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Rate of explosion of the Ampere area
of the planar Brownian loop
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ABSTRACT: We study the asymptotic behaviour of approximations of the Amperean area (i.e.
the integral of the squared index function) of the Brownian loop, which is almost surely infinite.
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Introduction

Let 7 = (7t, 0 _ t _ 1) be a continuous loop in the complex plane and define for
all z E {03B3t, 0 ~ t  1}, the index nz of 03B3 around z. The Amperean area 
of 03B3 is defined by:of q is defined by: , 

_ / R (n=)z dz,

where dx denotes the Lebesgue measure in R2. When 7 is not smooth enough, nz
may not be bounded as z varies and it may happen that = oo because of
too many small windings of the loop. From now on in this paper, we will consider
the case where 7 is a standard Brownian loop with ~o = 71 = 0 for which it is
known that = oo a.s. (see [L], page 245, [Wi] and [W2]) and we will estimate
approximations of 

Problems related to the planar Brownian loop have been studied in several
works. Levy [L] has derived the exact law of the ’stochastic area’ using the Fourier
decomposition of the loop. The explicit law of the index nz (with fixed z) has been
derived in terms of Bessel functions by Yor [Y] (see also [E]), to which we refer for
a rigorous definition of the Brownian loop. In [W2], we introduced approximations
nx of nz which we will use in this paper. More precisely, we proved that, although



154

IR2 Inzldz = oo almost surely,

lim / n~zdx = in Probability,

where A(03B3) = (1/2) denotes Lévy’s stochastic area of 03B3 = 
and where n~ is defined by the following stochastic integral:

n~z = 1 203C0F(10 d03B3s 03B3s - z 1|03B3s-g|>g)

(9 denotes the imaginary part of a complex number and we identify IR2 with C).
Intuitively, 203C0n~z corresponds to the windings around z made outside the small disc

centered at z and with radius e. Note that n; = nx as soon as z is not in
the Wiener sausage SE of radius e (that is Se = The main result of

the present paper is the following:

Theorem 1.

lim 1 |log ~| IR(ngg)2 dz = 1 203C0 in Probability.

The motivation for this work has been given by recent works of physicists ([CDO],
[GWS], [WS]...). The Amperean area of planar stochastic loops appears naturally in
modelizations of particle systems for which magnetic interaction plays an important
role (type II-superconductors, anyon gas...); see e.g. equation (6) in [GWS], where
SI is exactly the Debye Action functional. Very loosely speaking, the coefficient E in
our approximation, corresponds to the biggest distance for which interactions other
than the magnetic interaction between particles cannot be neglected.

Our proof is based on simple properties of stochastic integrals (second moment
computations...) and it seems unlikely that it can be easily adapted to obtain
similar results for random walks on a lattice. It may nevertheless be conjectured
that analogous results hold, where e corresponds to the size of. the lattice.

1. . The Brownian motion.

1.1 Preliminaries.

It is much easier to deal with stochastic integrals with respect to the Brownian
motion than to the Brownian loop. In this section, we will only focus our attention
on Brownian motion, and we will derive the results concerning the Brownian loop
in the next section.

Let Z = (Zt, t > 0) be a complex Brownian motion started from Zo = 0. As in

[W2], section 7, we put

n~z = 1 203C0L(10 dZs Zs-z1|Zs-z|>g),
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for all E > 0. One should keep in mind the equality

101|Zs _=I>t (X. 
- 

- ’ (1)

where z = z + i y and Z. = X, + iY, Nevertheless, we will mainly use the complex .

multiplicative notation for clarity reasons.
Since nx does not decrease fast enough as ~x~ -~ oo, it is obvious that

= oo almost surely. More precisely, if x(R) _ then

xgg(R) ~ ns(R) ~ |Z1| 203C0R 
sin 03B8

as R ~ oo, and consequently,

lim 
1 

l = 
|Z1|2 

a.s.

