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On the maximum of a diffusion process

in a drifted Brownian environment

KIYOSHI KAWAZU AND HIROSHI TANAKA

1. Introduction

In this paper we investigate asymptotic behavior of the tail of the distribution of the

maximum of a diffusion process in a drifted Brownian environment. This problem is a

diffusion analogue of the Afanas’ev problem([l]). Our result is naturally compatible with
that of Afanas’ev[1].

Let E R,P} be a Brownian environment, namely, let ~W(t), t > 0, P} and

~W(-t), t > 0, P} be independent Brownian motions in one-dimension with W(0) = 0.
We consider a diffusion process X(t, W) defined formally by

X (t, W) = Brownian W)) + c}ds,

where c is a positive constant. The precise meaning of X(t, W) is simply a diffusion process
with generator

1 d )2 dx e dx ’
starting at 0. Such a diffusion process can be constructed from a Brownian motion through

changes of scale and time. For a fixed environment W = (W(x), x E R) we denote by Pyy
the probability law of the process {X(t, W)} and put

P = P(dW)Pw.
Thus P is the full law of {X(,’)} . We often write X (t) = X(t,.). Since c > 0, maxt>0 X(t)
is finite (7~-a.s.). The problem is the following : How fast does X(t) > x} decay
as x --~ oo ? Since .

(1.1) P{maocX(t) > x} = E{A(A + B)-1},
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where

(1.2) A = o dt, B = ~ dt, ’
- ~ o

the problem is nothing but to find the asymptotics of E{A(A + E)-1} as x --~ o . The
result varies according as c > 1 , c = 1 , 0  c  1 , as will be stated in the following
theorem.

THEOREM. (i)If c > 1, then

P{maxX(t) > x} ~ 2c-2 2c-1exp{- (c - 1 2) x}, x ~ ~.

(ii) If c =1 , then

> x} N (2~~r)l~Zx-1~2 exp{ -x/2}, x -~ oo.

(iii~ If 0  c  1 , then

P{max X(t) > x} ~ const.x-3/2 exp{-c2x/2}, x ~ ~,

where

const. = 25/2-2c0393(2c)-1 ~0 ~0 ~0 ~0 z(a + sinh u da dy dz du ,

a = (1 + y2)/2 + y cosh u .

2. Proof of the theorem

Since A and B are independent, the right hand side of (1.1) equats E{A f (A)} where
I(a) = E{~a + > 0 . Fixing x > 0 , we consider the time reversal Wet) =
W(x - t) - W(x), 0  t  x . Since {W (t), 0  t  x} is also a Brownian motion, we have

f(a) = E{(a + o exP{w(t) + ct} 
= E{(a + e’w~~~ 0 

(2.1) 
= + o ~ ~~° ~~ 
= + s 
= + 0 r 
= + o 

z ew(r)+(‘ i)t 
’

In deriving the fifth equality in the above we used the formula of Cameron-Martin-Maruyama-
Girsanov; the last equality was derived by using W(t) as in the case of the first equality.
From the fifth equality of (2.1) we obtain the following lemma.
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LEMMA I . For any c > 0 and z > 0

(2.2) > z) = + /~ ,

t>o o

where A is given by (1.2).
The following lemma due to Yor will also be used.

LEMMA 2(Yor[2]). For any v > 0 we have

(2.3) £" exp(W(t) - 03BDt 2)dt d 2/Z03BD ,

where d means equality in distribution and Z, is a gamma variable of index v , that ’is,

P{Z03BD ~ dt} = (t > 0) .

2. I. Proof of (I)
When c > I , Lemma I implies

lim > z) = E(A( /~ .

x-o t>o o

It is easy to see that the above expectation is finite. To obtain its exact value we use

Lemma 2. We thus obtain (I).
2.2. Proof of (it)
For z > 0 we put

P(") " E{log £ dtl, W(") " £P(") .
Then it is easy to see that

= = ;

in fact, the second equality is a consequence of the last equality of (2.I) with a = 0 and

c = I . Thus q#(z) is monotone decreasing in z .

LEMMA 3. When c = I we have

(2.4) - #z~~’~e~~’~ «3 z - > .

Proof. Since E(A) = 2 in case c = I , the left hand side of (2.4) equals 2E(( jj 
which also equals 2e-x/2E{(x0eW(t)dt)-1eW(x)} by virtue of (2.I) with a = 0 and c = I .

Thus we have

(2~5) dt)-lj = 2e-x12~y(z) ~
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On the other hand, using the scaling property {W(t)} d we have

03C6(x) = E{log 10 exW(t) dt} + log x,

and hence 

limx~~x-1/203C6(x) = E{1 xlog 0 dt}
. 

= E{max0~t~1 W(t)} = 2/03C0,

which combined with the monotonicity of ~(x) = implies

(2.6) ~r(x) ^’ (2~x)’1~2 as x - o .

This .together with (2.5) proves the lemma.
LEMMA 4. For x > 0 we have

(2.7) E{(f  ~r(x~2)Z .

