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Abstract

In this note a simple proof of the equivalence of the predictable represen-
tation property of a martingale with respect to a filtration associated with an
orthogonal martingale measure and the extremality of the underlying probabil-
ity measure P is given. The representation property enables us to characterize
all measures which are locally absolutely continuous with respect to P. We
apply this to superprocesses and remark on a related property of the excursion
filtration of the Brownian motion.

Keywords: Predictable Representation, Orthogonal Martingale Measures,
Superprocesses, Absolute Continuity.

1 Introduction

In this note we first extend the simple proof of the predictable representation property
for superprocesses given in to all orthogonal martingale measures provided
the underlying probability measure P is extremal in the convex set of all solutions
of the martingale problem which defines the martingale measure. The predictable
representation says that every martingale of the underlying filtration can be written
uniquely as a stochastic integral with respect to the orthogonal martingale measure.
The proof follows easily from well-known techniques of Stochastic Calculus, cf. [JS,
JY]. In the case of the historical process the predictable integrand is identified in
[EP2] for a large class of martingales.
As our main new result we show in the Section 2.2 that every measure which is

absolutely continuous with respect to P arises as a Girsanov transformation like in
Dawson’s lecture notes, [D].
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Applied to superprocesses this means that every process which is absolutely continu-
ous with respect to a superprocess is a superprocess with an additional (interacting)
immigration, cf. Section 3.1.

The Fleming-Viot process is an example that the predictable representation does not
hold if the martingale measure is not orthogonal, cf. Section 3.2.

Finally, in Section 3.3 we show that a related representation property of the excursion
filtration of the Brownian motion (cf. [RW]) can (at least partially) deduced from the
predictable representation property of a special superprocesses, namely of that with
the trivial one-particle-motion.

2 Predictable Representation for orthogonal martingale mea-
sures

For the basic definition of martingale measures and their stochastic integrals we refer
to Walsh [W]. We fix a worthy martingale measure M(ds, dx) over a measurable space
(E, £) defined on the stochastic base (03A9, F, (Ft), P) where the starting a-field F0 is P-
trivial and F = The quadratic variation measure and its dominating measure
are denoted by Q and K, resp. The set of (M-)integrable functions PM equals the
closure of simple predictable functions on Q x [o, oo) x E with respect to the norm
(., ~)K2. The stocastic integral fo n(s, x)M(ds, dx) is denoted by n.M. We restrict to
orthogonal martingale measures, i.e.

Q([o, t], A, B) = 0, if An B = 0. (2.1)

It follows that such a martingale measure is worthy with K = extension of Q, cf. [W]. .

2.1 Representation Theorem

We denote the set of square-integrable martingales over (S~, .~, (.~t), P) by M2.

Proposition 2.1 Let N be in M2. Then there exists a unique function n E PM such
that

Nt - No + (2.2)

where L is an L2-martingale with  >= 0 for every b E PM.

Proof: We define

M~ := {N E = E ~M}.

By the orthogonality of Q we have

E[((bk - (bk - bl, bk - bl)K

for a sequence (bk)kElN C PM and so this sequence is Cauchy in PM iff the sequence
(bk is Cauchy in L2(S~, P). Therefore Mo is a closed subspace of L2 and the
assertion follows. o
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The next theorem gives conditions which are equivalent to the predictable represen-
tation property and well-known in the case of d-dimensional martingales, cf. [JS,
Chapter 3~. But first, we extend the integration with respect to a martingale measure
to the space of PM-valued measures.

Definition. Let (E’, E’) be a measurable space with generating field A’. Let M’ be
a martingale measure over A’. A function

is called a PM-valued measure over £’ ifl it is finitely additive, a-finite and continuous
in 0 as a function from £’ to the Banach space ~M. We then define a new martingale
measure m’ ® M over A’ by 

.

rri ® Mt(A’) := / o t / E m’(s, x, A’)M(ds, dx). (2.3)

Theorem 2.2 The following statements are equivalent:

(i) The measure P is extremal in the convex set of all measures P* on such

that M is a martingale measure with covariation Q under P* . .

(ii ) Every local martingale N has a unique predictable representation

Nt = Na + n(s, x)M(ds, dx) (2.4)

where n E (Here "loc " 
means that there is a sequence of stopping times (Sn)

such that n(s A Tn, x) E PM.)

(iii) Every martingale measure M’ defined on (S~, .~) with respect to the filtration 
over some measurable space (E’, E’) with generating field A’ has a unique predictable
representation

M~ _ ~ ® M (2.5)

where m’ is a PM-valued measure over ~’.

Proof. (i) ~ (it) : Follows by Proposition 2.1, cf. Theorem 38 in [Pr].

(ii) ~ (iii) Let m’(w, s, x, A’) be the representing function of the martingale

. We just have to prove that the mapping A’ -~ m’(., ., ., A’) defines a

PM-valued measure. The additivity of this mapping is obvious by the uniqueness of

the predictable representation. Because

/ / m’ (s, x, A’)m’(s, y, A’)Q(ds, dx, dy)] = E[M’~(A’)2],
the continuity of m’ in Ø follows by the continuity of M’ in Ø.

