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On quantum extensions
of the Azéma martingale semigroup

by A.M. Chebotarev and F. Fagnola

1. Introduction

In this note we study some quantum extensions of classical Markovian semigroups
related to the Azema martingales with parameter ,0 (,Q fl 0, ,~ fl -1) (see [1], ~5~,
[6]). The formal infinitesimal generator given by

(~of )(~) _ (~x) Z (f (cx) - f (x) - ’

on bounded smooth functions f can be written formally as follows (see [9])

= Gmf + + 

where m f denotes the multiplication operator by f , the operator G is the infinites-
imal generator of a strongly continuous contraction semigroup on (see
Section 2) and L is related to G by the formal condition G + G* + L*L = 0. The
associated minimal quantum dynamical semigroup, can be easily constructed, for
example as in [2], [3], [4], [8]. We show that this semigroup is conservative if 03B2  03B2*
and it is not if /? > ~3* where (3* is the unique solution of the equation

+ /? + 1 = 0.

Therefore it is a natural conjecture that the minimal quantum dynamical semigroup
is a ultraweakly continuous extension to 8(h) of the Azema martingale semigroup
when {3  ,Q*. However we can not prove this fact because the characterisation of
the classical infinitesimal generator is not known. The above quantum dynamical
semigroup is not such an extension when ,0 > ~Q* because the corresponding classical
Markovian semigroup is identity preserving.
We were not able to study the critical case {3 = ~i* although it seems reasonable

that conservativity holds also in this case. In fact, as shown by Emery in [5], the
Azema martingale with parameter ,Q starting from x ~ 0 can hit 0 in finite time
only if (3 > (3*. The operators G and L we consider are singular at the point 0,
hence, in this case, boundary conditions on G at 0 should appear to describe the
behaviour of the process.
The cases when 03B2  03B2* and 03B2 > ,Q* are studied in Section 3 by checking a necessary

and sufficient condition obtained in [2]. In Section 5 we apply a sufficient condition
for conservativity obtained in [3]. This condition yields the previous result when
,Q  -1.5; since {3* = -1.278..., it is quite "close" to the necessary and sufficient
one.
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2. Notation and preliminary results
Let 03B2 be a fixed real number with 03B2 ~ -1, 03B2 ~ 0 and let c = ,Q+1. Let h = 
and denote by B(h) the *-algebra of all bounded operators on h. Let us consider

the strongly continuous contraction semigroup P on h defined by

(P(t)u) (x) _ 1- ~xz (1-~)~4~ u x 1- ~x2 1~2 if 1- ~x2 > 0t 0 if 1 - 2t  o
The dual semigroup P* can be easily computed

(P*(t)u) (x) _ 1 + ~x2 - (1+,B)~4~3 u x 1 + ~~Z 1~2 if 1 + ~xz > 0
’ " ~ 0 if 1 + ~x2  0

Let Do be the linear manifold of infinitely differentiable functions with compact
support vanishing in a neighbourhood of 0. The infinitesimal generators G and G*
of the semigroups P and P* satisfy

2 2x2 l )~ l x 2 Zx2 
for all u E Do. In fact P has been obtained integrating the first order partial
differential equation

~w(t,x) ~t = 2 2x2 x)

by the characteristics method. Consider the operator M on h defined by

D(M) = { u ~ E h } , Mu(x) = (~3x)_lu(x).

and let S be the unitary operator on h

Sue x) = 

The form ,C on h given by

~u,,C( f )u~ = ~G*v, f u~ + + 

for all u, v E Do, transforms f E Do into the multiplication operator on h by

(~f )(x) _ (~x) - f (x) - ~xf ~(x)) ~

Thus the restriction of ,C to Do coincides with the restriction to Do of the infinites-
imal generator of an Azema-Emery martingale with parameter a (see [5]).
The domain Do, however, may be too small for the operators G and G*. In fact

it can be shown that Do is a core for G if and only if 03B2 > -1/2 and is a core for G*
if and only if ~i ~ 1/2. The domains of G and G* however can be described as the
range of the resolvent operators R(l; G) = (1 - G)-1 and R(l; G*) = (1 - G*)-1.
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Proposition 2.1. For all u E h define a function uo by

u0 (x) = sgn(x)~x exp(-03B2y2/2)|y|-(03B2+1)/203B2yu(y)dy if 03B2 > 0

x0 exp(-03B2y2/2)|y|-(03B2+1)/203B2yu(y)dy if 03B2  0

Then the operator R(l; G*) is given by

(R(1~ G*)u) (x) = (2.1)

