
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

ZHAN SHI
Liminf behaviours of the windings and Lévy’s stochastic
areas of planar brownian motion
Séminaire de probabilités (Strasbourg), tome 28 (1994), p. 122-137
<http://www.numdam.org/item?id=SPS_1994__28__122_0>

© Springer-Verlag, Berlin Heidelberg New York, 1994, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1994__28__122_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Liminf behaviours of the windings and Lévy’s stochastic areas
of planar Brownian motion

Z. Shi

L. S. T. A. - CNRS URA 1321, Université Paris VI,
Tour 45-55, 3e étage, 4 Place Jussieu, 75252 Paris Cedex 05, France

1. . Introduction

Let {X (t)+iY(t); t > 0} be a planar Brownian motion (two-dimensional Wiener
process), starting at a point zo away from 0. Since it almost surely never hits 0, there
exists a continuous determination of 9(t), the total angle wound by the Brownian
motion around 0 up to time t. Spitzer (1958) showed the weak convergence of 0:

) 

where C is a random variable having a symmetric Cauchy distribution of parameter
1. The last twenty years or so have seen rather spectacular developments on the
asymptotic law of winding numbers of Brownian motion. See for example Williams

(1974), Durrett (1982), Messulam &#x26; Yor (1982), Lyons &#x26; McKean (1984), Pitman &#x26;
Yor ( 1986 &#x26; 1989), and the book of Yor (1992, Chapters 5 &#x26; 7) for a detailed survey
and up-to-date references. Recently Bertoin &#x26; Werner (1994a) were interested in
the almost sure asymptotic behaviour of 8. By making use of an exact distribution
for 03B8 given in Spitzer (1958) and by studying level crossings of the radial part of the
Brownian motion, they proved the following

THEOREM A (Bertoin &#x26; Werner 1994a). For every non-decreasing function
f > 0,

f(t ) log t _ oo ’ ~ t f(t) log t = o0 °

So, in particular, is equal to 0 when a > 1,
and to oo otherwise. See also Franchi (1993) and Gruet &#x26; Mountford (1993) for
Brownian motion valued in a compact space.

To provide further insight on the path properties of 0, it is of interest to inves-

tigate its liminf behaviour as well. Thanks to the Brownian scaling and rota-
tional invariance properties, we only need to treat the case when zo = 1. Let

e* (t) = for t > 0. In Section 2, we present a liminf integral test for
o which states as follows:
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THEOREM 1. Let f > 0 be a non-increasing function such that f(t)logt is
non-decreasing, then

or 1, , as.

according as

~-~ / 
converges or diverges. Here, "i.o." stands for "infinitely often" as t tends to oo.

An immediate consequence of the above theorem is:

COROLLARY 1. . We have

(1.3) a.s.

The triple logarithm figuring in (1.3) is of no surprise. Indeed, as Spitzer’s result
(1.1) suggests, the right clock for 03B8 is rather logt than the usual time t. Corollary
1 is thus a version of Chung’s celebrated liminf law of the iterated logarithm (LIL).

Another interesting Brownian functional, which bears some relation with the
winding number 0, is Paul Levy’s stochastic area cr defined as the stochastic integral

(1.4) t>0.

(Strictly speaking, 7 is twice the stochastic area of Brownian motion studied by
Levy (1951), who obtained the exact distribution for each random variable cr(t), by
exploiting the series representation of Brownian motion with respect to a complete
orthonormal system.) The following LIL was due to Berthuet (1981): :

THEOREM B (Berthuet 1981). We have, almost surely,

lim sup 03C3(t) t log log t = 2 03C0.

See also Baldi (1986), Helmes (1985 &#x26; 1986), and Berthuet (1986). Let 7*(t)
= !~(~)j. Our main result concerning the liminf behaviour of u is the
following integral test:
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THEOREM 2. Let g > 0 be a non-increasing function such that tg(t) is non-

decreasing, then 

P[03C3*(t)  tg(t), i.o] = {01 ~ dt tg(t)e-03C0/2g(t)  ~= ~
COROLLARY 2. The following Chung-type LIL holds:

lim inf log log t t 03C3*(t) = 03C0 2, a.s.

