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On conditioning random walks
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Par13 Cedex 05, France.

(2) Statistical Laboratory, Department of Mathematics, University of Manchester,
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SUMMARY. We show that the probability measures resulting from conditioning different
random walks in an exponential family to stay nonnegative coincide with the measures
obtained by taking one member of the family and conditioning it both to stay nonnegative
and to go to infinity at a prescribed rate. This extends results in [1] where this relation
was established for certain special members of an exponential family.

In this note, we present a relation involving conditioning to stay nonnegative
for the collection of random walks which arise from an exponential family of step
distributions. Let us first introduce some notation concerning the exponential family.
Consider (p(k), k E ZZ) a probability law on ZZ which is not supported by any sub-
lattice (the restriction to distributions on integers is only a matter of convenience,
the extension to non-lattice distributions is easy). Denote the moment generating
function by M(s) = s > 0, and define a = inf {s : M(s)  oo},
/? = sup{s : M(s)  oo}, the end points of the interval where M is finite. As
usual, it is convenient to introduce m(s) = sM’(s) jM(s). The mapping s - m(s)
is an increasing bijection from (a, ~3) to, say, (~-, ~u+), and the inverse bijection is
denoted by m -~ s( m). We will assume throughout the note that a  a and ~c+ > 0.
The exponential family indexed by m E (~c-, ~c+) is specified by

= E ~~ (1)

where M(m) = M o s(m). Notice that m = E kp(m)(k), so the exponential family
is parametrized by the mean.
We consider a probability space Q , a sequence of random variables X1, ~ ~ ~ , X=, ~ ~ ~ ,

and the partial sums Sn = Xi, n > 0. For every m E (~-, ~+), let Pm be a
probability law on Q under which Xi, ~ ~ ~ , Xi,... are i.i.d. with common distribution

p(m). For simplicity we put P = pm(l), and we write P7 for the law of S + 2: under
pm
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We now review some material on conditioning a random walk to stay nonnegative.
Introduce the first passage time below 0,

For m E (0 V -, +), the random walk S drifts to +~ under Pm, that is
= oo) > 0. We denote the conditional law I 7- = oo) by Pm,+. The

function

h~m)(x) _ = 
, (2)

is harmonic for S killed at time T under Pm (see also section 2 in [1] for alternative
expressions for h~m)), and Pm,+ corresponds to the Doob’s h(m)-transform. That
is

Di = {h(m)(Si) 0 
for i  0 for i 

is a P"’ - martingale, and for any event A which depends only on the i first steps
of S, we have

pm~+ ( A ) = h(m) 1 o F;m ( j)=, A . ) °
Finally, S is a Markov chain under Pm,+, with transition function

p~m’+)(x, y) = p(m)(y - x) h~"~)(y)Iht"~)(x) ~ E ~. (3)

For the limit case m = 0, S oscillates under P° and we cannot condition P°
on {r = ~} in the usual way. Nonetheless, Spitzer [7] showed that there exists a
unique (up to a multiplicative constant) positive harmonic function for Skilled
at time T under P°. More precisely, is the renewal function based on the strict

ascending ladder heights process of -S under P° and can be identified as the limit
of the ratio > n)/pO(r > n) as n ~ ~. Then we can consider P°,+, the
law under which S is a Markov chain with transition function p~°,+) given in (3).
Moreover P°,+ is the limit (in the sense of weak convergence of finite dimensional
distributions) of P° conditioned on {r > n}. See section 3 in [1] for details.
When m( 1 )  0, Keener [4] proved that the conditional law P( ~ ( T > n) converges

as n - oo to P°,+. When ~-  0  m(1), it follows from a result of Veraverbeke
and Teugels [8] that the conditional law P(. I n  T  oo) converges to P°,+
again. On the other hand, the authors [1] observed that if there exists t E (1,,Q)
with M(t) = 1 (this is essentially Cramer’s condition), then I S exceeds level
n before time T) also converges as n - oo, but towards a different limit, namely
pm(t),+. It is therefore natural to ask whether for any m E (0 V ~-, ~+), can

be obtained as the limit of a suitably conditioned version of P. This question also
has an interpretation in terms of the space-time Martin boundary which we discuss
briefly in the remark at the end of this note.

Since Em(Xl) = m, the law of large numbers implies

lim Sn/n = m , Pm’+-a.s.
n-oo

This suggests the following simple solution to our problem.
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Theorem. Let f (S) = f (Si, ... Si) be a bounded Borel functional which depends
only on a finite number of steps. We have

(1) If m E (0 V m(1), ~+), then

lim E(f (S) I T > n, Sn > mn) = Em’+(f(S)) .

(2) If m(1) > 0 and m E (0 V -, m(1)), then .

lim E( f (S) ( T > n, Sn  mn) = Em’+(f(S)) .

