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On the Hypercontractivity of
Ornstein2014Uhlenbeck Semigroups with Drift*

Zhongmin Qian and Sheng-Wu He

In the framework of white noise analysis we study an Ornstein-
Uhlenbeck semigroup with drift, which is a self-adjoint operator. Let
(S) C (L2 ) C (S)* be the Gel’fand’s triple over white noise space (S’(R),
B(S’(R)), ~c). Let H be a strictly positive self-adjoint operator in L2(R).
Then

= + ~/1 - (S), t > 0,

determines a diffusion semigroup in (Lp), p > 1, called the Ornstein-
Uhlenbeck semigroup with drift operator H. We shall show that the
Bakry-Emery’s curvature of is bounded below by

a = .~ 

(F~,~) ’ 
°

In particular if a > 0, then (P~) is hypercontractive : for any p > 1,
q(t) = l + (p -1)e~at and nonnegative f E (LP),

 ~f~p.

The importance of hypercontractivity for classical Ornstein-Uhlenbeck
semigroup in the constructive quantum field theory has already been
shown by E. Nelson (cf. [13], [14], [20] and [21]). Since then it became
an active research field (cf. [6] and [20]). Moreover, it is clear recently
that there are connections between hypercontractivity and spectral the-
ory, and other aspects of operator theory (cf. [2], [6] and [19]). In his
famous paper [9], L. Gross established the equivalence between logarith-
mic Sobolev inequality and hypercontractivity of diffusion semigroups. In
recent, D. Bakry and M. Emery ([3]) gave a local criterion (i.e., only in-
volved with the generator of a diffusion semigroup) for hypercontractivity
(cf. [2] and references there). Thus one way to establish a hypercontrac-
tivity criterion for the semigroup is to identify the Dirichlet

*The project supported by National Natural Science Foundation of
China and in part by a Royal Society Fellowship for Zhongmin Qian.
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space associated with the semigroup In this paper, however, we
computer the Bakry-Emery’s curvature of the semigroup 

A brief introduction to white noise analysis is given in section 1.
More materials on white noise analysis may be obtained from [11] or
[22]. Ornstein-Uhlenbeck semigroup with drift is defined in section 2. A
detailed discussion on Ornstein-Uhlenbeck semigroup may be found in

~10 . A lower bound of the Bakry-Emery’s curvature of the semigroup(P~ )t>o, then a hypercontractivity criterion are established in section 3.

1. White noise space. Let S(R) be the Schwartz space of rapidly
decreasing functions on R .Denote by A the self-adjoint extention of the
harmonic oscillator operator in L2(R) :

Af(u) = - f"( u) + (1 + ~2) f(u), f E S(R).

Put 

en(u) = (-1)n(03C01/22nn!)-1/2eu2/2dn dun e-u2, n ~ 0.

Then en E S(R) is the eigenfunction of A, corresponding to eigenvalue
2n + 2, and {en, n > 0} is an orthogonal normed basis of L2(R). Define

where ) ’ denotes the norm of L2(R). With ~~ ~ )Z~p, p > 0~ S(R) is a
nuclear space. Let S’(R) be its dual space. Set 

’

n=0

where (., .) denotes the pairing between S(~R) and S’(R). Then

S(R) = n Sp(R), S’(R) = U Sp(R).
pER pER

The famous Minlos theorem states that there exists a unique probability
measure  on B(S’(R)), the 03C3-field generated by cylinder sets, such that

S’(R) ei(x,03BE) (dx) = exp{-1 2|03BE|22}, 03BE ~ S(R).

The measure  is called the white noise measure, and the probability
space (s’(R), ~i(S’(~R)), ~C) is called the white noise space. Set

x~(x) = (x~ ~)~ x E S’(R), ~ E S(R).
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E S(R)} is called the canonical process on the white noise space.
Under ~C the canonical process is a Gaussian process with zero mean and
covariance = (~, r~), E S(R). On white noise space one can
define a Brownian motion B = {Bt, -oo  t  oo} such that X~ =

and ,Ci(S’(R)) = Q{Bt, -oo  t  oo}. Each p E (L2) _
L2(S’(R), ,Ci(S’(R)), ~C) has chaotic representation:

~ - f ~ ... ~ ~ ..., ...dBt", , (1.1)
n=0 

11~112 - L 
n=0

where E L2(Rn) (the symmetric subspace of ~~ ’ ~~2 denotes
the norm of (L2). We denote (1.1) also by 03C6 ~ (03C6(n)) simply. If for all n,
cp~"~ E and  oo, define

’ E (L2)~ ° (1.2)

r(A) is a self-adjoint linear operator in (L2), and is called the second
quantization of A. For p > 0, set 

.