Proof. For all u, v E h we have

(v, G*)u~ = IR v(x)dx ~0 e -t 1 + x2 
-(03B2+1)/403B2 

u x 1 + 2t 2 dt.

By the change of variables y = x 1 + in the integral with respect to t we
obtain the representation formula (2.1). D

Proposition 2.2. The domain of the operator M contains the domain of the op-
erator G*. . Moreover the necessary condition for T to be conservative,

for all vectors u, v in the domain of G* is fulfilled.

Proof. Clearly, to establish the inclusion D(G*) c D(M), it suffices to show that,
for all u E h, the integral

G*)u) (x~I2 dx (2.3)

is convergent. To this end, let us first fix r E (0,1) and denote by I(r) the set
(-r-1, -r) U (r, r-1 ~. Integrating by parts we have

j(r) (03B2x)-2|(R(1; G*)u) dx = j(r) .

= 03B2r-1/03B2 exp(03B2r-2)(|u0(r-1)|2 Z 
- 

+ ~r1/~ 
- 2 / 

+ 2Re / 
The first two terms vanish as r tends to zero. In fact consider, for example, the case
,~ > 0, then, using the Schwartz inequality, we can write the estimate

r1/03B2 exp(03B2r2)|u0(r)|2 ~ ~u~2 exp(03B2r2)r1/03B2 ~r exp(-03B2y2)y1-1/03B2dy. (2.4)
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Clearly, when ,Q > 1/2, the right-hand side integral is bounded, therefore (2.4)
vanishes as r tends to 0. On the other hand, when /? E (0,1/2], by the De L’Hopital
rule, we have

lim = lim = ~,
r--;p+ r 

In a similar way one can compute the other limits and show that the first two terms
vanish. The third and fourth term clearly converge to

- 2Re (u, G*)u~
respectively. Therefore the integral (2.3) is convergent. Moreover, by the identity
R(l; G*) - I = G*R(1; G*), we have

-2I1R(1; G*)uIl2 + 2~ (u, R(1? G*)u)
= -2~e (R(l; G*)u, G*)u)

Therefore we proved also the identity (2.2), with v = u, because the operator S is
unitary. The proof for arbitrary v, u is the same. 0

Having found a Lindblad form for the infinitesimal generator of the classical pro-
cess we investigate whether the corresponding minimal quantum dynamical semi-

group (abbreviated to m.q.d.s. in the sequel) on 8(h) is identity preserving i.e.

conservative. Recall that the m.q.d.s. T is the ultraweakly continuous semigroup
on B(h) defined as follows (see [2], [3], [4], [8]). For all positive element X of B(h),
let us consider the increasing sequence

u~ = 

u~T (n+1~{X )u = (P*(~)~~ X P*{t)u~
+ t0 SMP*(t - s)u ds.

The bounded operator t(X) is given by

~{X) - 
n~0

Proposition 2.3. The abelian subalgebra of B(h) is invariant for the

m.q.d.s. T.

Proof. In fact, for every X E a straightforward computation shows
that

E Loo{IR; IR)
for all t ~ 0 and all integer n > 0. D

Let ;~* be the unique solution of the equation

+ /? + 1 = 0.

It is easy to check the inequality
- 1.2785  ~*  -1.2784.

In the following sections we shall prove the
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Theorem 2.4. The m.q.d.s. is conservative if 03B2  ,Q* and is not conservative if

~>a*.

