

n

0%
Lu®(p1,: 5 n) = - 32, (P17 0n)LEep:
i=1 0T4
2

+ E 5e:03, (P15 on) [ LE(Piv;) — wi(Lae;) — (LHP)P;5).

t]l

If we denote by (£, F) the Dirichlet form associated with the u- symmetric
semigroup (P;7), then (£, .7-") is local (cf. [5], [8] and [12]). It is not
difficult to show that there is a diffusion process X = (X, P¥) with
transition semigroup (P/). Then for any bounded ¢ € D(Lg)

ME = o(X,) - ¢(Xo) - / Lirgp(X,)ds

is a P®-martingale for any z, and d(M?, M¥); < dt (cf. [8] and [12]).
In fact, we have

(M?, MP), = / (La(¢?) - 20(Le)](Xe)ds.

3. The hypercontractivity of (PF). Define

Mo, ¥) = 5{Lu(ow) ~ o(Lad) - (Lue)p), (v, ¥) € D),

where

D(F) = {(‘P, "p) ) 'l)b’ QD’(p € D(LH)}

Obviously, by Proposition 2.2 we have (5) x (8) c D(T), since (S ) is
an algebra. T is called the square field operator of the semigroup (P;?).
‘Define

Tu(p, $) = 5 {Lnl(p, ¥) — (L, ¥) - T, L)}, o, ¥ € D(T),

where : )
D(T3) = {¢: ¢, ¢" Lup, pLup, Lup® € D(Ly)}-

By the same reason we still have () C D(I'y). T is called the iterated
square field operator of the semigroup (P;") or the Bakry-Emery’s cur-
vature of the diffusion operator Ly, and was introduced by D. Bakry

((1]).
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Lemma 3.1. For any 7, ( € S(R)
(&), £(O) = (Hn, QEME). (3.1)

Proof. Let £ € S(R). For convenience, denote

a(§, , ) = &M OGO = [5(e(n)e(0)))(©)- (3.2)

We are to check the S-transforms of the two sides of (3.1) are equal. By
(2.12) we have

[S(La(EMEWL)]E) = [S(Tatn+ ()] (€)™
= —(H(n+ ), O)el&mH0m0 (33)

= {—(Hﬂ, 6) - (HC, f)}a(£7 B C)
Similarly, by (2.9) we have

[S(EMLHEE())](€) = {-(H(, n) = (H, €)}a(€, 1, ¢),  (3.4)
[S(g(C)LHE(U))] (f) = {—(Hm C) - (Hﬂ, E)}a(& 17, C) (35)

Noting that H is symmetric, from (3.3), (3.4) and (3.5) we get

[ST(&(n), £())](€) = (Hn, O)a(€, 1, C)
= [S((Hn, QEME))](€)-

Thus (3.1) is verified.

Lemma 3.2. For any n, ( € S(R)

T2 (E(n), €(C)) = {(Hn, HO) + (Hn, ()*YEME(Q). (3.6)

Proof. Samely, we need only to verify for £ € S(R)

[ST2(£(m), £()](€) = {(Hn, HO) + (Hn, O)*}al, 1,0). (3.7)

At first, by (2.12) and Lemma 3.1 we have

[SLaT(£(n), £(0))](€) = (1, Q™ SLLEE(n + O))(€)

= - (HTI, C){(Hf, "7) + (Hf, C)}a(€1 7, C) (38)
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Secondly, we are to calculate the $-transform of I'(Lg&(n), £(¢)). By
(2.8) and Proposition 2.3

[SLa(E(Q)LuEM)](€) = (D-re[E(C)LrE(M)], E(E))
= (—(H& QEQ)Lut(n), EEN + (E()D-neLu&(n), £(E))
= — (HE OGLaE(n), EE+ ONe®O) + (D_neLu&(n), E(E+ el
= (HE, Q)(Hn, £+ Qa(é, m, Q) + (—L(HE):E(E+ ), Lué(n))es)
= (HE C)(Hn, £+ Q)al€, 1, ¢) — {((Lah(HE)): EE+C), E(n))
+ (L(HE): (LaEE +C)), E()}e&?)
= (HE, ¢)(Hn, £+ Qa(€, n, ¢) + (L(H?E), E()Na(€, m, ¢)
— (HE n){(LuEE+Q), E(n))et&)
= {(HE, O)(Hn, £+ ) + (HE, Hn)+ (HE n)(Hn, £+ O}a(é, 1, ¢)
= {(H¢, Hn)+ (HE, n+ C)(Hn, £+ ()}a(é, n, ¢)- (3.9)
Using the symmetry of Ly and Lg&(n) € (5) we get
[S(La&(n)LuE(())](€) = (LaE(n)LuE(C), EE))
= (Lr&(C), EE)LuE(n)) = (Lu(E(€)Lut(n), E(C))

= {(H¢, Hn) + (H, £+ n)(Hn, £+ ()}a(€, 1, O), (3.10)
where the last equality comes from (3.9). By using (2.7) repeatedly we

have
L3E(n) = L(H?€):E(n) + Lu(Hn): L(Hn): £(n).
Thus
[S(E()LHEM)](€) = (LEE(), E(E+)Nels©
= {(Hn, HE+ Q)+ (Hn, £+ )*}a(é, 0, (). (3.11)

Combining (3.9), (3.10) and (3.11), we get

[ST(Lré(n), £())](€)
= L(HE, Hn)+ (HE n+ O, €+C) — (Hn, )

- (HC’ § + n)(Hna 6 + C) - (HU, H€+ H() - (-HT], E'*’ 6)2}‘1(5’ 7, C)
= {“(HU, HC) - (HU, C)(Hna E) - (HU, C)Z}a(§7 7 C) (312)

(3.12) may also apply to [ST(£(n), Lr&(())](€). Now (3.7) follows from
(3.8) and (3.12) :

[ST2(£(n), £(C))](€)

= Lo, )(HE, 0+ ) + (Hn, HC) + (Hn, €)(Hn, €) + (Hn, O)?

