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Estimates of the Hausdorff dimension of the boundary

of positive Brownian sheet components.

T.S. Mountford

Department of Mathematics
University of California

Los Angeles
Ca. 90024

The Brownian sheet is examined. We provide upper and lower bounds for
the Hausdorff dimension of the boundary of time components for which the
Brownian sheet is strictly positive or strictly negative. In particular we show
that this dimension lies strictly between 1 and 3/2. It is also shown that
there exist random time points which are boundary points for both positive
and negative components.

Research supported by NSF grant DMS-9157461, a grant from the Sloan Foundation
and a grant from FAPESP.

Recent work of Dalang and Walsh (1992a,b) has investigated the structure of
neighbourhoods of random times 1 which are boundary points of sets {~. : > 1 } .
Ehm (1981) and Rosen (1983) show that the level sets of the Brownian sheet have
dimension 3/2. Kendall (1980) and Dalang and Walsh (1992a,b) show that typical
points of the level set of, say, {~ : W(~) = 1} do not belong to the boundary of a sin-
gle component of {~ : > 1). Thus there is a difference between the union of the
boundaries of the individual components of (t: W(t) > 1) and the boundary of the
union of these components. In this note we show that in fact such time points have
Hausdorff dimension strictly between 1 and 3/2.

Theorem One

The Hausdorff dimension of the boundary of every component of (t: W(t) > 1 } is
in the interval [5/4, 3/2).

This result can be seen as on the one hand adding to the results quoted above, while
also showing that there are more boundary points than are simply required of boun-
daries of open sets in two dimensions.

We also show

Theorem Two

There exist random time points which are boundary points of at least one com-
ponent of ( t: W(t) > 1} and at least one component of (t: W(t)  1 } . .

For notational convenience we examine boundaries of components of (j~: > 1 ).
It will be clear that the results that are derived hold for the boundaries of components
of {~ : W(s.J > c} or {~ : W(~ )  c} for any real c.
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The paper is organized as follows In Section One we introduce notation and
definitions that will be used throughout. We also quote certain results. The next sec-
tion establishes that with probability one there exist components of the time set (t:
W(t) > 1 } whose boundary has Hausdorff dimension at least 5/4. Section Three is
devoted to proving a technical result used in Section Two. The proof of the lower
bound in Theorem One is completed in Section Four where it is argued that every
component of ( t: W(t) > 1) must have dimension at least 5/4. Section Five completes
the proof of Theorem One by supplying the upper bound for boundary dimension.
The argument is essentially that found in Dalang and Walsh (1992a). The paper con-
cludes with Section Six where Theorem Two is proven.

The clarity and indeed the contents of this paper owe a great deal to conversa-
tions with Robert Dalang. It is a pleasure to thank him and Tufts University for their
hospitality.

Section One

We show that the Hausdorff dimension of the set of points (i: 1 is a boundary
point of a component of (i: > 1 } } is at least 5/4 by using two facts:
1 Frostman’s Theorem: The capacitory dimension of a set is equal to the Hausdorff

dimension. See e.g. Kahane (1985), page 133, or Taylor (1961).
2 A compact set F has positive a capacity if we can find ~ increasing to infinity

and points

xni1,xni2 ..... xnini 6 F
so that

limsup 1 ni2  1 |xntk-xntj|03B1~ M  ~.

See e.g. Landkoff (1972), pages 160-162.

Therefore to show our set has Hausdorff dimension at least 5/4 it will be sufficient to
show that for each M and d, the capacitory dimension is at least 5/4 - f(M,d), where as
M tends to infinity and d tends to zero, f(M,d) tends to zero.

Definitions:

Given a time point l = (t 1,t2), we define B 1~ (s ) = W (t l+s ,t 2) - W (t 1,t2), s z 0.
Similarly = W(tl,t, s ~ 0.

= + In this

paper we will not require Brownian motion to have variance t at time t, so with
this loose terminology, the above two processes are Brownian motions. A

Brownian motion with unit speed will be called a standard Brownian motion.
Given a time point l, F (~) will denote Given a time rectangle
R, G(R) =

+ (r 1,r2), E R } . . Given a

time region R equal to the finite union of rectangles R; , G(R) will denote the

sigma-field generated by the sigma-fields G (R; ). Given two times ~  .~, 

will denote the a-field Note that for any t >

F (~) is independent of G 
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A random variable I e R; is a stopping point if it satisfies the condition: for
each 1 E R + , the event ( T _ t ) is F~ measureable.

The following result is clear, it can for instance be proven by the method used by
Walsh (1984) in proving Theorem 1.6.