We recall the necessary and sufficient condition for the m.q.d.s. to be conservative
obtained in [2]. Let 6 : --~ be the normal and monotone map defined by

Theorem 2.5. Let G*, M and S be the above defined operators. The following
conditions are equivalent:
i) the semigroup T is conservative,

the sequence (C~n(I))n>1 converges strongly to 0, .

iii) the equation ,C(X) = X has no nonzero positive solution in B (h).
We refer to [7] Th. 3.3, Prop. 3.5, 3.6 for the proof. The technical condition (B)

used there can always be assumed without loss of generality as shown in [3] Lemma
2.4.

3. The case j~  ~3*
We shall check the condition of Theorem 2.5. As a first step we establish a useful
formula.

Lemma 3.1. . Let f be a positive bounded measurable function on R. Identify f
with the corresponding multiplication operator. The operator C~( f ) agrees with the
multiplication operator by the positive measurable function

(Q(f)) (y) = (-2/3)-’ exp (03B2y2s/2) (1 + s)-1+1/(203B2) f + s)1/2) (3.1)

Proof. Let u be a smooth function with compact support contained in {0}.
Denote by q( ~, ~ ) and p( ~, ~ ) the functions

( ) - ( /( )) ~ . p( ~ ) - 0 
A straightforward computation yields

- 1R dx1 03B22x2p(t, x)-1-1/03B2f(cs)|u(xp(t,x))|2.

By the change of variables = y, the right-hand side can be written in the
form~0 e-tdt 

y dy|u(y)|2(03B2y)-2(q(t,y))-2+1/03B2 f(cyq(t,y))
- /’ y))-2+1/03B2 f(cyq(t,y)).



6

Changing the variable t to s = -2t~(,Qy2) we obtain the formula (3.1). o

Let 0 be the cone of positive measurable function on R bounded on open subsets
of R not containing 0. In view of Lemma 3.1 we can extend the map Q to ~’ defining
Q(f) as the unique positive selfadjoint operator such that .

(u, Q( f)u) = sup (u, Q( f A n)u)
n>1

for all u E Do. Clearly the operator Q(f) agrees with the moltiplication operator
by the function (~( f )) given by (3.1). Moreover we have the following
Lemma 3.2. Let f,g be two elements of :F satisfying the inequality f  g. Then
the operators Q( f), Q(g) satisfy the inequality

~(f )  Q(g).

Let q fl denote the function

q,~ : R - ~0} - R, = 

for all ~ > 0. This function will be often identified with the corresponding positive
self-adjoint multiplication operator.

Lemma 3.3. The operator Q(I) satisfies the following inequalities

~(I) ~ 1~ ~(~) ~ (i + ~)-’(i - 2~) 1q2~ °

Proof. Use the formula (3.1), f being the constant function 1. To establish the
second inequality it suffices to estimate the first factor in the integrand by the
constant 1 and compute the integral. The first inequality is well known; however it
can be checked here in the same way. 0

Lemma 3.4. . For all r~ > 0 the following inequality holds

Q ~(1- + q

Proof. In fact, by Lemma 3.1, we have

(Q(q~)) (y) _ |c|-~(-203B2)-1 ~0 ds exp (03B2y2 s/2) (1 + 

~ |y|-~ . |c|-~( -203B2)1 / o > dS (1 + S) -1+1/(203B2)-~/2
= ((1- +03B2|~)-1 q~(y).

This proves the Lemma. 0

We can now prove the first part of Theorem 2.4.
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Proposition 3.5. Suppose 03B2  R*. . Then the m.q.d.s. T is conservative.

Proof. Since {3 is smaller than /~* we have the inequality

lim (1 - ~?~)1~~ !/? + 11 = + 1 ( > 1.

Therefore we can choose a real number r~ E (0,2] such that

(1-r~,~)~~+1~~ > 1.