2
+ (Hn, H) + (HC, O(HC, m) + (HS, 1)*Ya(€, 0, €)
= {(Hn, HC) + (Hn, {)*}a(€, 1, O)-
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Set

. (HEHE)
W T (3.13)

Theorem 3.3. For all p € A, we have following Bakry-Emery’s curva-
ture inequality,

T2(p, ) 2 aI(p, @) (3.14)

Proof. Let ¢ = Y., ¢ié(n:), n € S(R),ci € R,1 < i < n. By Lemma
3.1, 3.2 and the condition (3.13) we know

T2(p, ¢) — al(p, ¥)
= 3 cicsEm)Em){(Hs, Hny) — o(Hmi, ) + (Hmiy ;)% 2 0,

1,j=1

noting that ((Hn:, n;)) and ((Hn;, n;)?) are nonnegative-definite.

L. Gross ([9]) and D. Bakry — M. Emery ([3]) proved that (Pf) is
hypercontractive if there is a dense algebra B such that it is stable under
‘C®-maps, B x B C D(I';) N D(T'), and (3.14) holds for every ¢ € B.
Unfortunately, the algebra A is not stable under C°-maps. However,
the following Theorem 3.5 permits us to establish a hypercontractivity
criterion for the semigroup (P/?) along the lines of L. Gross and D. Bakry
- M. Emery.

Lemma 3.4. Let (a; j)i<ij<n be a symmetric nonnegative-definite ma-
triz and ¢;, 1 < @ < n, be arbitrary reals. Then

2
cicjekei(ai jak, + agp — @i, jGik — @ijajk) > 0.

M=

bl

i,3.k,i=1

Proof. Let (Xy,--+,X,) and (Y1, --,Yy,) be twoindependent random vec-
tors with the same normal law N (0, (a; ;)). Denote X = > 7", ¢;X;, Y =
?:1 ¢Y;, Z = 22;1 ¢ XiY;, ¢ = Z?;l ¢;. Then



214

n
2
> cicicga{aijak, + aj — ai,j0ik — i ja;k}
1,4,k =1
n

= i,j,%?l:l ciciekel{E(Xi X;)E(YiYr) + E(Xx X))E(YRY:)
~ EQGX)E(YiYh) - ECLXG)E(YYh)}
= i,j,:Z:,z=1 cicicklE(Xi XYY + X XiYy Y — X, XYY — X X;Y;Yy)
E(X2Y? + 2% — cZXY — cX ZY)
E(XY - ¢Z)? > 0.

Theorem 3.5. For any ¢ € A with ¢ > 0 we have
Ty(Ingp, Inp) > aI'(In ¢, In p). (3.15)

Proof. Since (P/?) is a diffusion semigroup, we have
1
I'(lnp,Inp) = Jl‘(w, ®),
1 1 1

Iz(ln g, Inp) = (-,31“2(% #)+ i, ¢)’ - (e (¢, ¢))-

Let o = Y0, ci€(mi), i € S(R), ¢i € R, 1 <4 < n. Denote
p = Ty (In ¢, Inp) — ap*T(ln g, In p)
= ¢’Ta(¢, ©) + T(#, ©)* — ¥T(, T(#, ) — ap’T(, ).

Observing that

L(E(ne), T(E(mi, £(n;))) = (Hiy n)(Hky 13 + 15)E(mi)E ()€ (ni)
by Lemma 3.1 and 3.2 we have

b= 3 ciciora{Em)Em)T(Em:), E(n7))

i,4,k,1,=1

+T(E(m:), EMi))T(E(nk), E(m)) — E(mM)T(E(m), T(E(m:), €(n3)))
— € (ne)E(mT(E(n:), E(ni))}

| = kzn% 1Cicjckclg(m)S(Wj)f(nk)g(nz){(ffm, ;) (H 1k, M)
UKW=

+ (Hne, m) — (Hni, 1) (Hniy mi) — (Hniy 15)(Hnjy k)
+ (Hnk, Hm) — a(Hnk, m)}-
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By Lemma 3.4
> cicieear€(n)En;)E (me)E(m){(H iy n;)(Hnk, m) + (Hnk, m)?

i,k =1
= (Hmis 15)(H i 1) — (Hiy i) (Hnjy i)} 2 0,
and by the condition (3.13)

5’:‘_ ciciekeri€(ni)E(n;)E (ne)E(m){(Hnw, Hm) — a(Hne, m)} > 0.

t,5,k0,=1
Hence % > 0. So (3.15) is verified.

Now starting from Theorem 3.5 and by making use of the similar argu-
ments in D. Bakry and M. Emery ([4]), we may get the following results
consecutively. We omit the details of the proofs.

Lemma 3.6. Let o € A, > 0 and o > 0. Then for anyt >0

P (plng) - (Pg) n(Pflp) < 5 (1 - e~ P (%r«o, ¢))- (3.16)

Proposition 3.7. If p € A and a > 0, then
2
/‘P2 In p*dp — (/wzdu) In (/w’du) < ;/1‘(30, p)dp.  (3.17)

Theorem 38 Assume

_ e (HEHY
o#ées(r) (HE,E)

Then for any p > 1, q(t) = 1+ (p—1)e***, t > 0 and f € (LP) with f > 0
we have -
[| P f“q(t) < 1Al (3.18)

> 0.

This hypercontractivity criterion for (PF) is our main result. The
equivalence of (3.17) and (3.18) was estabished by L. Gross ([9]).
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