(iii) ~ (ii): Take as (E’, E’) a one point set.
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(ii) =~ (i): Cf. [Pr, Theorem 37]. o

Remark. Assume condition (i) in Theorem 2.2. Then, according to [J],[JY], the set
of all martingales coincides with ~C(M), the smallest closed subspace of martingales
N with norm E ~sup ~ which is closed under stopping and which contains all

t>o

(ordinary) stochastic integrals n.M(A) where n is M(A) integrable and A E E. Hence
we only have shown that E ~M} = £(M). This identification can however
fail if M is not orthogonal, see Section 3.2. 

’

2.2 Necassary condition of absolute continuity

In this section we want to show the converse of Dawson’s Giransov transformation [D,
ch.7]. In the present setting his result reads as follows:

For r be in we denote the corresponding exponential local martingale

exp(r. Mt - - 2 1 r(s, x)r(s, y)Q(ds, dx, dy))

by E(r). If E(r) is a martingale, e.g. if .0 f E fE r(s, x)r(s, y)Q(ds, dx, dy))] 
00 or exp(r.M) is uniformly integrable, then we can define a new measure P~ on

(03A9,F) by dP dP |Ft := ~(r)t.
A modification of Dawson’s argument shows that under Pr the process Mr defined
by

:= + o E E lA(x)r(s, y)Q(ds, dx, dy) (2.6)

is a martingale measure with covariation measure Q.

We shall show that every probability measure which is absolutely continuous with
repect to P arises as a suitable Pr.

Theorem 2.3 Let P be a measure on (S~, .~) such that M is a martingale measure
with covariation goverened by Q which has the predictable representation property.

Let P’ « P.

. There exits a predictable function r E such that the process M(A) is a

semimartingale with increasing process

/’/ lA(x)r(s, y)Q(ds, dx, dy). (2.7)

. If we assume additionally that M is a continuous martingale measure, i. e. h.M
is continuous Vh E PM, then the density has the exponential form

dP’ dP|Ft 
= exp( o E r(s, x)M(ds, dx) - (2.8)

2 1 0 y)Q(ds, dx, dy)) )

Hence P’ = Pr.
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Proof. Let Zt . The Girsanov transformation for one-dimensional martin-

gales ([JS, Chapter 3]) implies that for every A E A there exists a local P’-martingale
M’ (A) such that

Mt(A) = M’t(A) + t0 1 Zsd  Z, M(A) > s.

By the representation of martingales under P we have that

Zt = 1 + t0 y z(s, x)M(ds, dx) (2.9)

and hence

0 t Z _ 1 d  Z ’ M ( A ) > s = 0 E E 1A(x)z(s,y) Zs-Q(ds,dx,dy).
The function r equals therefore x).
In order to prove the second assertion we notice that by (2.9) up to Tn = ~}
we have

Zt = 1 + r (s, x) M(ds, dx) (2.10)

= 1+ t0 / Zsr(s, x)M(ds, dx). ..
Hence by the exponential formula for martingales the assertion is proved for all (t, w)
such that t E for some n E ~V. Because the process

V := .0 EEr(s,x)r(s,y)Q(ds,dx,dy)
is continuous it "does not jump to infinity" in the terminology of [JS, Chapter 3.5a]
and so the assertion is valid P-almost surely for all t. o

3 Examples

3.1 Superprocess.

The basic example motivating the present note is the (interacting) superprocess, cf.
[D,P]. It is a process X defined on a filtered probability space (S~, .~, (.~t), which

takes values in the space M(E) of positive finite measures over a Polish space E.
The basic data are a familiy of linear operators A = (A(w, S))~,En,sE(0,~) with common
domain D C oo) x E), a positive bounded branching variation function c defined
on S2 x ~0, oo) x E and a starting point E M(E). Then (X, satisfies by
definition that

. Xt ( f ( ) ) t - - 0 t XS(A(s)f (s))ds (3.1)

is a martingale under with quadratic variation

 M[f] >t - t (3.2)
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for all f E D (where we use the notation ~( f ) := fE ~c E E

Cb(E)).
These linear martingales give rise to an orthogonal martingale measure MA defined
on (O,:F, (.~t), with covariation measure

dx, dy) = c(s, (3.3)

cf.[D]. Let us now assume that is extremal under all measures under which

(3.1) is a martingale with quadratic variation (3.2). This is in particular the case if
there is no interaction, i.e. A(w, s) = Ao for one fixed operator Ao, which generates
a Hunt process with state space E, and s, x) = c(s, x). The unique solution
of the martingale problem (3.1,3.2) is the superprocess over the one-partical-motion
generated by (Ao, D). The martingale problem is also well-posed if A(w, s)f(x) =
Aof(x) + b(s, 03C9, x) f (x) for some nice b E PMA0, cf. [D]. The question of uniqueness
of a general is intensively studied in [P].
Our results imply that every extremal has the predictable representation prop-
erty and additionally that for every measure P’ which is absolutely continuous with
respect to there exists arE PMA such that P’ = Pu r e, where s) f (s, x) =
A(w, s) f (s, x) + r(w, s, s, x) f (s, x), i.e. P’ is a superprocess with additional

immigration parameter re.