(S)P = 

~03C6~22,p = ~0393(A)p03C6~22 =  n!|03C6(n)|22,p, 03C6 ~ (03C6(n)) ~ (S)p.

(S) = ~ (S)p.
p>0

With {~~ ~ II2,P, ~ > 0} (S) is also a nuclear space, each element of (S) is
called a test functional. Denote by (S)-p the dual of (S)p, p > 0, by (S)*
the dual of (S), then 

.

(S)* - U (S)-p.
p>o

Each element of (S)* is called a generalized Wiener functional or Hida
distribution. (S) is an algebra, and each p E (S) has a continuous version
(in the strong topology of S’(R)), thus each member of (S) is assumed
continuous in the sequel (cf. [23]).

For ~ E L2(R), exponential functional is defined as

~ 

£~~~ = 2~~~2} ^’ 
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If 03BE ~ S(R), then is a test functional. Let F E (S)*. The S-transform
of F is defined as

Cs~’)(~) _ ~~F~ ~(~)~~~ ~ E s(R)

where ((., .)) denotes the pairing between (S)* and (S).
A functional U on S(R) is called a U-functional, if

1) for each ç E S(R) the mapping a -3 has analytic continuation,
denoted by ~c(z, ~), on the whole plane;

2) for each n > 1

Un(03BE1 ~ ... ~ 03BEn)=1 n! (-1)n-k dn dznu(0, 03BEl1 + ... +03BElk)
n. k=l ~1 ...~lk dz

is multilinear in (~1, . . ., ~’n) E (s)n;
3) there exist constants Ci > 0, C2 > 0, p E R such that for all z and ~’

~~(z~~)I _ 

Potthoff and Streit (cf. [15]) have proved that a functional on S(R) is
the S-transform of a Hida distribution if and only if it is a U-functional.
Each Hida distribution is uniquely determined by its S-transform. For

any F, G E (S)* there exists a unique Hida distribution, denoted by F : G
and called the Wick product of F and G, such that S(F : G) = S(F)S(G) .

, 
Let v be a probability measure on (5~(jR),~(~(.R))). If under v the

canonical process X = E s(R)~ is a Gaussian process, we call v a
Gaussian measure (cf. [10]). In this case, the mean functional

= ~ E S(R),

is a generalized function, i.e., mv E S’(R), and the covariance functional

~l ) = ~?) ~ ~~ ~ E 

is a nonnegative-definite continuous bilinear functional on S(R) X S(R).
The characteristic functional of Gaussian measure v is

ei(x,03BE)v(dx)= exp{i(mv,03BE) -1 2Cv(03BE, 03BE)}, 03BE ~ S(R),

and it is not difficult to see

= + ~) + ~) ) (1.3)
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is a U-functional. For any affine transform T on S‘’(R), vT-1 remains a
Gaussian measure (see Theorem 2 in [10]).

Let y E s’(R) and 03C6 E (S). The derivative Dyp of 03C6 in direction y is
defined by

r. 1. ~(. + "’ t-o t 
,

where the limit is taken in (S). For any F E (S)*

({~~ _ ({F: h(y), ~}}, (1.4)
where I1(y) N (0, y, 0, ~ ..) E (s)*. For any p, ~ E (s)

_ + ~) _ ~+ SP~ {1.5)

2. Ornstein-Uhlenbeck semigroup. Let H be a strictly positive self-
adjoint operator in L2 (R). Set

Mt = Tt = 1 _ e-2tH = 1 _ t > 0. (2.1)
We make the following assumptions:

(Hi) S(R) C D(H) and H is a continuous mapping from into
itself.

(H2 ) Vt > 0 Mt and Tt are continuous operators from S(R) into itself.
Then Mt and Tt, t > 0, can be extended onto S’(R) : : Vx E ,S’(R),
ç E 

_ {x~ _ {x~ Tt~}~ (2.2)
Now for all t > 0, x E S’{R) and p E (s) define

_ + _ (2.3)

where is a Gaussian measure with mean functional ~} and
covariance fuctional ((1 2014 e-2~H)~, ~}. Hence the definition (2.3) makes

. 

sense.