From Lemma 3.3 it follows that there exists a positive constant ~, depending only
on (3, such that

Q(I)  

Thus, using Lemma 3.4, we can easily establish the following estimate by induction

 ~ ?~~)I,~ + 11~~-n °

Letting n tend to infinity we check the condition ii) of Theorem 2.5 is fulfilled. D

4. The case ~i > ~*
We shall show that the condition iii ) of Theorem 2.5 is not satisfied. Fix A = 1. We
consider first ,C as the differential operator ,Cd on some function space given by

(~d(f )) (x) = (/~)-’ (f (cx) - f (x) - ~xf ~(x)) (4.1)

and construct a nonzero positive bounded continuous function f on R solving the
differential equation f = ~Cd( f ). Then we show that the function f satisfies the
condition

(v, fu) = (G*v, fu) + + (v, f G*u) = (v, ~C( f )u) (4.2)

for all vectors v, u in the domain of G*.

For every open subset E of R we denote by R) (resp. C6 (E; R)) the vector
space of real-valued continuous (resp. bounded continuous) functions on E with
continuous (resp. bounded continuous) derivatives of the first k orders.

Lemma 4.1. Let g be an element of Cb (1R - ~0}; ~) and let f be an element of
Cb (~ - ~0}; 1R). If ,Q > 0 the following conditions are equivalent:
a) f E C1(IR - {0};1R) and, for all x E lR - ~0}, we have

f (x) - ({3 x ) - 2 ( f (cx) - f (x) - ,Qx f’(x)) = (4.3)

b) for all x E IR - ~ 0 } we have

f(x) = eXp(-~x2~2) + (~t)-1 f(ct) dt.
(4.4)
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If ,Q  0 the condition a) is equivalent to the following condition:
c) for all x { 0 } we have

f (x) - + (03B2t)-1 f(ct)] dt
(4.5)

Proof. The differential equation (4.3) can be written in the normal form

f ~(x) _ - ,3x + (~x) 1 f(x) + + (~x)-1 .

Therefore, integrating this first order differential equation, for all x, xo E 1R with
0  x0  x or x  x0  0 we have

f (x) = 

+ exp(-03B2x2/2) xx0 |t|1/03B2 exp(03B2t2/2) [03B2tg(t) + (03B2t)-1 f(ct) dt.
The function f being bounded, if 03B2 > 0, we can let Xo go to 0 and obtain (4.4). If

~  0, we can exchange x and let Xo go to sgn(x)oo and obtain (4.5). Conversely,
differetiating (4.4) and (4.5) we obtain (4.3). D

Let cg (R - {0};1R.~. ) denote the cone of nonnegative functions in Cb (IR- {0}; IR).
The following proposition gives essentially the construction of the so-called minimal
solution to the Feller-Kolmogorov equation of a classical stochastic process.

Proposition 4.2. There exists a map

R : C0b (IR - {o}; IR+) ~ cb (IR-{0}; IR+) ~ cl (IR - {0}; IR)

with the following properties:
a) for every g E cg (,~ - {0}; the function satisfies the equation (4.3),
b) for every g E cg (R - {0}; 1R+), we have the inequality

~~g~~~ ~ >

c ) for eve ry g, g E Cb (IR - {0}; IR+ ), such that g  g and every function f E 
{0}; IR+) n C1(IR - {0}; IR) satisfying the equation (4.3) with g = g we have the
inequality

~(g)  J.
Proof. Consider, for example, the case 03B2 > 0. Let be the sequence of

elements of cg (R - {0}; ~!+) defined by 
-

fo(x) = 0,

fn+1 (x) = /2) + (03B2t)-1 fn(ct) dt.



9

We can easily show by induction the inequality

~fn~~ ~ ~g~~. (4.6)

In fact, (4.6) holds when n = 0. Suppose it has been established for an integer n.

Then, for all x 6 {0}, we have the inequalities

!~iM! ~ [~+(~)-’] ~
= ~g~~ |x|-1/03B2 exp(-03B2x2/2) x0 d dt (|t|1/03B2 exp(03B2t2/2)) dt

which prove the inequality (4.6) for the integer n +1. Since g is nonnegative-valued,
we can also show by induction that the sequence is increasing. Let us

consider the function defined by

°

n>o

Clearly is nonnegative and satisfies the condition b). Moreover satisfies

the equation (4.4). Hence it belongs to C~ (1R - {0}; 2R) n C~ (jR - {0}; JR) and
satisfies the equation (4.3). Finally let ~,y and f be as in c) and let be the

above defined sequence. Notice that, for all integer n and all x ~ IR with x ~ 0 the
difference /(x) - an be written in the from .

|x|-1/03B2 exp(-03B2x2/2) x0 |t|1/03B2 exp(03B2t2/2) [(03B2t)-1(-fn)(ct) + 03B2t((t)-g(t))] dt .

