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An Inequality for the Predictable Projection of an Adapted Process

F. DELBAEN AND W. SCHACHERMAYER

’ 

Department of Mathematics, Vrije Universiteit Brussel

Institut f ~ur Statistik der Universitat Wien

ABSTRACT. Let ( fn)n 1 be a stochastic process adapted to the filtration (~’n)n o. Denoting
by. (gn)Nn=1 the predictable projection of this process, i.e., gn = we show that the

inequality

[E( | gn |q)p/q]1/p  2 [E( I fn Iq)pI9 ] 
lip

or, in more abstract terms

~(gn)Nn=1~Lp(lqN) ~ 2~(fn)Nn=1~Lp(lyN)
holds true (with the obvious interpretation in the case of p = oo or
g = oo).

Several similar results, pertaining also to the case p > q, are known in the literature. The
present result may have some interest in view of the following reasons: (1) the case p = 1 and
2  q  oo seems to be new; (2) we obtain 2 as a uniform constant which is sharp in the case
p == 1, q = oo and (3) the proof is very easy.

We denote by filtration on a probability space (5~,.~, P) and let En be the
conditional expectation with respect to 7n. Let ( f,~)n 1 be a stochastic process which will
be assumed in most of this note to be adapted to (~n)~ 1 and to satisfy the appropri-
ate integrability conditions so that the subsequent statements make sense; we denote by

the predictable projection of ( f n~n 1, i.e., gn = 
For 1  p, q  oo we define

r N lh
= = [E(|fn|q)p/q] ,

We shall prove the following inequality.

Acknowledgment: We thank S. Kwapien, P.A. Meyer, P. Muller, G. Schechtman and M. Yor for helpful
discussions and relevant information on the existing literature.
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1. Lemma. For 1  p  q  oo and an adapted process we have

.

The constant 2 is sharp for the case p === 1, ~ = oo.

Let us first give some motivation for this inequality and relate it to known results.
Our interest in this inequality stems from an application in the field of Mathematical

Finance [D-S], where the present authors needed the case p = 2, q = oo. Note that the
case q = oo may be rephrased in terms of the maximal functions f * and g* of the processes
(fn)n 1, (9n~~ 1, while the case q = 2 is related to the square function.

M. Yor kindly pointed out a possible connection to inequality 3 below ([L],[Y]) and
S. Kwapien, P. Muller and G. Schechtman pointed out other known variants of the above
inequality. Special thanks go to S. Kwapien who suggested to us - among other valuable
remarks - how to adapt the proof from the case p = 1, q = oo to the general situation

For the convenience of the reader we summarize the existing results. The starting point
is the subsequent Stein’s inequality ([S], th. 3.8).

2. The Inequality of E. Stein. Let 1  p  oo and 1  q  oo and a (not
necessarily adapted) process. There is a constant Cp > 0 such that

~(gn)Nn=1~p,q ~ Cp~(fn)Nn=1~p,q.
In fact, Stein formulated the above result for q = 2 only, but his proof shows the result

for all 1  q  oo (see [D] for an exposition of this more general setting).
The setting of Stein’s inequality is more general than Lemma 1 in the sense that it does

not require that is adapted to the filtration and it also pertains to the
case p > q. On the other hand, as shown by easy examples [S], Stein’s inequality breaks
down as p --> 1 1) and p -~ oo (and q ~ oo). 

’

Stein’s inequality was also considered by W. Johnson, B. Maurey, G. Schechtman and
L. Tzafriri [J-M-S-T], who extended it by replacing LP by a rearrangement invariant space
X on [0,1], for which the Boyd indices verify 0  ~x _ a x  1.

D. Lepingle and M. Yor noted that there is an interesting difference in the problem of
the constant Cp in Stein’s inequality between p --~ 1 and p -~ oo. In the case p -; oo (and
q ~ oo) it is easy to give examples of adapted processes for which Cp becomes
big as p --~ oo (see (S~ and [L]). For the convenience of the reader we sketch the typical
example: Let fn = 2XAn, where (An)n 1, are disjoint sets with P(An) = 2-n.l Letting
.~n = ~(fl,..., fn~ we obtain that = 2~ while = which

tends to infinity if q  oo.