Let = r(Mt) be the second quantization of Mt. Then we have

pH = = e-tdr(H), ~ t > 0~ {2.4)
where dr(H) is a self-adjoint operator in (L2 ):

00 .

dr(~) = ~ ®{~I®...®I+I~H®~®...®~+
n=1 ’201420142014~201420142014~ 

n factors n factors

...+I~...~H}
n factors .
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i.e.) > 0} is a Markov semigroup with infinitesimal generator
LH = > 0} is called the Ornstein-Uhlenbeck semi-
group with drift operator F . . When H = I, the identity operator, it
reduces to ordinary infinite dimensional Ornstein-Uhlenbeck semigroup
(Refer to Theorem 8 in [10]). To help the understanding the definition of
semigroup the reader may think of its finite dimensional ana-

logue. In this case, the Hilbert space ~(R) is replaced by is the
standard normal measure on ~ and H is a positive symmetric matrix,
e.g., Hz = where (e;) is the standard base of so

that 
_____

and 

LH=1 20394-03BBixi~ ~xi.
The following properties of Ornstein-Uhlenbeck semigroup are imme-

diate.

Proposition 2.1. For any 03C6, 03C8 ~ (?) and t ~ 0
1) ~PHt03C6~2 ~ ~03C6~2,

2)  03C6(PHt03C8)d  = (PHt03C6)03C8d ,

3) limt~0~PHt03C6 - 03C6~2 = 0,
~ = o.

In particular, for any p ~ 1, can be uniquely extended to be a -
symmetric, contractive, strongly continuous semigroup on (LP), and the
above properties remain true.

We need also the properties of operator dr(H). For any n > 1, let
be the self-adjoint operator in such that

H(n)03BE~n=H03BE03BE...~03BE, (2.5)
n factors

and = I. Then for (~")) ~ by definition we
have

(2.6)
In particular, for any 03BE 6 S(R) .

(~~(~)~~-i) = ~~). (2.7)

Proposition 2.2 (S) C P(dr(F)).
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Proof. Let p > 0. Since H is a continuous mapping from S(R) into itself,
there are q > p and Cp > 0 such that for all ~ E S(R) 

IH~12,P ~ 

Let 03C6 ~ (03C6(n)) E (S). Then

ei1 ~ ... ~ein)~H(n)ei1~ ... ~ etn 12,p

 E |(03C6(n), ei1 ~ ... ~ ein)|nCp (2ik + 2)q
11 e"’r=n /C=~

 nCp[ Lr (2k + 2)-2]n/2|03C6(n)|2,q+1,
k=0 

’

oo oo

~’p E [ ~ (2’~ + 2) 2~ nl~~"r12,9~-1  
n=0 k=0

where a > 0 is taken such that for all n

nCp2-n03B1 [ (2k + 2)-2]
n 

 1.
k=0

Thus E (S).
From the definition of dr(H) it is easy to verify directly the following

Proposition 2.3. For any cp, ~ E D(dr(H)), we have p: ~ E D(dr(H))
and

~) = ~+ p: (dr(H)~)_

Lemma 2.4. Let p E (S~. Then

(~) = ~(~)>)~ 

Proof. By the symmetry of dr(H) , (2.7) and (1.4)

~S(dr(H)~)l (~) _ £(~))~ =1~~~ 
= ~U~ = ~O)5)~

Corollary 2.5. For any ~, q, ( E S(R~

= (H(, ~ ’+’ ~)e(E, n)+(n, s)+(~, E), (2.9) 
_
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that is

_ {(HC~ ~) + (2.io)

Proof. Note that for any ~, r~ E S(R)

_ £~~ + (2.11)

and by (2.7)
(~> _ ~)ec~,n~, (2.12)

Now from (2.11~ and (2.12) we have

= E(~» >
= ~~~ + ~l))~e(~,n)
= ~H~~ ~I + ~)e(~, n)+(v, ~)+(C, E).

Then (2.10~ follows from (2.9) and (2.11~.
Denote A = E S(R)}.

Lemma 2.6. For any p E A we have

= (2.13)