Proposition 1.1
Let I be a stopping point. Then

i) WI is a Brownian sheet independant of FT .
ii) is a standard Brownian motion independant of F .T2
iii) is a standard Brownian motion independant of Fir.T
iv) All three processes above are independant.

In fact part (i) is contained in Theorem 1.6 of Walsh (1984) which applies to weak
stopping points.

Definition of Hh ).
We now define a stopping point which will be fundamental. While the definition

is natural, it requires a few distinct steps to describe. It should be remembered that we
are attempting to construct an increasing curve, C, starting from a given ,~, on which
W is greater than 1, provided that is greater than 1+r. In the following
1 = (t will be a fixed time point or possibly a fixed stopping point. 00 will for our
purposes simply be a graveyard time point.

Step One: Define the stopping time T to equal inf{s>_ 0: B1,t(s) =-r or dr}. If

T 1 is not in r2 t2 (1 M ,M ) then Hh (t,r ) = ~. If T 1 ~ r2 t2 (1 M ,M ) and

B 1,t (T 1) = dr, then = (t 1+T 1,t2). Otherwise we use Step Two.
Step Two: Define the stopping time T 2 to equal inf { s ? 0: = -r or (1+d)r).
If T 2 is not in or (T 2) = - r then Hh (t) = ~. If not we go to

S tep Three.
Step Three: We define T3 to equal
inf { s > 0: = + dr.

If W(tl + s ,T 2) > for s e jo, T 3] and T 3 e r ( 1 ,M ), then we define
rz M

H h (~,r ) to be (T 3 + T 1,T2) + (t 1,t2); otherwise it is equal to ~.
The suffix h for H h denotes the priviliged position given the horizontal time direction.
We similarly define H v ~ ,r ) by reversing the roles of the first and second time co-
ordinates. We say Hl (~,r ) is successful if it is not ~. The utility of the definition lies
in the fact that H~ is a stopping point ifl is, and also if WúJ > 1+r and //~ is suc-
cessful then there is an increasing path from 1 to H~ (~,r ) on which the value of W is
always above 1 and such that (over this path) the difference between W and 1
increases by dr. We now record some fundamental properties of the stopping points
/~. . For a standard linear Brownian motion B, starting from 0, we define T = inf(t:
B(t) = c or -1). . We define the constants 
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v(d,M) = P[ Td e (1 M,M), B (Td ) = d],
u(d,M) = P[ e (1 M,M), B(T1+d) =1+d ] 

c(d,M) = v(d,M) + (1-v(d,M))u(d,M),
It should be noted that as M tends to infinity v(d,M) tends to 1/(I+d) and u(d,M)
tends to l/(2+d). And so c(d,M) tends to 2+d.

Lemma 1.1

There exists a constant C such that for all stopping points l in and j = h or
v,

I P [HJ is successful - c (d ,M ) |  Cr1/6

Proof
Without loss of generality we consider ~. . The chance that H h (~,r ) = is

precisely equal to v(d,M). The chance that, in defining H h we proceed to step 3 is
equal to (1-v(d,M))u(d,M). Therefore the lemma will be proven if we can show that
the chance that we proceed to step 3 but Hh is unsuccessful is less than Cr1/6 for suit-
able r. This last event is contained in the union of events

a sup I I S r3n.

b B 3(s ) = ,T2,r) - hits before it hits -r4/3.
c The time for B 3 defined above to hit either -r~ or r~ is greater than r2.

Standard inequalities for the Brownian sheet and Brownian motion yield the desired
inequalities. See e.g. Ito and McKean (1965).

D

We now define a succession of stopping points for a time point .~. It should be

borne in mind that we will be interested in points .~ such that

W (~) e ( 1+2" ~,1+2 2 "~). Our goal will be to construct an increasing path on which
W’s value increases from close to 1 to above 2, without going below 1. .

I11(~) = H~‘ G~~2-"~)~
For j even, U~ (~) if = ~;= Hy (U~"1(~),2’"~(1+d ~-1) otherwise.
For j odd, U~ = ~ if = ~;= otherwise.

As before we say Ui is successful if it is not equal to co. If U~ (~) is successful, then
there is an increasing time path from ,~ to U~ (~) along which W is strictly greater than
1, and such that will be of the order 2 nn(1+d~. .

In the following we will be interested in for t so that

e (1+2-"~,1+22 "~). Accordingly we record some simple facts.

i If e (1+2’"n,l+2 2’~~), then, provided is successful for

Nil = we have e (2,3). Here and in the following we

round N" up to the nearest integer.
ii Under the above circumstances for 1 e [1,2]~, it must be the case that

Ur e [1,22’’~(1+d)~’M]2.
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We define one last stopping point V(t) for ,~ e [1,2]2. By observation (ii) above, if

is successful, then = must be in [ 1,8M ]2. VVe define V (1) to

equal (16M,U~ if
i > 1 on [C/i, 16M]
and

ii W(16M, > 2.