Therefore, since / > 0 = fo, we can prove by induction the inequality / > fn for
every n. By the definition of R03BB the property c) follows. The case when {3  0 can

be dealt with in the same way. Q

Lemma 4.3. For aJ~ /? > ~ there exists ?/ G (0,1] such that

~+ir-(l+~)=0. (4.7)

Proof. The function

~ : [0,1] ~ ~, ~(~) = ~ + i~ - l - ~

has the following properties

~(0) = 0, ~(1)  0, ~(0) = log !~ + 1~ - ~  0,

because (3 > ~. This proves the Lemma. Notice that, in the case /~ > 20141, we can
choose 7/ = 1 since ~(1) = ~ + 1~ - /? - 1 = 0. Q
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Proposition 4.4. Suppose ~ > ~ and consider a number 7y 6 (0, Ij fulfilling (4.7).
Let g be an element satisfying the inequality

0~~)~~~/(1+~~)
for all x ~ being a positive constant. Then the function satisfies the

inequality
0~)~~~/(1+~~).

Proof. Consider the function

/(~)=~!~!V(i+~!~.
Clearly (4.7) implies the inequality 1{3 + 1~(1 - ?y~)  1. Then a straightforward
computation yields

(~ (/)) (.) = ~(!~~-(~~)~!~~-~-I)!~  o (4.8)~ ~ (~)’(i+H~~~)(i+~~)’ ~ 
- ’ ’

for all x ~ IR - {0}. Let us consider the function g C {0},JR+) defined by

~=/-~(/).
Because of (4.8) and the definition of / we have the inequalities

~/>7.

Applying the Proposition 4.2 c), we complete the proof. D

Proposition 4.5. Suppose 03B2 > 03B2*. Let g e be a Lipschitz continuous
function. Then there exists a function / C such that

/(0) = and

~)-(~(/))(~)=~) (4.9)
for all z fl 0.

Proof. Fix ?/ G (0, 1] satisfying (4.7) and write / in the form

F(0)+(9-F(0))+-(~-?(0))-. .

Since ~ is Lipschitz continuous there exists a positive constant k such that

0 ~ - /(0))+ (~ ~ 0 ~ - F(0))- (.r) ~ 

Consider the function / defined by /(0) = and

= + (~ (g - ~(0))’’)) (~) - (~ (g - ~(0))-)) (~)
for all x ~ 0. This function satisfies the equation (4.9) because of Proposition 4.2
a) and the fact that (4.9) is linear. Moreover, from Proposition 4.4, we have the
inequality

which shows that / is continuous at the point 0. D
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Proposition 4.6. Suppose /3 > ~*. . Then there exists a function f E Cb (IR; R) n
1R) satisfying the differential equation

f(x) = (~d(f )) (x) (4.10)
for all x ~ 0 and the condition f(O) > 0.
Proof. Let us consider the function

fn --~ f1(x) = ~1 + ~2) - 1 ,

and the function g E Cb (IR; defined as the only continuous extension of the
function

g(x) = f1(x) - (~d(f1)) (x)
for all x 1= 0. A straightforward computation yields

g(x) =  2+(c2-2c)x2+c2x4 (1+c2x2)(1+x2)2 .

By Proposition 4.5 there exists a function f Z E {0}; R) satisfying
the equation (4.9) and the condition f2(0) = g(0) = 2. The function

f = f2 - fl
satisfies the differential equation (4.10) and the condition f(O) =1. D

The following propositions show that a function f satisfying the conditions of
Proposition 4.6 is non-negative everywhere.