Proof. At first, note that for any positive integer k and ( E S(R)

~~~)~‘ _ ~~~~)e2(A2-k)1~12, . (2.14)

It can be shown by induction and (2.11). By means of (2.9) and (2.14) it
is easy to calculate

(~) = 3(H~l~ ~) 3(~l~ ~)} (2.15)
(~) = 2(H~l~ ~l + ~) + 3(~l~ ~)}(2.16)

~S (~(~l)Zdr(H)~(~7))~ (~) _ (H~J~ 2~l + ~) 3(~I~ ~)}(2.17)

Let p = ~i 1 c=£(r~;), r~t E S(R), c; E R, 1  i  n. Then (2.13) follows
from (2.15)-(2.17) by straightforward computation.

Since the strong topology of S’(R) is generated by A, by making use
of a Bakry and Emery’s result in [3] from Lemma 2.6 we get the following
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Theorem 2.7. The semigroup is a diffusion semigroup, i.e., for
any ... E and ~ E with ~(cpl, - ~ ~, cpn) E D(LH)
we have

n a~
LH~(W , ~ .. ~ ~pn~ - ~ W , ~ .. i=1 Zj

1 n 82 
1 1 1 1

+ 2 ...

,

If we denote by (S, F) the Dirichlet form associated with the -symmetric
semigroup then (~,.~) is local (cf. [5], [8] and [12]). It is not
difficult to show that there is a diffusion process X = (Xt, PX) with
transition semigroup Then for any bounded p E D(LH)

Mt = / 
is a Px-martingale for any x, and « dt (cf. [8] and [12]).
In fact, we have

= 

3. The hypercontractivity of Define

~> = (~~ ~) E 

where
_ ~O~ ~) ~ ~P~ ’~~ ~P~ E 

Obviously, by Proposition 2.2 we have (S) X (S) c D(F), since (S) is
an algebra. r is called the square field operator of the semigroup 
Define

~) = ’~) - ~) - E D(rz),

where 
’

D(r2) = E 

By the same reason we still have (S) C D(r2 ). T2 is called the iterated
square field operator of the semigroup (Pt ) or the Bakry-Emery’s cur-
vature of the diffusion operator LH, and was introduced by D. Bakry
([1]).
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Lemma 3.1. For any r~, ( E S(R)

~~~)~ - ~H~I~ C)£~~l)£~~)~ (3.1)

Proof. Let fl E S(R). For convenience, denote

a(~~ ~~ ~) = e~F, ~~+cn, s~+cs, ~~ - (3.2)

We are to check the S-transforms of the two sides of (3.1) are equal. By
(2.12) we have

_ + C))l (~)e(n, s)
= -~H~~7 + (), ~)e(~~ C) (3.3)
_ ~~ - ~H~~ ~l~ ~)~

Similarly, by (2.9) we have

_ ~I> - ~l~ C)~ (3.4)
_ C) - (H~l~ ~)}a(~~~l~C)~ (3.5)

Noting that H is symmetric, from (3.3), (3.4) and (3.5) we get

_ ~)a~~~ ~J~ ~)
_ 

Thus (3.1) is verified.

Lemma 3.2. For any r~, ( E S(R)

r2 £(C)) = HC) + C)2}E(~)E(C). (3.6)

Proof. Samely, we need only to verify for ( E S(R) 
’

[S03932 (~(~), E(C))) (03BE) = H03B6) + 03B6)2}a(03BE, ~, 03B6). (3.7)

At first, by (2.12) and Lemma 3.1 we have

[SLH0393(~(~), ~(03B6))](03BE) = (~, 03B6)e(~,03B6)[SLH~E(~+03B6)](03BE)
- - (H~, 03B6){(H03BE, ~) + (H03BE, 03B6)}a(03BE, ~, 03B6). 

(3.8)
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Secondly, we are to calculate the S-transform of r~LH£(~), E(~)~. By
(2.8) and Proposition 2.3

= ~ E(~)))
= £(~)>) + £(~))>
= - C)l(Lx£(~)~ £(~ + ~)»e(~,~) + £(~ + C>)>e(£, ~)
= C)(R~~ ~ + C)a(~~ ~~ C> + E(~ + C)~ 
= C)(~~7, ~ + C)a(~~ ~1~ C) - ~ ~(~ + C>> £(~)»

+ + C)) ~ £(~)>)}e(~,~) .

= ~ + C)a(~~ ~, ~) + ~I~ C)
- + ~), ~~~1)»e(~,~>

= ~ + ~) + + ~ + ~l~ C)
= + ~7 + ~)(H~l~ ~ + ~l~ C)~ (3.9)
Using the symmetry of LH and E (S) we get

= £(~))~
= = £(C)»
= f (HC, + ~ + ~ + ~I~ C)~ (3.10)

where the last equality comes from (3.9). By using (2.7) repeatedly we
have~~~~’~~ 

= + 

Thus

= ~(LHE(~)~ E(~ + C)»ec~, ~> 
= + ~)) + ~ + C)Z~a(~~ ~I~ C)~ (3.11)

Combining (3.9~, (3.10~ and (3.11~, we get
~(C>)~(~)

