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A REMARK ON STOCHASTIC INTEGRATION

by
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Department of Statistics Mathematics and Statistics
Purdue University Departments
West Lafayette, Indiana 47907 Purdue University

West Lafayette, Indiana 47907

Abstract

We give an example of an adapted, cadlag process H and a martingale M such
that a "stochastic integral" process fo HsdMs makes sense but is not a semimartin-
gale. This answers a question of Ruth Williams.

In constructing an elementary theory of stochastic integration for semimartin-
gales, one approach is to begin with simple predictable processes and to define the
integral by the obvious formula. One then easily extends the class of integrands to
processes in L (adapted processes which are left continuous with right limits a.s.
or "càglàd"). See for example [1], [2], [4], or [5]. A natural question is: why can
one not use D instead of L? (D = adapted processes which are right continuous
with left limits a.s., or "cadlag".). A standard answer is that one cannot use D if
one wants the stochastic integral with respect to a local martingale to be again a
local martingale, and a simple example is to take N a Poisson process of parameter
À = 1, Xt = Nt - t, and Gt = where T is the first jump time of N. Then C
is in D and t0 CsdXs = -(t A T ), which is always decreasing and thus cannot be a
local martingale. Note however that it is a semimartingale.

Ruth Williams [6, p.178] has posed the following question: why can one not
use D instead of L for the semimartingale integral? In other words, is there a

semimartingale justification for using predictable processes, rather than just a mar-
tingale justification as described in the previous paragraph. Maurizio Pratelli [3]
has given an elegant partial answer to this question by showing that one can have
a theory of stochastic integration for optional integrands with the usual dominated
convergence theorem holding if and only if the semimartingale integrators satisfy
E  oo a.s., each t > 0. (See [5] for all undefined terms and notation.)

In this note we address a different but related question: can one find a semi-

martingale M and a process in H in D such that J; HsdMs makes sense as a
stochastic process, but is not a semimartingale? If H is simple enough, the def-
inition of 10 H.dM. should be obvious, and thus we will see that one in fact leaves
the space of semimartingales quite readily even if one integrates processes in D (and
not the more general optional processes). We construct such a process where M is
a martingale, H E D, and f o HsdMs is not a semimartingale.

Let M be a semimartingale and let H E D. If we could construct a coherent

theory of stochastic integration with H E D, we would want the jump at time t of
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f H.dM. to be equal to Ht0394Mt. Therefore we would have the relation

(*) t HsdMs = t Hs_dMs + 03A3 0394Hs0394Ms .

0 ~ 0at

If M has no continuous martingale part, we can write this relationship as

t0 HsdMs = t0 Hs_dMs + [H, M]t. .

We will construct a martingale M and an (adapted) process H E D such that (*)
holds, but such that the process f o HsdMs is not a semimartingale. To construct
M, let N’ be an i.i.d. sequence of Poisson processes with arrival rate a =1, so that
Nt - t is a martingale for each i. Let

t ~ ~34( t ) .

Mt = 1 (i)3/4 (Nit - t)

Note that the series converges in Lz and that M is an LZ martingale (M is also a
Levy process).

We now construct H E D, which is more complicated. Let an be an increasing
sequence of integers, increasing at the rate n5 ~4 . . Define increasing stopping times
(TJ )? >_ 1 by

T1 = in! >0}
T~ = in f {t > : > 0}

Note that is exponential of parameter ~ , and also is independent
of Tj - . Set T = lim Tj, and we thus have that P(T  oo) =1. .
Define

n

- 21G 1) 1~16 lrT2k-1 ~T2k~l~). .
k= ll

then H" is in D, and Hn converges in ucp (uniform convergence on compacts in
probability) to

oo

H = (2k -1) 1/16 
k=1

Thus H is also in D. Next observe that

2n

~‘ = ~ X k, ,
aT k=1
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where

X2k-1 = (2k - 1)-1/16 
X2k = -(2k -1)-1/16 0394MT2k.

PROPOSITION 1

Af = 03A3 0394Hns0394Ms converges in ucp
at

Proof

Note that Ht^T2n = , each n, which implies

03A3 0394Hs0394Ms = 03A3 0394Hns0394Ms, each n.

aTz" 

Then it suffices to show that .

2n

Xk
s5T k=1

converges. Since 0394MTn is uniform on {1, 2"3/4, ... , an 3/4}, and an N ?25/4, we have

~-’~ ~ /"~ = n-5/4)
and

~-~~ ~ /"~ = 2(n’5/4 - 

Thus both and var (Xk ) are convergent series. Since the X,,’s
are independent and bounded by 1, converges a.s. and in L2. . D
One can easily check that /

03A3~k=1 |EXk| = ~.

This implies 03A3~k=1 |Xk| = oo a.s. and hence

At = 03A3 0394Hs0394Ms
st ,

is not a process with paths of finite variation on compacts.
PROPOSITION 2 ,

At ia not a semimartingale.
Proof

Define

Jnt = 03A32nk=1 (-1)k+1 log (k+1) 1(Tk-1,Tk](t)
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Then J" is in L, and JR converges in ucp to

Jt = 
~k=1, (-1)k+1 log (k +1) 1(Tk-1,Tk](t)

(which is therefore also in L).
If A were a semimartingale, then A) would converge in ucp too by, for example,
the Bichteler-Dellacherie theorem.

But

(Jn . A)T = 03A32nk=1 JnTk-1 (ATk - ATk-1)
= 03A32nk=2 1 log k |Xk| 

~ ~ a.s., 

since the Xk’s are independent and

Thus A is not a semimartingale D

A final remark: The predictable u-algebra P is generated by L; that is, 7~ =
u(L), while the optional or-algebra d is generated by D : 0 = cr(D). Since we
have seen that even in the semimartingale theory (and not just the local martingale
theory) one cannot go beyond L to D, clearly one cannot go beyond P to d as well.
Thus this example helps to clarify the standard restriction that integrands must be
predictably measurable, in the general case (that is, when semimartingales can have
jumps).
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