Proposition 4.7. Let f be an element ofC6 (1R-{0}; R) satisfying
the differential equation (4.I0~. Then

lim f(x) = 0. (4.11)
Proof. In the case (3 > 0, for all 0, we have the inequality

j I f o d~l~f( )~ - .

Therefore (4.11) follows computing the limits, for example by the De L’Hopital rule.
The proof in the case ~3  0 is similar. D

Proposition 4.8. Let f be an element R) satisfying
the differential equation (4.9) and the condition f(O) > 0. Then f is non-negative
everywhere.

Proof. We use the well-known minimum principle. Suppose that there exists
a E R such that f (a)  0. Then, by Proposition 4.7, there exists b E ~0} such
that

min f (x) - f(b)  0.

The point b does not coincide with 0, hence f is differentiable at that point and
f’(b) vanishes. Then we have the contradiction ’

f (b) _ (~ib)-2 ( f (cb) - f (b)) ~ 0~
This shows that f must be non-negative everywhere. D
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Proposition 4.9. Let f be an element (0, f 0}; (0, 
satisfying the differential equation (4 JO). Then f satisnes also the identity (4.2) for
all v, u E D(G*). ,

Proof. Suppose, for example, /3 > 0. Let us consider two vectors in the domain of
G* represented in the form R(l; G*)v, R(l; G*)u with v, u E h. For all r E (0,1) de-
note by Ir the set (-r-1, -r) U (r, r-1). The scalar product (R(1; G*)v, fR(1 G*)u~
can be written as

lim / G*)v) (x) (,Qx)-2 G*)u) (x) dx

- lim (R(l; G*)v) (x)(,Qx)-2 G*)u) (x) dx

- lim / (R(lj G*)v)(x)(03B2x)-1 f’(x)(R(1; G*)u)(x) dx.
Ir

Integrating by parts the third integral, we can write the above sum of the second
and third term in the form

(6’MR(1; G*)v, f SM R(l; G*)u~
+ 2:(R(1; G*)v, f R(l; G* ) - (v, f R(l; G*)u} - (R(1; G*)v, fu)

- 03B2 lim |r|-1/03B2 exp(03B2r-2)v0(r-1)u0(r-1)f(r-1)

- 

+ 03B2 lim |r|-1/03B2 exp(03B2r-2)v0(-r-1)u0(-r-1)f(-r-1)
where vo and uo are defined as in Proposition 2.1. It is easy to see as in the proof of
Proposition 2.2 that all the above limits vanish. Then the proof can be completed
using the identity R(l; G*) - I = G* R(I; G*). D

Thus we have proved the condition iii ) of Theorem 2.5 is not fulfilled.

Proposition 4.10. The m.q.d.s. T is not conservative if 03B2 > ,0*.

5. Applying the sufficient condition of [3]
In this section we will show that the m.q.d.s. T is conservative -3/2 by
checking a sufficient condition obtained in [3]. We transform first the form ~C de-
fined in Section 2 shifting the spectrum operator G* by -1 /2 and considering the

’ 

operators
Li = 7, L2 = sM.

The "shifted" m.q.d.s. generated by the form
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is conservative if and only if the "unshifted" one is also. Let us recall that, if 03B2  0,
R( 1; G* ) is modified as follows

(R(1; G*)u) (x) = al~l(~+1)/2~ 

where

u0(x) = -x0 exp(-303B2y2/4)|y|-(03B2+1)2/03B2yu(y)dy

Consider the selfadjoint operator defined by

D(C) = {u e h ~ E h } , Cu(x) = (1 + (,Qx)_2~ u(x).

The domain of its positive square root Cl/2 coincides with the domain of the oper-
ator M. Therefore, by Proposition 2.2, it is contained in the domain of G* and, for
all v, u E D(G*), we have

- (G*v, u) - (v, G*u) = C’/~B . .
, 

Moreover C has a bounded inverse which is bounded from below by the identity
operator. We shall denote by CE (for s > 0) the bounded operator (EI + Cw )-1.