The plan of the rest of this paper is as follows. In Section 2, we focus on the
windings and present a proof of Theorem 1. Levy’s stochastic area is studied in
Section 3, where Theorem 2 is to be shown. In section 4, we are interested in, and
obtain Chung’s LIL for, the ranges of 03B8 and 7. Throughout the paper, we will not
distinguish ~(t) from çt for any stochastic process ~.

2. Brownian windings
Let us keep the notation previously introduced. In this section, the planar

Brownian motion Z = X + iY is assumed to start from 1. Let R be the radial

part of Z, i.e. R2 = X2 + Y2 and let H(t) The well-known skew-

product representation for two-dimensional Brownian motion goes back at least to
Ito-McKean (1974) p.270:

(2.1 ) 9(t) = ~3(Ht), with ,Q a linear Brownian motion independent of R.

The following simple preliminary result is needed which will be applied for both
8 and o~ later on:

LEMMA 1. Let W be a standard Brownian motion, and D a positive non-
decreasing continuous process independent of W. Let W *(Dt) = ,

then for all 0 ~ s ~ t and 0  x ~ y,

2.2 g E 03C02 8x2 
Dt  1’ W * ( Dt  x  4 lE 03C02 8x2

(2.3) IP[ W*

(De )  x, W
* (Dt )  y] ~ 16 03C02 E exp [-03C02 8x2 Ds - 03C02 8y2 (Dt - Ds)].

Proof of Lemma 1. By conditioning on > o} and using the Brownian scal-
ing property, (2.2) is trivially deduced from the well-known distribution of Brownian
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motion under the sup-norm (see Chung (1948) p.221). Since ~ has independent
and stationary increments, the probability on the LHS of (2.3) is equal to

~-~~L~ ~ ~ ~ .=~.)} .’
Using a general property of Gaussian measures (see for example Ledoux &#x26;; Talagrand
(1991) p.73), the above expression is smaller than P[ M*(Ds)  x ]P[ W*(Dt -

 y]. Now (2.3) follows using the second part of (2.2). [j

The next lemma concerns the Laplace transform of the clock ~f:

LEMMA 2. For all  ~ 03BD > 0, s > 0 and t > 0, we have

(2.4) , Eexp[-~]2~~, ,
(2.5) ~(~. - ~)]  4~-~-~-~. °
If moreover, 0  /~  1, 

(2.6) Eexp[-~]>~-~e-~. .

Proof of Lemma 2. Let us recall that the Gamma function is decreasing on [1, .ro]
and increasing on with 1  :ro  2 and 0.886 (see Abramowitz
&#x26; Stegun (1965) pp.258-259). Thus F(l + .r)  2F(1 + ~/) for ~/ > .r > 0, and
r(l +/~/2)/2~r(l +/~) > 1/3 for 0  ~  1. According to (6.20), (6.21) and (6.25)
of Yor ( 1 992 ) ,

(5)..7~)f’-~~"" -’"~.
Since e-1/2t  e-z/2t ~ 1 for all 0  x  1, we have

e-1/2t0393(1 + /2) (2t) /20393(1 + ) ~ IE exp[- 2 2Ht] ~ 0393(1+ /2) t /20393(1+ ),
which yields (2.4) and (2.6). Now let /~ > !~ > 0. It follows from the scaling property
of .R and (2.4) that

IE[exp(-03BD2 2(Ht+s - Ht))| Rt = r] = IE exp[-03BD2 2H(sr-2)] ~ 2r03BDs-03BD/2,
Hence,
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IE exp[- 2 2Ht - 03BD2 2(Ht+s - Ht)] ~ 2s-03BD/2IE[R03BDt exp(- 2 2 Ht)]
’(2~-~r((~-~)/2)7o ~ ~ ’

using again (6.20), (6.21) and (6.25) of Yor (1992). The above expression is obviously

 
2.-~ r(i+(~+~)/2)  4 /, ~_.)/,

- 

(2~)~-)/2 r(i+~) 
-~ ~ ’

as desired. []

Let us turn to the proof of Theorem 1. Suppose that / satisfies the condition
in Theorem 1. Pick a to sufficiently large and define a sequence by

(2.7) z>0.

Since / is positive, it is easily seen that tends to infinity ~. Put /t = 
for all i > 0. In the rest of this paper, unimportant finite positive constants are
denoted by ~, ~2? ’" whose value depend only on /o and may vary from
line to line.

LEMMA 3. The series

dt tf(t) log t exp(-03C0 4f(t)) and exp(-03C0 4fi)
converge and diverge simultaneously.

