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ABSTRACT

We establish an existence theorem for a class of SDE’s

driven by Levy processes on a manifold. As an application
we consider an SDE driven by horizontal vector fields on

the orthonormal frame bundle of a Riemannian manifold.

The canonical projection of the solution of this equation on

to the base is considered as a candidate for a "Levy process
on a Riemannian manifold".

1) Introduction

A Levy process in ~n is essentially a stochastic process
with independent and stationary increments. All the random

variables comprising such a process are infinitely divisible.

Conversely, as was shown by Ito, any infinitely divisible

random variable can be embedded in a Levy process (see

[Ito], theorem 3.1). Hence Levy processes can be
characterised by the Levy-Khintchine formula, through their

characteristic functions. Alternatively, at the level of
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random variables we have the Levy-Ito decomposition which

exhibits every Levy process as a combination of a Brownian

motion, a Poisson point process (suitably renormalised) and

a drift. Ito’s formula then extends this decomposition to

C2 functions of the process (see e.g. [IkWa] for details).

An obvious generalisation of the above would be to replace

~n by an arbitrary Lie group G. A major advance in this

direction was the work of Hunt in 1956. He showed that

there was a one to one correspondence beween convolution

semigroups of probability measures p on G and a class of

linear operators on C2(G), the correspondence being that

each such operator generates a Markov semigroup with kernel

p [Hun]. This can be shown to be equivalent to the

Levy-Khintchine formula when G = ~n. More recently,

H.Kunita and the present author have obtained an analogue of

the Levy-Ito decomposition for smooth functions of such

processes. As in the abelian case the decomposition is
obtained with the aid of a Brownian motion, a Poisson random

measure and a dri,ft ([ApKu]).
The aim of the present paper is to begin the work of

generalising the above ideas to a Riemannian manifold M.

The procedure we adopt herein is to imitate the well-known

Eels-Elworthy construction for obtaining Brownian motion on

a manifold M by canonical projection of a suitable process
in the bundle of orthonormal frames 0(M) (see e.g. [Elw],

[IkWa]). An existence theorem for solutions of SDE’s in

compact manifolds has been established by Fujiwara however

as 0(M) is not compact we cannot use this result herein. §2

of this paper is then devoted to proving a general existence

result for a class of SDE’s driven by Levy processes on

not-necessarily compact manifolds. In §3 we specialise to

the case of 0(M) and construct a process which we call a

horizontal Levy process on 0(M) which satisfies an SDE driven

by a Levy process taking values in the horizontal vector
fields. We note that there is some similarity here with

recent work by A.Estrade and M.Pontier who have constructed

the horizontal lift of a manifold-valued cadlag semimartingale
[EsPo].We wish to go in the opposite direction and obtain a
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Levy process on the manifold as the canonical projection of the
horizontal Levy process.
We make two observations

(a) Intuitively a Levy process on M is a combination of a
drift, a Brownian motion on M and a Poisson point process
which is constrained to jump along geodesics of arbitrary
length. In order to ensure that there is a rich supply of
the latter we will assume that M is geodesically complete.

(b) Brownian motion on a manifold is obtained by projection
of the appropriate frame bundle-valued process on to the base
manifold and is characterised by its generator (see e.g.[Eme]
p.,62) which is of course the Laplace-Beltrami operator. In

our case, the operator which is our natural candidate to be
the generator of a "Levy process on a manifold" exhibits a
manifest time dependence which indicates that our process is

not, in general, Markovian.

Note: - After writing this paper, it was brought to my
attention that the existence and uniqueness result of §2 is

in fact a special case of a more general construction given
in [Coh]. I have however retained my original proof as I

think there is some value in showing that the elegant method
of [Elw] extends to the case of SDE’s with jumps.

Notation: If M is a manifold, Diff(M) is the group of all

diffeomorphisms of M with identity id. Every complete
vector field Y on M generates a one-parameter subgroup of

Diff(M) which we denote as (Exp(tY), t e ~}. If S is a

topological space, will denote the Borel 03C3-algebra of S

and Co(S) is the space of continuous functions on S which

vanish at oo. Einstein summation convention will be used

throughout.