Let Q : B(h) --~ B(h) be the normal and monotone map defined by

Theorem 5.1. . Suppose that there exists a positive constant b such that:
i) for all u E D(G*) the following inequality holds

- 2~ ~G*~~ C 1u~ ~ bIIuiI2~ (5.1)

ii ) for all f, > 0 and all u in a dense subset of h contained in the domain of we

have

Then the m.q.d.s. T is conservative.

We refer to [3] Th. 4.2 for the proof and check the conditions i), ii).
Lemma 5.2. . Suppose 03B2  0. Then the inequality (5.1) holds with b = 3.
Proof. We use vectors in the domain G* represented in the form R(1; G*) with
u E h. The identity G* R(l; G* ) = R( l; G* ) - I yields
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The operator C-1 is positive, hence it suffices to show that the second term is

bounded from above. Let r be an element of (0, 1) and denote by Ir the ’set
( -r-1, -r) U (r, r-1). Integrating by parts we have

(u, C~~ R(1; G*)u)
= # lim Ir lz i> 1 -03B2+1 203B2 e-303B2x2/4u(x)] 03B22x2 1 + 03B22x2sgn(x > iz i ’ e303B2x2/2u0 z>dz

= lim 
1 (32 2 

rP exp(3{3r2/2) (|u0(r)|2 -Iuo( -rW)

+ 
1+ 03B22r-2 r -1 03B2 exp(303B2r2/2) (|u0(-r-1 )|2 - |u0(r-1 )|2)

+ (3 Ir (l + #2z2 ) 2 Ix 11 +p 1 exp(3 (3 r2 /2) 1 Uo ( x ) 12 dx
+ 03B22 Ir i + 

+ 303B22 Ir i 03B22x2 1 + 03B22x2|x|1+1 03B2 exp(303B2r2/2)|u0(x)|2dx

-03B2 Ir i + g2 x2 |x|1+03B2203B2 exp(303B2r2 /4)u0(x)u(x)dx} .
- {3 Ir 1 + {32 x |x| 2fJ exp(3{3r2/4)üo(x)u(x)dx .

As in the proof of Proposition 2.2 we can prove that
- the first and second term vanish,
- the third term is negative because #  0,
- the sum of the fourth and fifth term is bounded from above by 3 [[R(1; 
- the sixth term converges to - (R(1; G* )u, 

This proves the lemma. D

Remark. A similar proof shows that the inequality (5.1) holds also when # > 0
with b = 3(1 + #).
Lemma 5 .3. The condition it ) of Theorem 5. 1 holds when #  -3 /2.

Proof. Let e > 0 and let u be a smooth function with compact support contained
in R - (0). Remark that Ce coincides with the multiplication operator by the
function me given by

m~(x) = (E + (I + # Z ) ) .
Let q(. , . ) and p(. , . ) be the functions defined in the proof of Lemma 3.I. A straight-
forward computation yields

~ e~~ ((SMP*(t)u, CeSMP*(t)u) + (P*(t)u, CeP*(t)u) ) dt
= /° / dz (°§jj§/~ + me(z)) P(t, z)~~~’ lu (zP(t, z))l~ .
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By the change of variables = ~/, the right-hand side can be written in the
form

Changing the variable  to s = -2t/(03B2y2) and letting 6 tend to 0 we can estimate
the integral with respect to t by

~~~exp(~.)(l+.)-~~~
+~~exp(/~)(l+.)-~~
- ~ f° ~’ (1 + .)-~/~) d..~ JO

Since /? is negative, this sum can be estimated by

~ f ~ ~’~""" ~f ~ """~’ ~
-1 2 ~0 03B2y2 exp(03B2y2s)ds
= ((1-203B2)(1+03B2)203B22y2)-1+5/2.

Therefore, recalling the dennition of the operator C given in this section, the con-
dition of Theorem 5.1 holds, in the case /?  0 whenever

(1 - 2/~(1+/~>1

i.e. ~ ~ -3/2. a

Theorem 5.4. The m.q.d.s. T js conservative if 03B2 ~ 20143/2.
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