Proof. The left hand side of (2.7) is dominated by

E ~I~ is o s2

= E{( is o s~a

= E {( o ~I ~ o ~~a 
= ’~(x~2)a ~ 

’

in deriving the second equality in the above we used the fact that {W(t+ ~ )) - W( z ), t > 0}
is a Brownian motion independent of {W (t), 0  t  z/2} . .
The proof of (ii) is now given as follows. By (1.1) we have

0  > x}o c>o

(2.8) = A(A + E)-’} 
-

 = 

We prove

(2.9)  ~ 

(2.10) E{B-3~z}  const. .
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(2.9) follows immediately from Lemma 2 ; a direct proof can also be given as follows. Using
Holder’s inequality we have

’ 

= 

- (5I3)1I2E{ = ~ 3 llz ~ 40 3 . °

(2.10) can be proved by making use of the CMMG formula, the Schwarz inequality, Lemma
4 and then (2.6) ; in fact, putting Bo = j4 we have

= 

 

 e’Z~~~(x)i12~(x~2)
 const. .

The assertion (ii) of our theorem follows from Lemma 3, (2.8), (2.9) and (2.10).
2.3. Proof of (iii)
The proof of (iii) relies essentially on the following Yor’s formula.
Yor’s formulae: the formula(6.e)]). For any bounded Borel functions f and g we

ha~e

= ct ~0dy ~0 dz g(y)f(1/z)exp{-z(1 + y2)/2}03C8yz(t),
where

c, = 

03C8r(t) = ~0 exp{-u2/2t}e-03B3(cosh u)(sinh u)sin(03C0u/t) du .

To proceed to the proof of (iii) we put

f(a, z) = a(a + 4z)-~ ~ , g(y) = y2‘~

B(03BD)(t) = t0 e2(W(s)+03BDs) ds .

Using first the CMMG formula and then Yor’s formula we have

+ ~ = E{a(a + 4B~Z‘)(x~4)) 1~
= + 4B~°)(z~4))-1 exp(2cW(x/4) - as)~
= 

= exp(-c2x/2)cx/4 ~0 dy ~0 dz g(y)f(a, 1/z)exp{-z(1 + y2)/2}03C8yz(x/4).
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Since Lemma 2 implies

P~A E da} = (a > 0),

we have

_ 

(2.11) = 

x u) 
VO ~0 ~0

where

h(z) - / 7o
a - 

LEMMA 5. Let 0  c  1 and put

2~, u) = sinh u .

Then we have

M = /~ /~ Jo Jo Jo

Proof. By a change of variable cosh u == v , we have

M = log(v + vz -1) ,
Jo Jo Ji

where a = (1 + y~)/2 + Since

h(x) = 2-2c-1z ~0 u2c-1e-u(u+z 2)-1du,
it is easy to see that

(2.12) h(z) ~ 2-2c0393(2c) as z ~ ~ ,

2-2‘-lr(2c -1)x if c > 1/2,
(2.13) N~ =jo if c = 1/2,

2-~‘ f o az‘-1 (a + 1 )-1 da ~ z2‘ if 0  c  1 /2 .
Therefore for any e > 0 and c~ > 0 we have

Mi - log(v + va -1)Jo i i

 const. /~ Jo i

 const. /~ dydv
Jo Ji

 const. o ~°° yz‘-c-1 ( 1 + y2)-a+1+~ z~ ( 1 "~- ~)-’ d y dz



84

(by putting v = (2y)’1(1 + with y fixed ),
which is finite if ~ > 0 is sufficiently small and a > 0 sufficiently large. Note that const. in
the above may vary from place to place and depend on e and a . . Next we prove that

(2.14) M2 = ~0 dy 10 dz ~1 dv y2ch(z)e-03BBz log(03BD + 03BD2 -1  ~ .
0 0 1 

( ~ g( )

Assume 1/2  c  1. . Then by (2.13)

M2 ~ const. ~0 dy 10 dz ~1 dv y2cze-03BBz03BDz
o Jo i

~ const. ~0~1 03BB-2y2c03BDe dy dv ( we used 10 ze-03BBzdz ~ 03BB-2 )

 const. ~0 ~0 y2c-1-e ( 1 + y2)-1+~ ze ( 1 + z)-2 dy dz0 0

(by putting v = (2y)’1 ( 1 + y)z with y fixed )
which is finite for sufficiently small ~ > o by virtue of 1/2  c  1. . When c = 1/2 , (2.13)
implies

M2 ~ const. ~0 dy 10 dz ~1 d03BD yz1-~e-03BBzv~0 o i

for 0  E  1. . Since fo dx  , we have

Ma  const. / o 
ao 

/ i .

 const. y’a(1 + y~)’~+2‘x‘(1 + z)’z+‘ dydz  o0

provided that E > 0 is small enough. Finally assume 0  c  1/2 . . Then by (2.13)

M2 ~ const. ~0 dy 10 dz ~1 d03BD y2cz2ce-03BBz03BDz0 o i

 const. /" ~ ~_1_a‘y~v‘ dy dvo i

 const. /~ y~’‘’1(1 + y2)-z‘+‘x‘(1 + x)-1-a‘ dy dz  o0
0 0

provided that e > 4 is small enough. Thus (2.14) is proved.
We can now complete the proof of (iii) as follows. From (2.11) we have

(2.15) > x~ = 

where

M(x) = ~0 ~0 ~0 F(y, z, u)sin(403C0u/x)/(403C0u/x)exp(-2u2/x) dy dz du.
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By Lemma 5 we have Af(:r) = M which equals

.

Jo Jo Jo Jo

Thus the assertion (iii) follows from (2.15).
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