R-o log R ) = 4~ 
°

(this phenomenon does not occur for the loop as nz = 0 on the unbounded connected
component of the complement of the loop). To avoid this problem, we introduce for

6 ~ , f ? 
~ )s 

~ 
x 2~ ~‘ o Z - z ,

and more generally, for all time t,

m~,03B4z(t) = 1 203C0F(t0dZs Zs - z1|Zs - g|~|e,g|).
Note that = 0 as soon as z ~ Sa, where Sa denotes the Wiener sausage

~) of radius 6 on the time-interval ~0, t~. Let us put

X‘,a = 
Rs

we will see that X~,03B4  oo a.s. (see e.g. Lemma 1-(i)).
Let us also fix, for all k >_ 0, ~k = and define the set E of all sequences

(Ek, k > 0) of positive real numbers, such that for all k >_ 0, ~k  We will
use these notations throughout this paper.

Our main aim in this section is to prove the following Proposition:
Proposition 1. . For any k > 0) E E,

lim 1 |log ~k| X~k,03B4k = 1 203C0 a.s.

In fact our proof also implies that log (203C0)-1 in Probability
for ~(E) = exp(-(log ~ but Proposition 1 will be more useful in Section 2.
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l.Z Preliminary results

We now recall some known results, which will be useful in this proof: If Ta(x) =
inf {t > 0, z|  03B4} is the hitting time of 6), one has

P(T03B4(z)  t) ~ 03C6t(z) |log 03B4| (2)

for all 6  1, where ~t e ~’(Rz) for all p > 1 (see for instance (LG~, chapter 6).
We also restate Lemma 8 from (Wz~, which is an easy consequence of estimations

on Bessel functions: For all e  1/2, .

E((n~)~) _ (3)

where = A + B log ~x~ + for some constants A, B, C. This implies
readily that for all e  6  1/2,

E((m~~a)~)  4~(x) (4)

1.3 The moments of X‘,a
We now estimate the first two moments of X‘,b. .

Lemma 1. For all ~  03B4,

(i) E(X ~,03B4)= 1 203C0lo g 03B4 ~

(ii) E((X~,03B4)2) ~ 8 03C02 (log 03B4 ~)2 .

Proof: (i) is a straightforward consequence of (I) and of Fubini’s Theorem: For all
0, (1) implies that

E((m~,03B4z)2) = 1 403C02 10 ds E( 1|Zs-z|~]~,03B4] |Zs-z|2)
.

So,

E(X‘,b) = ( dx 

_ 1 /~ ~ ~ ~( ( dx~~2 0 

ds 
( )

= 4N2 o ds 
- 
1 lo 03B4 ~.
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(it) Let us denote for all t > 0, ft = f(Xt), gt = g(X,), F, = j# f,dX, and G, =
j§ g.dX., where X is a linear Brownian motion and f and g two measurable bounded
functions. Itô’s formula yields

FtGt " / 0 t (Fsgo + Gofs )dXo + / 0 t fsgsds
and 

E(FlGfl )  4E + + (5)

for all t > 0.

Similarly, if ft # f(Xt, Qi), gt # g(Xt, Qi), Ft # j# f,dX, and Gt L jl 
where X and Y are two independent Brownian motion8, Itô’s formula yields

FtGt " / 0 t FsgsdYs + / 0 t GsfsdXs
and 

E(F#G) )  2E + (G, f.)~ )ds ~ . (6)

Now,

E((Xe,,)~) = 
xR2 

E((mi>’)~(mi>’)~) dz dz’

and we deduce from (I) that

(m~,03B4zm~,03B4z,)2
 £ (( j% §( i iz. -ziej«,q dXs)2 + )# $ll i jz. -zjej«,q dKs)2)
~ (~ /~ /# _ ~ ’Z. -Z" 6]*>6l~? ~~ ~ ~ /~ )~#’ i~~ ~ ’Z. -Z" 6]*>6l ~~~~) °x 0 ? - z’121Iz.-z’IEJe,6)dX.)2 + 0 ? ~ .