= + o + C)(H~7~ ~ + C) - ~)
- ~ + ~ + C) - H~) - (Ho, ~ + C)Z}a(~~ ~l~ C)

= HC) - ~)(H~I, ~) - C)z~a(~~ ~I~ C)~ (3.12)
(3.12) may also apply to LH£(~)~~(~~. Now (3.7) follows from
(3.8) and (3.12) :

[Sr2 (E(~)~ £(C))~ (~)
= C)(H~~ ~I + C) + HC) + C) + C)2

+ HC) + ~)(HC~ ~) + (~C~ ~~ C)
= H~) + ~)2~a~~~ ~7~ ~)~
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Set

a = inf (H03BE, H03BE) (H03BE,03BE)
. (3.13)

Theorem 3.3. For all 03C6 E A, we have following Bakry-Emery’s curva-
tare inequality,

~P) > (3.14)

.Proof. Let 03C6 = 03A3ni=1 ci~(~i), ~ E S(R), ci E R,1  i _ n. By Lemma
3.1, 3.2 and the condition (3.13) we know

ra (SP~ ~P) - ~P)
n 

~
- ~ - + ~j)2} > a~

i, j=1

noting that r~j)) and ~j)2) are nonnegative-definite.

L. Gross ([9]) and D. Bakry - M. Emery ([3]) proved that is

hypercontractive if there is a dense algebra B such that it is stable under
x B c D(rz ) n D(r), and (3.14) holds for every p E ~i.

~ 

Unfortunately, the algebra A is not stable under C°°-maps. However,
the following Theorem 3.5 permits us to establish a hypercontractivity
criterion for the semigroup along the lines of L. Gross and D. Bakry
- M. Emery. ,

Lemma 3.4. Let be a symmetric nonnegative-definite ma-
trix and c~,1  i  n, be arbitrary reals. Then

n 

03A3 cicjckcl(ai,jak,l + - ai,jai,k - ai,jaj,k) ~ 0.’

Proof. Let (Xl, ~ ~ ~, Xn) and (Y1, ~ ~ ~, Yn) be two independent random vec-
tors with the same normal law 1V (0, (az~j)). Denote X = ~= 1 Y =

ciYi, Z = 03A3ni=1 ciXiYi, C = 03A3ni=1 C=. Then
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n

£ -f- - 

n

- ~ + 
i, j,k,l=1

- 

n

- cicjckclE(XiXjYkYl + XkXlYkYl - - 

= + C2 Z2 - cZXY - cXZY)
= E(XY - cZ)2 > 0.

Theorem 3.5. For any p E A with p > 0 we have

r2 (ln p, In p) > ar(ln p, In cp). (3.15)

Proof. Since is a diffusion semigroup, we have

r(ln cp, ln cp) = ~2 r(cP, P),
ln cP) = ~2 rz (~~ ~) + ~4 r(~~ ~)2 - ~3 r(~~ ~))~

Let p = ~i E S(R), c= E R, 1  i  n. Denote

= ~P~ In ~P) - ~P~ In ~P)
_ ~2r2(~~ ~) + r(~~ ~>2 - r(~~ ~)) - ~).

Observing that
- ~~ + 

by Lemma 3.1 and 3.2 we have

n f /W " L, 
i,j,k,l,=1

+ £(~~)) - 
- 

~n n f
- Lr ~Ii~

i, j,k,t,=i

+ rl!)2 - ?7k) - ?7k)
+ - 
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By Lemma 3.4

cicjckcl~(~i)~(~j)~(~k)~(~l){(H~i, ~j)(H~k, ~l) + (H~k, ~l)2
- - (H~t~ >_ o~

and by the condition (3.13) .

n / /Lr - ~I~)} > o.
i,j,k,l,=1

Hence 1b > 0. So (3.15) is verified.

Now starting from Theorem 3.5 and by making use of the similar argu-
ments in D. Bakry and M. Emery (~4~), we may get the following results
consecutively. We omit the details of the proofs.

Lemma 3.6. Let p E A, p > 0 and a > 0. Then for any t > 0

~ 2a ~1 - P~) ~ (3.16)

Proposition 3.7. If p E A and a > 0, then

J 03C62 ln 03C62d  - CJ In CJ  a J (3.17)

Theorem 3.8. Assume

03B1 = inf (H03BE, H03BE) (H03BE,03BE) 
> 0.

Then for any p > 1, q(t) = 1 t > 0 and f E (LP) with f > 0
we have

~ (3.18)

This hypercontractivity criterion for is our main result. The
equivalence of (3.17) and (3.18) was estabished by L. Gross ([9]).
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