If is a superprocess without interaction every process which is absolutely contin-
uous with respect to is therefore a superprocess with immigration term

c(s, x)r(w, s, x), i.e. the immigration term of a particle at place x depends on the
history of the population w up to time s.

3. 2 Fleming- Viot-process

The Fleming-Viot-process X is a process on a filtered probability space (S~, F, (.~t), P)
taking values in the space M1 (E) of probability measures over a Polish space E. Its
distribution is by definition the unique solution of the martingale problem character-
ize by the linear martingales (3.1) and their quadratic covariation  M( f ~, M[g] >t=

~ fo Hence the associated martingale measure M is not orthog-
onal. Because the L2-norm of a stochastic integral a.M differs from the PM-norm of a
the arguments in Section 2 do not work. Moreover, every predictable function s),
which does not depend on the space variable x has g.M = 0. Therefore, 

F(03C9) := T0 Ea(03C9,s,x)M(03C9, ds, dx) = T0 E(a(03C9, s, x) + g(03C9, s))M(03C9, ds, dx)

where we can choose the two representing functions a and a + g different in PM by
assuming that 

’ 

0 ~ (g, g)K  oo.

Hence already the uniqueness in Proposition 2.1 does not hold.
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3. 3 Excursion filtration

Rogers and Walsh consider in [RW] the following situation:

Let Bt be a Brownian motion on a complete probability space (S~, ,~, P) started in 0
and L(t, x) its local time. For every x ~ R define the increasing process T(., x) by
T(t, x) = inf~u : fo L(u, y)dy > t~. T is the inverse of the occupation time A(u, x) :=
J; L(u, y)dy = fo Define the a-field ~~ by the completion of

t > 0).

The family is called the filtration of excursion fields. A function $ on S~ x
[0, oo) x IR is called (~x)-predictable if it is measurable with repect to the a-algebra
generated by all x ~i((o, processes which are left-continuous in

t.

It is proved in [RW] that every F E L2(03A9,F, P) can be written as

F = E[F] + 
~0 R

03C6(t, x)L(dt, dx) (3.4)

with an identifiable 03C6 satisfying 4E[~0 03C62(t, Bt)dt]  ~. The property identifiable
means that 03C6 = 0393 with a (~x)-predictable 03C6 and t, x) = The

integral above is defined by

/ f ifJ(t, x)L(dt, dx) := Z [L(T, b) - L(T, a) - L(S, b) + L(S, a)]
for a simple function ~(t, x) = where Z E b~a and S = a) T =
T(Te, a) with ~a-measurable times Se and Te and by a standard extension for all
identifiable functions ~.

We will now point out how this result follows, at least partially, from the predictable
representation property for superprocesses.

In their proof Rogers and Walsh use the following result from the Ray-Knight theory:

Suppose that S  T  U  V are ~-identifiable times (, i.e. constructed as Sand T
above). Let Mx := L(T, x) - L(S, x) and Nx := L(V, x) - L(U, x). Then is

a continuous local (~x)-martingale with increasing process 4 fo Mydy. Moreover, M
and N are orthogonal and is an Lp-martingale iff Mo E Lp.

Here we easily notice the connection to a superprocess, namely that is the

superprocess with state space J1~ (~0, oo)) over the one-particle motion A f = 0 , if

we impose a time change of the Brownian motion B, i.e. a space transformation for

’L(., x)’ as a measure-valued process. Define the measure-valued process M by

b~) := L(T(b, o), x) - L(T(a, o), x).

By the covariation of Mx this can be extended to an orthogonal martingale measure
with covariation Hence every F E L2(S~, P) can be written
as 

F = E[F|~0] + ~0 ~0 03C8(a, x)M(dx, da).
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By the definition of the different integrales and 4J.L it is clear that 1j;.M = 4J.L
iff ~(cv, r, x) = ~ o r, x) with r, x) = (w, A(w, r, 0) , x). Hence we have to
show that ~ o r° is identifiable if ~ E This follows for a simple function ~ E PM
because in that case ~ o h° satisfies the conditions of Proposition 2.4 in [RW] and is
therefore identifiable. For a general function ~ E PM the identifiability follows then
by a monotone class argument.

Hence at least for F E L2(S~, P) the assertion (3.4) which is formula (2.1) in
Theorem 2.1 of [RW] follows easily from the predictable representation property for
superprocesses.

This remark should makes it plausible that in the case where we consider the reflecting
Brownian motion ~B~ instead of the Brownian motion the analog result of Rogers and
Walsh follows completely from the predictable representation for orthogonal martin-
gale measures, cf. also Remark 1.3b in [EP1].
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dicussions about this note, especially J.F. Le Gall for telling me about the related
results in [EP 1] .
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