Hence, (5) and (6) lead easily (using also a symmetry argument) to

gg(( ~ )2) ~~~ / ~ ( /~ ~ ( e,6( ))2) i
*" - 

~ 0 o ~ ~j2 "~Z’ ~ ~ 

~ 16 / E d~ 
.2 x.2 o 16x’ [Z, - z[2 ]Z, - z’ [2 

°

Finally, Fubini’s Theorem and (I) imply that

E((X~,03B4)2) ~ £ log!, ,
which completes the proof of Lemma 1 .
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1.4 Cutting the Brownian path.
We will now use the independence of the increments of Brownian motion to prove
that as k --~ oo (where k >_ 0) E E). Let us define, for all
time-intervals (a, b~, b]) = m~~a(b) - and denote

= m~’a(hI2~ 11)~

Let also denote 51 and 5l the Wiener sausages of radius 6 on the time-intervals
[0,1/2] and [1/2,1]. Obviously,

Xt,a = R2(m~,03B4,1)2dz + R2(m~,03B4,2z)2dz + (7)

where

The independence of Brownian increments before and after time 1/2 and the fact
that = 0 as soon Sb yield

2 E (1z~S103B4|m~,03B4,2z|2 + 1z~S203B4

 4 /  1/2)E((m~,03B4,1z’)2) dx’

(where z’ = z - (2) and (4) now imply immediately that for all e  6  1 j2,

E(|Y~,03B4|) ~ C|log ~| |log 03B4| (8)

for some constant C > 0.
On the other hand, the Markov property and a scaling argument show that

= and = 2 are two indepen-
dent copies of 

Now, repeating p times (7) gives:

X~,03B4 = 1 2p (X1~2P/2,03B42P/2 + ... + X2P~2P/2,03B42P/2) + YP~,03B4, (9)

where ... , X2P~2p/2,03B42p/2) are 2’ independent copies of and

where 
’ ’

E(| YPe,g|) ~ p C |log ~| |log(03B42P/2)| ( 10)

if ~2p~z  1/2.



159

Now, let us &#x26;x t > 0) 6 E and let p~ be the integer part of (2 log t)/log2,
so that k3/2 ~ 2Pk  k2 for all sufficiently large t. (10) can be rewritten as:

I

ibr some new constant C". Chebyshev’s inequality and Borel-Cantelli’s Lemma now
imply that 

lim 1 |log ~k| Ypk~k,03B4k = 0 a.s. (11)

Similarly, Lemma 1 and Chebyshev’s inequality yield, for all e  03B4  1/2,

P(| X1~2P/2,03B42P/2 + ... + X2P~2P,2,03B42P/2 2P E(X~2P/2,03B42P/2) - 

1 | > 1 log k)
 E((X~2p/2,03B42p/2)2)
- 

~(logt)-~(X.~~~

So, BoreI-CanteMi’s Lemma and Lemma l-(i) imply that

lim ( X1~k2pk/2,03B4k2pk/2 + ... + X2pk~k2pk/2,03B4k2pk/2 2Fb|log ~t| = 1 203C0 a.s.~’ °

(11) and (9) finally show that,

lim1 |log ~k|X~h,03B4h = 1 203C0 a.s.

and the proof of Proposition 1 is completed.

1.5 Localization

Finally, we estimate the diSerence between (t~)~ and (m~)~: :
Lemma 2. For any (~k,k ~ 0) C E and for any compact set A C IR2,

~nog~(~~-~’~~)=’ -
Proof: Notice that

~M)’ - (’":’’)’)) ~ m~)~E()n: + m;.~~)~’
~ 4E((~)’)~ + !~!’)~’.

Using (3) shows that for all t ~ 1,

~~M.~-~~...)~C.~~
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for some constant C". A Borel-Cantelli argument ends the proof.

In the sequel, we will use Lemma 2 in the following form:

Corollary 1. Let r be any event such that P(r) > 0. Then, conditional on r, one
has

lim 1 |log ~k| |(n~knz)2 - (m~k,03B4kg = 0 a.s.

for any (ek Jk > 0) E E and any compact A C .

2. The Brownian loop
2.1 Preliminaries

If 03B3 = 0 _ t  1) denotes a Brownian loop with 03B30 = 03B31 = 0, let us recall that
for A  1, the law of  A) has the same negligible sets as the law of (Zt, t  a). .
Hence, an almost sure result depending only on (Zt t  a) is also true for ~y. As in
[W2], that is the basic idea we will use to obtain results on the Brownian loop.

We will use the same notations for the functionals of 03B3 and of Z. To avoid

confusion, we will specify each time which case we consider: We will refer to the
Brownian loop (respectively motion) as the ’L-case’ (resp. ’M-case’). Let us define,
as for Z,

m~,03B4z (I) = 1 203C0
F( d03B3s 03B3s - z1|03B3g-g|~|~03B4])

for all z ~ 0, e  03B4 and all intervals I C (o,1J. We put, = m~,03B4z([0,1]). Similarly
we define and n;. .