This result should be compared with the following relation between P and Pm
which derives readily from a classical theorem of large deviation of Petrov [5]. If

f(S) is a bounded functional which depends only on a finite number of steps then,
for me (m(1), ~+)

> mn) = Em(f(S)) ,

and for m E ( -, m(1))

lim E( f(S) ~ Sn  mn) = Em( f(s)) .
-

Proof of the Theorem. The first step consists of establishing the following asymptotic
estimate. For every x E N and m E (0 V ~c-, ~C+), we have

lim sup| Ivn Pm x ( S n = mn + k  > n ) - h(m)(x)g(k n)| = 0 , a (4)

where we agree here and thereafter that k varies in the set {k E 1R mn + k E ZZ}.
In (4), g(u) _ (2~rc)-1~2 exp( -u2 /2c) is the centered Gaussian density with variance
c, where c is the variance of p~m>, and is given by (2). Indeed, we have

= mn + k, T > n) = I1(n, k) - I2(n, k) - I3(n, k) , ,

with
I1 (n, k) = Px (Sn = mn + k) ,

I2(n,k)= ~ ,

Applying the local limit theorem of Gnedenko (see e.g. [2] on p. 351), we have

lim sup |n I1(n, k - g ( k n)| = 0 .
On the other hand, by the Markov property,

I2(n~ ~) = l~ ~ 
1i f -~y0
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and again by the local limit theorem of Gnedenko,

/-~=)P~(r=zB~=~)=0.n-..oo ~ 

Using the inequality

sup E E 
’ Bv~~7 ~~7(

~ 
I 
E 

° 

and the dominated convergence theorem, we deduce

lim 
sup |n I2(n,k) - g(k n)Pmx( ~ n)| = 0 .

Since converges to 1 - /t’")(.r) [by (2)], we have

(1 - h(m)(x)) / = 0 . °

Finally, writing j for the integer part of we have

7s(M, A;) ~  T  oo)
oo

~P~(~=r)P-(Too). °
r=0

Since m > 0, we can pick t e (0,1) such that = a  1. Then 0) is
a Pmr-supermartingale and the optional sampling theorem yields  tr.
Hence 

~(~~) ~ = 

r=0

in particular n I3(n, k) goes to 0 as n - ~. The proof of (4) is now complete.
Next we use (1) to rewrite (4) in terms of Pp as

lim sup |n s(m)mn+k-x (m)-n Px(Sn = mn + > n)

- 1 =0. (5)

For m ~ (0 V m(l),~+), s(m) > 1 and we deduce from (5) that for z > 0

> mn, r > ~ - z)
~-’/~ M(m)’-" (~ -. oo) ,
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for some constant K > 0. In turn, this implies

lim Px(Sn-i ~ mn,  > n - i) P(Sn ~ mn,  > n) = h(m)(x) s(m)x (m)-i. (6)

Similarly, if m(1) > 0 and m E (0 V ~-, m.(1)), then s(m)  1 and we derive from

(5)
lim Pz(Sn-i ~ mn,  > n - i) P(Sn ~ mn,  > n) = h(m)(x) s(m)x (m)-i. (7)

Finally, consider f (S’), a bounded functional which depends only on the i first
steps. With no loss of generality, we may suppose that 0  f (S)  1. It is plain
from (6), the Markov property and Fatou’s lemma, that for m E (0 V m(1), ~c+)

lim inf E( f (S) T > n, Sn >’ mn)

> n - i, Sn_= > mn), T > > n, Sn > mn)
. ’ -

 E(f(S) > i)
= > i)
= (bY (3))~

Replacing f by 1- f, we get

lim sup E( f (S) r > n, Sn > mn)

= 1 -liminf E((1 - f )(S) ~ T > n, Sn > mn)

 1- Em~+((1- f )(s))
_ °

(The last equality comes from the fact that is conservative and would be false

otherwise).
The second assertion of the Theorem follows from the Markov property and (7)

in the same way.

Remark. The estimate (5) is clearly sharper than the Theorem. It can also be

used to derive information on the space-time exit Martin boundary of Skilled
at time T under P, see Doob [3] and Revuz [6]. In particular, it entails that for

m E (0 V ~-, ~+), the function

i) = s(m)x 
‘ (x, z E ~)

can be identified as the limit

lim 1m Px(Sn_; = mn + k,r 
> n - i)

where k is any fixed integer, and hence it is a minimal point of the boundary.
However, the estimate (5) does not seem to yield the complete characterization of
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the space-time Martin boundary. Technically, our approach via Gnedenko’s local
limit theorem allows us to determine the asymptotic behaviour of the ratio

Px(Sn_t = a(n), T > n - i)
P(Sn = a(n), T > n)

when the sequence a(n) is such that a(n) = for some m E (0 V ~-, ~c+),
but not otherwise.
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that motivated this note.

References 

[1] Bertoin, J. and Doney, R.A.: On conditioning a random walk to stay nonnegative,
Ann. Probab. (to appear).

[2] Bingham, N.H., Goldie, C.M., and Teugels, J.L.: Regular Variation. Cambridge
University Press 1987, Cambridge.

[3] Doob, J.L.: Discrete potential theory and boundaries, J. Math. Mecha. 8 (1959),
433-458.

[4] Keener, R.W.: Limit theorems for random walks conditioned to stay positive, Ann.
Probab. 20 (1992), 801-824.

[5] Petrov, V.V.: On the probability of large deviations for sums of independent random
variables, Theory Probab. Appl. 10 (1965), 287-97.

[6] Revuz, D.: Markov Chains. North Holland 1975, Amsterdam.

[7] Spitzer, F.:Principles of Random Walks. Van Nostrand 1964, Princeton.

[8] Veraverbeke, N. and Teugels, J.L.: The exponential rate of convergence of the
maximum of a random walk, J. Appl. Prob. 12 (1975), 279-288.