Acknowledgement: I would like to thank Anne Estrade, Michel

Emery and Serge Cohen for helpful comments on an earlier

version of this paper.
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2. Existence of Solutions to an SDE on A Manifold Driven by

a Levy Process

Let V be a d-dimensional connected paracompact smooth

manifold and let Yt’ ... ,Yn be smooth complete vector fields
on V. We denote by  the linear span of {Y, ... ,Y ) } and

make the assumption that every element of  is complete. We

note that this condition is automatically satisfied if the Lie

algebra  generated by  is finite-dimensional, but we do not

make this latter assumption here. For each x E ~n, we denote

by ~(x) the diffeomorphism of V defined by

03BE(x) = Exp(xj Y )

Let X be an n-dimensional Levy process on some complete
probability space equipped with a filtration

t, / t E ~+). Hence there exists an m-dimensional Brownian
motion B = (B(t), t E where m ~ n and a Poisson random

measure N on ~+ x (~n-{o}) which is independent of B and has
associated Levy measure v on !R~-(0) given by
E(N(t,G)) = t v(G) for all t e ~+, G E B(~n-{o}),
such that x = ... ,Xn) has Levy-Ito decomposition

xJ(t) = c~ t + Bk(t) + r xj N(dt,dx)
t+ 

0 

+ ~ ~ x J N(dt,dx) ... (2.1 )

0 
for 1 ~ j ~ n, t E ~+

Here c = 
... cn) E (Rn, a~ - is a real (n x m) matrix

and N is the compensated process N(t,G) = N(t,G) - t v(G).

We introduce the ~-valued Levy process (X~(t), ’ t E !R’’)
given by
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X,.(t) = xj(t) Yj for t E IR+ ... (2.2)

We aim to study SDE’s on V driven by X~.
To the extent that we are thus attempting to construct a

"stochastic exponential" we might write such an SDE as

d~(t) = ...(2.3) >

with ~(0) - p a.s.

More precisely we are seeking a unique cadlag adapted process
~ = (~{t), 0 s t ~ o~) taking values in V with explosion time

co which satisfies the stochastic integro-differential

equation

t t

f (~{t) ) > = f (p) > + ~ (Zof ) (~(s-) )ds + ~ >

0 0

+ ~ 
~~ 

~ [f(~(x)~(s-)) - f(~(s-))] I N(ds,dx) >

0 

t+ r
+ ~ 

~~ 

~ [f(~(x)~(s-)) - f(~(s-))] ] N(ds,dx) >

0 

t+ r

+ ~ 
~~ 

~ [f(~(x)~(s-)) - f(~(s-)) - xj ] v(dx ) ds

0 

...(2.4)

for each f E t E Note that we have, for

convenience, introduced the notation

Z 
0 

= c~ Y 
j 

, Z 
k 

= Y 
j 

( 1 ~ k ~ m)

For further examination of the relationship between (2.3) and

(2.4), see pages 1105-6 of [ApKu].
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Note: One gains a nice understanding of how (2.4) arise from

(2.3) from the discretisation result of S.Cohen (§III.3 of

[Coh]). Taking 0 = To  Tn 1  ...  Tk -~ oo to be a sequence
of stochastic partitions whose mesh tends to zero, it is

shown that the solution of (2.4), up to its explosion time,

is obtained by taking limits of the sequence defined by

~o(t) - p

~n(t) - ~( (X(t) - X(Tk-) )~~(Tk-) for t  Tk+1

In the case where dim ~  oo, (2.4) was solved in [ApKu] and

it was shown that the solution defines a Levy process on the
transformation Lie group associated to ~ with o~ =00 a.s. (see

also [Est]). When V is compact equations of a similar type
to (2.4) were studied in [Fuj] and the flat case V = ~d can
be found in [FuKu]. Further examples of classes of SDE’s

with jumps are investigated in [Rog] and [Coh].

Now consider (2.4) in the case V = ~d and write

Y (x) = for 1 - j _ n, 1 _ d where each

a’ 
J 

e 

j 
The following result is established in §2. 2 of

[ApKu].

Theorem 2.1 Suppose that ai, a and a a are

bounded on ~d for all 1 ~ j ~ n, 
k 

1  i,k,l  d, then (2.4)
has a unique solution on ~d.

The main result in this section is the following,

Theorem 2.2 There exists a unique maximal solution to (2.4)
on V.

Proof By Whitney’s embedding theorem we can smoothly embed 1~

into ~b where b = 2d + 1. Consider the corresponding
extended version of (2.4) as an SDE on ~b. Provided that the

extension can be carried out in such a way that the hypothesis
of theorem 2.1 is satisfied, we immediately have existence and

uniqueness for the extended equation. It must now be shown that
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a solution of the extended SDE which has initial condition in V

never leaves it. To do this we must construct the extension

in a careful way. Our method is very closely based on that

used by Elworthy in [Elw].

We begin by considering an equation closely related to (2.4)

f (~(t) ) = f(p) + + 

0 0

+ r [f(~(x)~(s-)) - f(~(s-))J N(ds,dx)

0 

+ r [f(~(x)~(s-)) - f(((s-)) - xj v(dx) ds

0 

...(2.5)

for f e C"(V), t e ~+.