We cut 0 _ t  1) (and (Zt, t  1)) in three parts corresponding to the time-
intervals fi = [0,1/3], Iz = [1/3,2/3] and I3 = [2/3,1]. We denote, for i 6 {1, 2, 3}, ,

= m;’a(I;) and = 

in both M- and L-cases.

2.2 The analogue of Proposition 1

We will now derive the analogue of Proposition 1 in the L-case. Obviously, for all

~03B4,

(m~,03B4z)2dz = /(m~,03B4,iz)2dz + 2 m~,03B4,izm~,03B4,jzdz (12)
~ 

~ 

i=1 R~ ’

in both M- and L-cases.
Let us fix (ei, k > 0) E E. A scaling argument and Proposition 1 show that in

the M-case,

lim 1 |log ~k| IR2 (m~k,03B4k,1z)2dz = 1 603C0 a.s.
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Since this depends only on (Z~ 6 7i), it also holds in the L-case. Now, by
symmetry, for t ~ {1,2,3}, ,

lim 2014201420142014 / (m~’~’’)’~ = ~- (13)’ 6?r 
° °

in the L-case.
On the other hand, (8) readily gives (using scaling, Chebyshev’s inequality and

Borel-Cantelli’s Lemma) that,

m~~m~~=0 a.s. (14)~ 
° °

Since this depends only on (Z~, ~  2/3), it holds also in the L-case. By symmetry,
for any in {1,2,3}, 

’

m~~’’m~~’~=0 a.s. (15)

in the L-case. Finally (12), (13) and (15) show that

lim 1 |log ~k| (m~k,03B4kz)2dz = 1 203C0 a.s (16)

in the L-case.

2.3 Localization

We now want to derive Theorem 1. Let us first put down some notations: Define

diam(Z,7) = Z) and = j~ - ~j. For N > 1,
~ (respectively will denote the event  ~V} (resp. 
~V}) We also keep the notations introduced in section 2.1. .

Using corollary 1, one has, conditional on ~", for any compact set A C H~,
for any (~k,k >0)~ E,

a.s. ° (17)

and

lim 1 |log ~k| ((n~k,1z + n~k,2z)2 - (m~k,03B4k,1z + m~k,03B4k,2z)2) dz = 0 a.s. (18)

in the M-case. (17) and (18) imply (using a symmetry argument) that

lim 1 |log ~k| (n~k,1zn~k,2z - m~k,03B4k,1zm~k,03B4k,2z)dz = 0 a.s., (19)

in the M-case, conditional on ~[0,2/3]N.
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Since (17), (18) and (19) depend only on (Z~ ~ 2/3), they also hold in the
L-case (conditional on ~~). As ~ C ~’~~ and P(~) > 0, (17), (18)
and (19) also hold conditional on (in the L-case).

By symmetry, this implies that, conditional on M~’ , for any > 0) ~ E,
for any compact set A C and for all t ~ ~ in {1,2,3}, ,

lim / ((~’’)’ - (m~’~’’)’)~ = 0 a.s. (20)~ 

and .

!im = 0 (21)~ ~ ~ ~

in the L-case. Finally, as n~ = + + n~, (20) and (21) show immediately
that, conditional on M~, , for any (ek t > 0) ~ E and for any compact set A 

lim /’ ((~)~ - (m~)~ = 0 a.s. (22)~ 

in the L-case. For A = D(0,~V + 1), it is obvious that conditional on M~,
nb = = 0 for all ~  03B4  1, as soon as z ~ A. Hence, one can replace A
by 1t2 in (22).

Finally, (22) and (16) show that, conditional on ~’~, for any > 0) ~ E,

lim 
1 |log ~k| (n~kz)2 dz = 1 203C0 a.s.

in the L-case. This implies that, conditional on H[0,1]N,

lim / = 1 203C0 in Probability

(since for every sequence ~k ~ 0, there exists a subsequence in E for which almost
sure convergence holds). Finally, as ~(~~) = I Theorem 1 follows.
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