Proof of Lemma 3. Since log t is non-decreasing, we have

(2.8) fi fi+1 ~ log ti+1 log ti = 1 + fi,
which is bounded. Therefore,

dt tf(t) log texp(-03C0 4f(t)) = ti+1ti dt tf(t)log t exp(- 03C0 4f(t))

~ 1 fi+1 exp(- 03C0 4fi) og(log ti+1 log ti)
~ /t ~~

~~exp(-~),
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using (2.7) and (2.8). On the other hand, we have, by (2.7), ,

dt tf(t) log t exp(- 03C0 4f(t))dt ~ 1 fi exp(-03C0 4fi+1)log(1 + fi).

Since log( 1 +/t)//t > K-1 by boundedness of f, the proof of Lemma 3 is completed.
a

Proof of Theorem 1. We begin with the convergent part. Suppose that the
integral (1.2) converges, which, by Lemma 3, means that ~~  oo. Put
Ai = {03B8* (ti  fi+1 log ti+1 } . Since H is continuous and increasing, it follows from
(2.2) and (2.4) that

IP(Ai) ~ 4 03C0IE exp[-03C02H(ti) 8f2i+1(log ti+1)2] ~ 8 03C0exp(-03C0 log ti 4fi+1 log ti+1).
By (2.7), log t2+1/ log ti = 1 + fi. Thus

P(Ai) ~ 8 03C0exp (-03C0 4fi+1(1 + fi)) = 8 03C0 exp (-03C0 4fi+1 + 03C0 4fi fi+1(1 + fi))

~ K exp(-03C0 4fi+1),

using (2.8). An application of Borel-Cantelli lemma together with a monotonic-
ity argument yield then the convergent part of Theorem 1. Now suppose that

Ei = oo. In view of (1.3), we assume without loss of generality that

(2.9) 
2 log log log t  ~ 

log log log t .
(For rigorous justification, we refer to Lemmas a and d of Lipschutz (1956)). Several
lines of elementary calculation using (2.7) and (2.9) imply that

(2.10) exp(i 3 log i) ~ logti  exp(2i log i),
(2.11) exp(-03C0 4fi) ~ (3 log i i)03C0/4.
Let Bi =  f$ By (2.2) and (2.6), we haye

IP(Bi) ~ 8 303C0IE exp [-03C02 H(ti) 8 f2i(log ti)2 ]
(2.12) ~ 8 903C0 exp(-03C0 4fi) ,
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which implies that ~t lP(Bi) = oo. Now consider for j > i. First of all,
let us notice that, according to our construction (2.7) of {ti, i > o},

(2.13) 
log t$ 

 (1 + f~)-(’-i). .
log t~ 

J

By (2.3) and (2.5), we have

IP(BiBj) ~ 16 03C02IE exp(- 03C02 H(ti) 8 f2i(log ti)2 (log ti)2 8f2j log tj)2
~ 

64 03C02 
exp (-

03C0 log(tj - ti) 4fj log tj 
- 

03C0 4fj 
+ 

03C0 log ti 4fj log tj)
~ 64 03C02 exp (-03C0 log(tj - ti) 4fj log tj - 03C0 4fj + 03C0 log ti 4fj log tj)

(2.14) = 64 e-03C0/4fi exp( -03C0 log(tj/ti -1) 4 fj log ti) .( ) _ ~r2 ~ 
4 f ~ log t~

Let b > 0 whose value will be precised in (2.16) below, and let no be sufficiently
large. Put for all n > no

j-i1/f~};
1/f 

S~3={no2jn: 
If (i, j) E SI1, then

log(tj ti) = (1-log ti log tj ) log tj ~ (1- (1 + fj ) -(j-i)) log tj ~ 
j-i 2

fj log tj,

using (2.13) and the inequality 1- (1 + > xa/2 (d0  x  1/a  1). Since

fj log tj is large (by (2.9)), we have log(tj/ti -1) > 3 (j log tj, which, with the
aid of ( 2.14 ) , implies that

 64 e-~~4 f~ ( ~ 

Applying (2.12) gives that

n

(2.15) 03A303A3 (i,j)~03A91 IP(BiBj) 
~ K1 IP(Bi).