We will first show that (2.5) has a unique maximal solution

on V. We recall some notation from [Elw]. Let a : ~ -~ ~+ be

smooth and let N(V) denote the normal bundle in ~b with base
V and canonical projection n. If S is an open set in V, we

define

M (S) = U { y ~ jjy - a(q) }
~ 

qeS

Note that { y e N(1~),  a(rr(y))} is diffeomorphic to

the tubular neighborhood M (V) in Rb.
Now let Go be an open neighborhood of p e V with compact
closure in ~b We denote as the open ball of radius R

about the origin in ~b.

Choose R > 0 and (following [Elw]) define
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inf( a(q), q e Go n BR+1(~)}~

Let X E C°° ( ~b, ~+ ) be such that s BR+1 ( 0 ) and

x R = 1 in B R (0) and let H R E C°°(~+) be such that y ) - 1

y ~ ~ ~ 2 a2 R 0 if y ~ > al.

Let y : : M (’U ) -~ ’U be defined by y(y) = q where

q~~ - ~~y - r~~~ r c ~}.

Again as in [Elw], we extend the vector fields Y J on G 0 to
smoothvector fields Y" on the whole of Rb (1 _ j s n) by

Yj(p) = 0, p ~ Ma(G0)

j ) - ~R(p) P E 

where d is the usual (Euclidean) metric in !R .

Define the extended diffeomorphisms 03BE(x) = Exp(xj Yj).
(For ease of notation, we have suppressed the dependence of

Yj and R). We may now use theorem 2.1 to assert the

existence and uniqueness of the extended SDE on ~b.
Now choose S > R such that

S > sup sup ~~(x) Go~ ]
~x~1 qEGo 

°

and let gs E C°°(~b) be given by
- ~ s (y) u s (d(y,’U)2) 

Now consider equation (2.5) with f = gs. As in [Elw], we have

0 for all q E BR(0), 1 s j _ n.

Define for 0 ~ t ~ 1, ~x~  1 the automorphisms j (x) of
by

= 

1I am grateful to David Elworthy for this correction to [Elw].
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then we have that

= x 

However = 0

for q e BR(0), since gS is constant on the level sets of the

map q -~ V)2 for each Ixl  1, 0 ~ t ~ 1, thus

gS(q) for each q E 

Hence from (2.5) we obtain g (((t)) = 0 whenever peG.
As R is arbitrary, we find that ((t) remains in Go for all

. 

0 ~ t  (r where 03C3 ~ 03C3.
o 0

Suppose that (r  r, then take G1 to be an open neighborhood
withcompact closure of ~(o~o) and repeat the above argument
wherein ~(o~o) replaces p in (2.5). We thus obtain a new

extension of the equation on Rb which yields a solution of
(2.5) which lies in Gl for o~o ~ t  ~1 ~ o~. We continue in

this fashion to obtain ((t) eM for all 0 ~ t  o~.

This solution is clearly maximal. Uniqueness follows from

that of the extended equation on each open neighborhood.
We conclude by constructing the unique maximal solution of

(2.4).

Let p = (p ~...,p*~) be the Poisson point process defined by

= A xj N(dt,dx) ] for 1 - j - n and let

03BE(03C1(t)) = Exp(03C1j(t) Y ) for t e R. Define the random

diffeomorphisms X(t) = ~(p(t) of V for t e ~+ and let

(r; the jump times of p. We now proceed to

construct § as in [FuKu] p.84. Hence for 0 S t  zl, define

~(t) = ~(t); for t = ii, define ~(zi) - x(il) (~(zl-) ) and

for I 1  t  z2 we define ~(t) = ((t) where ((t) is the

solution of (2.5) with initial condition ~(tl). We thus

proceed inductively to define ~(t) for all 0 ~ t ~ o~ a

Note: As indicated in the introduction, theorem 2.2 may also

be proved by appealing to corollary 2 in §III.2 of [Coh] and
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taking the map ~ therein from ~n x v x ~n -~ V as

~(a~P~b) - ~(b - a)(p)

3 Horizontal Levy Processes and Levy Processes on Manifolds

We begin this section by collecting some geometrical facts

which can all be found in [KoNo].

Let M be an n-dimensional connected, paracompact Riemannian

manifold and denote by O(M) the bundle of orthonormal frames

over M with canonical projection n: M. Let r = (r1, ...

, r ) e O(M) with rr(r) - p then we will also denote by n the

induced linear map from T (0(M)) onto T (M). Let x = (xl, ...