On the other hand, the situation is different for p --~ 1 and here more can be said for

adapted processes (see e.g.,(J~, th. 1.6):
3. Inequality of D. Lepingle and M. Yor. Let p = 1, ~ = 2 and be adapted .

to (,~n)n 1. ° Then

 °

In a remarkable paper by J. Bourgain ([B], prop. 5) the same result was obtained with
a constant Ai = 3 as an auxiliary step (preceded by the phrase: "The next inequality is
probably known, but we include its proof here for the sake of completeness" ).
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It is interesting to compare the proofs: E. Stein uses Doob’s maximal inequality and
interpolation, Lepingle and Yor adapted the argument of C. Herz for the proof of the
HI - BMO duality (see Garsia [G], p.9) while J. Bourgain directly uses the atomic de-
composition of In the two last proofs it seems crucial to restrict to the case q = 2. Let
us also point out that in the case 1  p  oo the above inequality may also be deduced
from a convexity lemma of D. Burkholder ([Bu], Lemma 16.1); it also can be derived in
full generality (i.e., also in the case p = 1, but with a constant which is possibly worse)
from results on decoupled conditionally independent tangent sequences as presented in the
book of S. Kwapien and W. Woyczynski ([K-W], th. 5.2.1 and 5.6.2). See also S. Dilworth
[D] for a clear exposition of the case 1  p  oo.

We now pass to the proof of Lemma 1.

PROOF OF LEMMA 1. . We first prove the case p = 1. For 1  q  oo the function

h) = (xq + h x > 0, h > 0

and, in the case q = oo, the function

= (x V h) - h = (x - h)+ x > 0, h > 0

is, for fixed h > 0, convex in x E R.
If g is a u-algebra contained in the 03C3-algebra F, f E L1(F), h 6 then by applying

the conditional version of Jensen’s inequality we have for each 1  q  o0

~)~ h) ~ E(~(/, h) 6) P.a.s.

Hence, denoting by g the conditioned expectation of f with respect C,

9 = 9),

we obtain, for 1  q  oo,

h)) ~ h))

and, for q = oo, 
’

E((9 - h)+) ~ E((f - h)+)~

Now fix an adapted sequence and its predictable projection as in the
statement of Lemma 1. We have to show that, for 1  q  o0

 2)!(/i,... >

which will readily finish the proof.
We may assume that In  0. Denote, for 1  n  N,1 

f n = f i -~- . .. -+- f n ~ a 9 ~ ’

9n =(9i +~..+gn~9~
h n = lfl -f’ gi -~- ... -f- fn -~’ 9n) 9 ~ >
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and, in the case ~=00,

~=~iV...V~,
~=/:V~.

In order to show that

and 

we shall proceed inductively showing that, in fact, for each n = 1,..., N

E(n) ~ 2E(n) and E(h*n) ~ 2E(f*n), (*)

For n = 1 this holds true as ki  /i + ~i and jS(/i) = 
So suppose that (*) holds true for n - 1. We give the proof for the cases 1  q and

q = oo separately. In the case 1  q  oo we obtain from the argument at the beginning
of the proof that 

’

Note that

=/n-l+~(~,/n-l).

As, for fixed x > 0, the function h) is decreasing in h, we may estimate

hn  + + 

so that

 

’ 

=2E(~).

In the case q = oo we proceed similarly. From the argument of the beginning of the proof,
we obtain that

E ~ - ~-i)+] ~ ~ [(/. - ~~_j+].
Noting that

and
+ (~ - ~-i)+ + (~ - ~~-i)+
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we obtain that

.E(h,*,_1) + 2E - hn_1)+~
 2 + E(fn - 

= 2E( f ~ ),

which finishes the proof in the case p = 1.

For the case adapted sequence E and 
its predictable projection. Letting f n = gn = gn E Ll (,~’n-1 ), note that by
Jensen’s inequality Un  ( Apply the first part of the proof to r = p to obtain .