By (2.13), there exists 0  b  1/ 3 (depending on the value of f o) such that for all
(i~j) E ~Z~

2.16 logt2  (1 + -1- 3b.(2.16) log tj ~ (1 + fj)-1/13 ~ 1 - 38.
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Thus log(tj/ti -1) > -1) > 203B4 log tj. By (2.14), this yields the following
estimate:

IP( BiB j) ~ Ke-03C0/2fi exp( -

03B403C0 2fj).

Thus

n

03A303A3(i,j) ~03A92 IP(BiBj) 
~ KIP(Bi) (e-03C0/4fj)203B4.

By (2.11),

03A3 (e-03C0/4fj)203B4 ~ 03A3 (3 log j j)03C003B4/2 ~ ia ( log g( i + za )) 03C003B4/2i-03C003B4/2 ~ Ko
aji+ia iji+i6 

J

which readily yields the desired inequality

n

2.17 ¿¿ ..  K2 
i=1

Now, let (i, j ) E S~3 . In this case, j - (log j ) 2 > i + ia - (log(i + 2~ ) ) 2 > i, which
implies that j -i > (log j)Z. But from (2.9) and (2.10) it follows that f j > (log j)-2.
So j - i > f-2j. Using (2.13), this implies that

log ti fj log tj 
~ 

1 fj(
1 + fj) -(j-i) ~ 

1 fj
exp(-f

-2j log( 1 + fj)) ~ K.

Moreover,

t~ 
 log ts  e ( -2 l0 1 +  1-1 Ko10 t’ log(1 + ’ / ’

for some Ko > 1. Thus

- 

log(1- ~ log K0 fj log tj 
~ K.

By writing

-03C0 log(tj/ti -1 4 fj log tj -1) 
= -03C0 4fj 

- 03C0 log (1-ti/tj) 4fj log tj 
+ 

03C0 log ti 4fj log tj 
~ -03C0 4fj + 03C0k 2,

we have, by (2.14),

P(BiBj)  
which in turn implies that
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(2-18)  ,

t==l

Finally, assembling (2.15), (2.17) and (2.18) gives that

t=i j=i t=i

According to Kochen &#x26; Stone (1964)~s version ofBorel-Cantelli lemma, this together
with ~ = oo yield that

i.e.] >~-~
It is easy to deduce from the Blumenthal’s 0-1 law by time inversion that the above
probability equals to 1, which proves the divergent part of Theorem 1. []

3. Lévy’s stochastic area

Before studying stochastic area process of Brownian motion, we first of
all establish a simple preliminary result.

LEMMA 4. If W is a standard Brownian motion, then for all positive numbers s,
and ~,

W2udu]IE exp[- 2 2 Jo 
W2udu - 03BD2 2 Jt -’

(3.1) = [sinh t cosh03BDs(coth t+03BD tanh03BDs) ]-1/2 .

Proof of Lemma 4. Let us recall two results on the Laplace transform of quadratic
functionals of Brownian motion. The first (3.2) is due to Levy (1951), and the second
(3.3) can be found in Pitman &#x26; Yor (1982) p.432.

(3.2) IE[exp (-03B12 2  W2u du)| W1 = x] 
= 

(03B1 sinh03B1) 1/2 exp[-x 2(03B1coth03B1 - 1)],

(3.3) IE exp[-03B12 2 10(Wu + x)2 du] = (cosh03B1)-1/2 exp(-x2 203B1tanh03B1).
Let p denote the term on the LHS of (3.1). By scaling and Markov properties,

p = IE exp[ - 2t2 210 W2udu - 03BD2t2 2 1+s/t1 W2udu]
= IE{IE[exp(- 2t2 2 10 W2udu)| W1] IE[exp(- 03BD2t2 2 s/t0 (Wu + x)2du)]x=W1 }.



131

With the aid of (3.3) and the Brownian scaling property,

IE exp(-03BD2t2 2 s/t0 (Wu + x)2 du) = (cosh03BDs)-1/2 exp [-x2 203BDt tanh s].
Therefore, by (3.2),

/ ~ B~ r ~? M~ ip = ( t sinh t cosh03BDs )1/2 IE exp[-W21 2( t coth t - 1) - W21 203BDt tanh s]
= ( t sinh t cosh03BDs[ t coth t + 03BDt tanh s])1/2,

as desired, n

Remark. One can obtain (3.1) directly by solving the associated Sturm-Liouville
equation,