, xn) e IRn, then r may be regarded as a linear map from IRn

onto T (M) with the action

r(x) = x r

We equip M with its unique Riemannian connection so that at

each r e O(M) we have the decomposition

T (o(M) ) - o V (o(M) )
r r r

where H and V comprise the horizontal and vertical
vectors at r (respectively). Note that each dim(H (o{M)))

r

= n. For each x e !R" there exists a canonical horizontal

vector field L(x) on O(M) which has the following properties

(i) L is smooth and each L(x)(r) E H (O(M)),
r

(ii) rr(L(x)(r)) - r(x)

We assume from now on that each L(x) is complete. M is

then said to be geodesically complete. For each p e M, let

exp denote the exponential mapping from T (M) into M, then
p

if n(r) = p we have

n{Exp(t L(x)(r)) - exp(t r(x))(p) ...{3.1)

for all t The right hand side of (3.1) is the unique
geodesic through p in the direction r(x) e T (M).

p
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We fix an orthonormal basis e , ..., e in ~n and write

L = L(e ) for 1 ~ j ~ n so that L(x) = xj L for each
x e !R". We now study the SDE (2.4) in the following
context: take V to be OeM) and each Y J = L J (1 ~ j ~ n).
From the above discussion we see immediately that each
member of ~ is complete as is required.

By theorem 2.2 we can assert the existence of a unique
maximal solution to the SDE

f (r(t) ) = f(r) + + 

0 . 0

+ f [f(Exp(L(x))r(s-)) - f(r(s-))] N(ds,dx)

0 

+ r [f(Exp(L(x))r(s-)) - f(r(s-))] N(ds,dx)

0 

+ r [f(Exp(L(x))r(s-)) - f(r(s-)) - L(x)f(r(s-))] v(dx) ds

0 

...(3.2)

for each f e C°°(o(M) ), r e O(M), t e ~+.

We call the solution (r(t), 0 ~ t ~ o~) of (3.2) a horizontal

Levy process in O(M). It is interesting to compare the form

of (3.2) with the formula obtained by A.Estrade and M.Pontier

for the horizontal lift of a manifold-valued cadlag
semimartingale in proposition 4.3 of [EsPo].

We note that if vT = o where v is the covariant derivative

and T is the torsion tensor field then dim(~)  co ([KoNo]

p.137). In this case we have 03C3 = ~ a.s. by the results of

[ApKu].
Now let (T, t e ~+ ) be the Markov semigroup on C (O(M))
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defined by

T (f)(r) = E(f(r(t))/ r(0) = r) ...(3.3)

for r E 0(M) .

If N denotes its infinitesimal generator we have 

c Dom(N) and a standard calculation yields

N( f ) (r) = mj L (f ) {r) + 2 1 aij 

+ 

[f(Exp(L(x)(r)) - 
f(r) - xj 1 + |x|2 Ljf(r)] 03BD(dx)

...(3.4)

for f e C°°(0(M) ), r E O(M), where a = (a’j) is the

non-negative definite matrix o~ o~T and n

mJ = cJ - ) v(dx) + j v(dx)

|x|~1 
1 + J 1 + |x|2

We may regard (3.4) as a horizontal Levy-Khintchine-Hunt
formulaon O(M) (see [Hun], [ApKu]).
We now consider the cadlag process X = (X(t), 
M defined by X(t) = Tr(r(t)). To investigate X, we define

the linear operator A(r) on C°°{M) by

g(p) = N(g 0 n)(r) ...(3.5)

where g e C°°(M), r e O(M) and p = n(r).

Using (3.1), we then obtain the following for g E C°°(M),
p = r

(,9) (P) - mj (P) + 2 1 0394a(g) (p)

+ [g(exp(xj Rj) (p)) - g(p) - xj 
1 + |x|

2 
Rj(g)(p)] v(dx) 

.

...(3.6)
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where R~ - r ( e j ) E Tp (M) and A a is the linear operator on

C°°(M) defined by

0394a  03C0 = 03C0  aij LiL j ...(3.7)

We call (3.6) the Lévy-Khintchine-Hunt formula on the
Riemannian manifold M. A(r) is clearly independent of
choice of orthonormal basis (R , R, ... R ) for T (M) and
hence is independent of the choice of lift r of p to O(M) in

(3.5), however we still retain the frame r in the notation for

reasons that will become clear below.

To get a clearer insight into the nature of A , we work in
a

local co-ordinates in OeM). Let r(p) = (pi, e~), and vi
be the covariant derivative in the direction a then a

i

straightforward calculation yields (c.f [IkWa]

p.260 - 274),

A = VV j

where glj = akl ef ei.

If the matrix a is positive-definite, g = is an

(inverse) metric tensor on M. In this case we say that

the generator A(r) is non-degenerate. We note that if a~

is the matrix of an orthogonal transformation (so a is the

identity matrix) g is the original (inverse) Riemannian

metric on M and a is the Laplace-Beltrami operator.

The frame dependence of the operator A indicates that the

semigroup (T, t e ~+) on C (0(M)) does not, in general,

project to a semigroup on C {M) so that X is not, in general,
a Markov process. Clearly one could define X to be a "Levy
process on a manifold" whenever it is indeed a Markov process.

Alternatively, it might be argued that this is not a natural

generalisation of the Euclidean case. Clearly further work

on this question is required.
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