+ ... +  + ... + 

or

+... + gN);  2p +... + fN)q
which shows Lemma 1 also for the case 1  p  q  oo, with the constant 2 replaced by
2p . D

REMARK. (1) Let us show that the constant 2 is sharp for p = = oo. Choose
S2 = ~0,1), ,~’ the Lebesgue-measurable subsets and P to be Lebesgue measure. Let

= {~, S~} and .~1 = .~2 For ê > 0, let f 1 = f 2 = for which we

get = 1. The predictable projection is given by gi = 1 and g2 = f2 for which
we obtain = 2 - c. .

We did not succeed in determining the sharp constant in the other cases 1  p  q  00
(except for the trivial case p = q where the sharp constant clearly is 1).

(2) One might try to prove the inequality

N N 
,

I 
.

n=1 n=1

by applying Jensen’s inequality in an even more direct and brutal way:

19n En-1(fn) |q~ En-1(| fn Iq)

whence
N N

~ 19n (q~ ~ E’n-1(I fn If)
n=l n==l

and
N N

~(~ j I 9n If)  E(~ I fn 
n=l n=l

But at this point this reasoning comes to an end as there is no way to derive from this
last inequality the original one. Indeed, this argument already breaks down in the case
N =1, for p  q, as in this case one would need that conditional expectation is a bounded
operator on L’", where r = p/q  1, which is not the case.
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(3) One might want to apply interpolation to derive the inequality from the trivial cases
1  p = q  oo (where it holds with a constant 1) and the extreme case p = 1, ~ = oo to
obtain it for the general case 1  p  q  oo (thus avoiding the distinction of cases in the
above proof ).

Indeed the interpolation theorem of Benedek-Panzone [B-P] implies that an operator T
defined on which is bounded for the extreme cases (p = 1,
q = 1), (p = oo, q = oo), (p = 1, q = oo) ist bounded for all 1  p  q  oo. But

there is a difficulty: The present operator T which assigns to every sequence the

sequence gn = E(f n Cn) is only bounded (by a constant 2) on the suspace of 
formed by the sequences ( fn)n 1 adapted to (.~")n 1. It is not obvious (at least not to
the authors) how to modify the proof of Benedek-Panzone to adapt it to this subspace of

(4) Finally we want to point out that we formulated Lemma 1 only in the case of finite
discrete time, but as noted by D. Lepingle [L], "le passage au temps continu ne presente
pas de difficulte" (compare also [D-S], th. 2.3).

Let us sketch this for the case q = oo (in the case of q  oo the proper setting for the
continuous time case is the concept of "processus mince", see, e.g. (J], th. 1.6.). Let X =

be a positive optionel process defined on (~, ~, P) and X = a

positive predictable process such that Y is less then or equal to the predictable projection
pX of X. The assertion of the lemma is

~(Y*) _ 2E(X*).

We may write

Y* = sup(YT1 V YT2 V ... V YTn)

where the sup is taken over all increasing finite sequences Ti  T2  ...  Tn of predictable
stopping limes. As it suffices to take a countable number of such sequences, there arises
no problem in which sense the above supremum has to be interpreted.

From Lemma 1 we obtain

V ... V YTn ) ~ 2E(XT1 V ... V XTn )
 2E(X*),

which readily reduces the continuous time case to the discrete time case.

P.A. Meyer kindly pointed out to us a very elegant proof of the inequality

lE(Y*)  2E(X*),

which directly works in the continuous time setting and which we now reproduce. We may
write

~(Y*) = sup lE(YS)

where S runs through the nonnegative random variables (again it suffices to consider a

sequence in the definition of the above sup).
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Fix 5’ and denote by A = the dual predictable projection of the process 
This is an increasing process whose potential

~(A~ - At I ~t)

is bounded by one. As the jumps of A are also bounded by one we have that its left
potential

Zt = ~(A~ - A~- I ~t)

is bounded by 2.

Considering cadlag versions of the processes J~* und Y* we then may estimate

) .

~0
.

~0

~o

~0

~0

~ 2~(X~ )

which finishes the proof in the case p = I. For the case 1  p  o0 one applies Jensen’s
inequality as in the proof of Lemma 1 above to obtain
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