Let cr be Lévy’s stochastic area defined by (1.4), and R2 = X2+Y2 as before. In
this section, we assume without loss of generality that the planar Brownian motion
Z starts from 0. Since it never returns to the origin (i.e. ~ does not vanish at any
positive time), it follows from Itô’s formula that

(3.4) ~o=0,

where ~t = + is, according to the celebrated Lévy’s charac-
terization, a linear Brownian motion. Let Ct = t0 R2u du be the quadratic-variation
process of cr. The martingales cr and yy being obviously orthogonal, it follows from
Knight’s theorem (see for example Rogers &#x26;: Williams (1987) Theorem IV.34.16)
that there is a Brownian motion ~, independent of ?y, such that

(3.5) 

By Yamada-Watanabe theorem (see Rogers &#x26;: Williams (1987) Theorem V.40.1),
the Bessel process ~, determined by equation (3.4), is adapted to the (augmented)
filtration generated by 77. Consequently, 03BE is independent of jR.

Since sinh t (coth t + cosh t and ex/2  coshx  ex (for
.r > 0), we deduce immediately from Lemma 4 the following estimates for the
Laplace transform of the clock C for all positive numbers ~, ~, ~ and X/:

(3.6) e-~   

(3.7) 
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Proof of Theorem 2. It is very similar to (and easier than) that of Theorem 1
presented in the previous section. So we only state some key steps and omit the
details. First of all, choose a sequence {ti; i > 0} by ti+1 = (1 + g(ti))ti (i ~ 0,
with a sufficiently large initial value to). As for the windings, we write gi = g(ti) for
notational simplification. Then in the spirit of Lemma 3, it is seen that the series

dt tg(t) exp(-03C0 2g(t) and exp(-03C0 2gi)
converge and diverge simultaneously. Let Ai = {03C3*(ti)  ti+igi+1 }. It follows from

(2.2) and the second part of (3.6) that

2gi+1
Using Borel-Cantelli lemma and a monotonicity argument, this implies the conver-
gent part of Theorem 2. Now suppose that ~i = oo. Let Bi = {~*(ti) 
tigi}. Thanks to (2.2) and the first part of (3.6), we get that

IP(Bi) ~ K1 exp(-03C0 2gi),
while by making use of (2.3) and (3.7) we obtain:

IP( BiBj ) ~ K2e-03C0/2gi exp(-
03C0 2gi 

+ 
03C0ti 2gitj ),

from which it follows that

i=1 j=1 i=1

This yields the divergent part of Theorem 2 using Kochen &#x26; Stone’s version of

Borel-Cantelli lemma. , E!

4. The ranges

In this section, we present a Chung-type LIL concerning the ranges of 03B8 and 0’
instead of their suprema.

THEOREM 3. Let 03B8 and 03C3 be defined as in Section 1. . Then

(4.1) lim inf log log log t log t( sup 03B8(u) - inf 03B8(u)) = 03C0 2, a.s.

(4.2) lim inf loglogt ( sup u(u) - inf 03C3(u)) = 03C0, a.s.

t 

LEMMA 5. Suppose that W is a linear Brownian motion starting from 0, then
for every 8 > 0 there exists a finite constant Kb > 0 depending only on 8 such that
for all A > 0,
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4.3 IP[ sup W(u) - inf W(u)  03BB] ~ K03B4 exp(-(1-03B4)03C02 203BB2).

Proof of Lemma 5. Let q be the probability on the LHS of (4.3). Feller (1951)
calculated the exact law of the range of Brownian motion:

q = (2 03C0)1/2 L’(x 2)dx x = (2 03C0)1/2 03BB/20 L’(x)dx x,
where

L(x) = 
(203C0)1/2 xexp(

- (2k+1)203C02 8x2)
is the distribution function of the sup-norm of a standard Brownian bridge. By
integration by parts, we obtain:

q ~ 203BB/20 1 x2d dx(exp(-(2k+1)203C02) 8x2))
= 8 03BB2exp (-(2k + 1)203C02 203BB2) + 16 03C02 1 (2k + 1)2

exp (-(2k + 1)203C02 203BB2).
The first infinite series on the RHS in the above inequality is obviously bounded
above by exp (-(2k + 1)~r2/2~2) _ (1 - e-’~2~~’ )-1 exp(-~2/2a2), and the
second by + 1 )-2 exp (-~2/2a2) _ (~2/8) exp (-~r2/2~2) . Therefore,

8 . , ~2
q - 

a2 ( 1-e_’~2~~‘2 ) exp(-2~2~ +2exp(-2 2). °
Thus, to prove Lemma 5 is reduced to showing the existence of a positive finite
constant Kb such that

(4.4) 03BB2(1 - e-03C02/03BB2) ~ K03B4 exp(-03B403C02 203BB2).
Since 1- e-x ~ x/2 (d0  x  log 2), it follows that 03BB2(1 - e-03C02/03BB2) > 7r2/2 for all
A > If 0  A  ~r/ og 2, then ~2 ( 1- e-~2~~‘2 ) > a2/2. Therefore for all
A > 0, we have

~2(1- e-"2~~2) > a2)/2~
which yields (4.4) by choosing

K03B4 ~ 1 2inf[min(03C02,x2)exp(03B403C02 2x2)]>0. []
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Proof of Theorem 3. Let = 03C3(u) - inf0~u~t 03C3(u) be the range of
r. In view of (3.5), , by conditioning on R and using Lemma 5 and (3.6) we get that

P[  A]  Ct]
(4.5) ~e~(-(~~).
Now pick rational numbers a > 1 and 6; > 0. Let t~ = a~ and A = +

c) log log t~. and choose 6 > 0 suniciently small such that (1 -~)~(1 +6-) > 1 +6;/2.
It follows from (4.5) that

P[A.(~) J 
~ 

2~
" 

(~loga)~+~’ 
°

By Borel-Cantelli lemma, we obtain that

a . s .

A monotonicity argument yields immediately the lower bound in (4.2). Its upper
bound part follows trivially from Corollary 2 and the relation  2cr*(~). The
proof of the LIL (4.1) is very similar to that of (4.2), by using (2.4) instead of
(3.6) and taking the subsequence n = instead of tn = an. The details are
omitted. []

5. Remarks

(A) It seems interesting to look for a two-sided Csáki-type integral test for 03B8 or
T. Thanks to (3.6) and (3.7), which are valid for all positive numbers ~ and ~, we
have:

THEOREM 4. Let / > 0 and g > 0 be non-increasing functions such that t/(t)
and are non-decreasing. Let h = / + g. Then

Ff sup 7(tt)t/(t),- inf 7(~)t~(t), i.o.]=0 or 1, , a.s.

L o~« J

according as

~ min(f(t), g(t)) t h2(t) exp(- 03C0 h(t))dt
converges or djverges.
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An immediate consequence is the following Hirsch-type test for u.

COROLLARY 3. If f satisfies the condition in Theorem 4, then

IP [ sup 03C3( u)  tf(t), i.o. ] = {01 ~ ~ f(t) t dt ~=~
From (3.6) and (3.7), the proof of Theorem 4 is completed exactly along the lines of
that of Csaki (1978)’s Theorem 2.1 (ii). So we feel free to omit the details. On the
other hand, the case of the Brownian windings seems more complicated, essentially
due to the handicap that (2.5) is valid only for p > v. Thus to get a Csaki-type test
.for 0, sharper estimates on the joint distribution of 9(u), 
are needed. A Hirsch-type integral test for 0 was obtained by Bertoin &#x26; Werner
(1994b).

(B) Further path properties of 0 have been investigated by Bertoin &#x26; Werner
(1994b), who gave an elegant proof of Theorem A and (1.3) via Ornstein-Uhlenbeck
processes. Another proof of these results are presented in Shi (1994) using a Cauchy-
type embedding.

(C) There are many remarkable results on weak convergence of the winding
process e of a two-dimensional random walk. See Belisle (1991) for references.
For example, for spherically symmetric random walks, Belisle (1991) obtained a
Brownian embedding which shows that e behaves (in distribution, though) very
much like the so-called Brownian "big winding" process defined as f o 
(for weak convergence concerning big windings, see Yor (1992) p.88). Central limit
theorems for e were established by Dorofeev (1994). Laws of the iterated logarithm
can be found in Shi ( 1994) .

(D) Another question needs answered concerning the path properties of 0 or u:
how big (or small) are the increments of 0 or o~? The problem seems to be beyond
the scale of this paper.

Acknowledgements. I am grateful to Jean Bertoin and Marc Yor for helpful
discussions, and to David Mason for a reference. Thanks are also due to a referee
for his careful reading and insightful comments.
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