Otherwise V (~) _ ~. The use of this definition of V will emerge in the next section.

We now state some simple lemmas whose proofs are left to the reader.

The lemma below follows from Lemma 1.1 and the definitions of this section.

Lemma 1.2

There exist KM and kM so that for all ~, e [1, 2]2,
 ~] 

for integer re [1, Also we may choose kM and KMso that

S  ~] S 

Lemma 1.3

There exists an integer k, depending only on M so that for any ,~ and r, the event
 , is measurable with respect to G (2’n,2~‘ )) =

G([O,t1]x[o,r2+(1+d)v2-n)lU[4,t1+(1+d)~’2~‘)]x[O,t2]).

Section Two

In this section we obtain (modulo a technical lemma) the capacitance estimates
required for the lower bound in Hausdorff dimension. We prove

Proposition 2.1
For every e > 0, there exist components of the set {~ : W(~) > 1 } whose boun-

dary dimension is at least 5/4 - e.
Before proving this proposition we need some technical groundwork. Let n be an

even integer and let Dn = {(j 2n, k 2n): j, k e Z} [1,2]2.

Define Kn = {t = (tl,t2) eDn : W(tl + 2-n,t2) zl + 2-n/2, W(t1 + 2-(n+1),t2) S 1}. .
For t e Kn we define to equal (s,t2) where s = sup { t ~t1 + 2-" : W (s ,t2) =1 } .
Define B" = {~ + (2-" ,0))  ~ } and B"’ _ {L (~) : ~ e We are

directly interested in the set since its members are boundary points of Brownian
sheet components. However, as the following lemma shows, for capacitory purposes,
we may deal with the set B" .
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Lemma 2.1

For any positive a

1 |Bn|21 |x-y|03B1~203B1 1 |Bn’|21 |x-y|03B1
Proof
The above inequality simply follows form the inequality
for each x, y e Bn, -Ix-yl.

[]

The lemma below will perhaps reveal the motivation behind our definition of the final
stopping point V (~).

Lemma 2.2

There exists an a.s. finite number of components of {W > 1 ), C2, ...CN
such that for every n, every point in Bn’ is a boundary point of Cj for some j.
Proof
If 1 e Bn’, then there exists an increasing path from 1 to the line segment
[ 1,8M ] x { 16M ) on which W > 1 (except for the point ,~ at which w equals 1) and such
that W takes value at least 2 on the line segment [1,8M]x{ 1bM }. The Brownian
motion W(s,16M) has only finitely many excursions from value 1 to value 2 beginning
in the finite time interval [1, 8M]. But the number of components of { W > 1) which
intersect the line segment [ 1,8M ]x ( 1 bM } at points where W is greater than 2 must be
less than this a.s. finite number of excursions.

D

Lemma 2.3

Let x(d,M) = -log2(c(d,M) log2(1+d). There exist finite, strictly positive constants k and

K such that for all n, k2+3n/22-x(d.M)n/2  I] =  .

Proof
It follows from Lemma 1.2 that for any of the 2~ is in Dn, P [V (~+(2’~,0))  ~] is
of the order (c (d ,M " which equ ls

112 to the power )) °
This event is independent of the event 1 e Kn, which has probability of the order of
2-nl2 and the result follows.

D

It should be noted that as M tends to infinity and then d tends to zero, x(d,M) tends to
1/2. Throughout this section we will assume that d and M have been chosen and fixed
so that x(d,M)  1/2 + e.

The lemma below requires some solid work and its proof is postponed to the next sec-
tion.
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Lemma 2.4

Let t and s be elements of Dn with |max = max { { |t1-s1|, |t2-s2|} E
[2-i, 2’i+1) and = mint |t1-s 1 i, , I t2 s2 i } E [2-j, 2"j+1), then there exists
finite K so that

and s. e B n] ~ K 2 n ~2 x (d’~’I )" ~22’~n -‘ ~22-(n -~ ~ (d ,M ~

Given this lemma we obtain the following capacity estimate for Bn .

Proposition 2.2
For every a  312-x (d,M )12, there exists a finite constant Ka so that

1 E - ~ Ka
~ a ~ ~ a

Proof .

The expectation of the sum on the left hand side is bounded by

K 
P[s, t ~ 

Bn] 2-i03B1

[Z-i ~ 2-r+i)

for some constant K not depending on n. Using Lemma 2.3, the above is bounded by

~ ~ ~r’ 
LeB. 2-f +i)

[2-r ~2-~+i)

Summing over leBn yields a factor of 2~’, , while summing over

[2 ~, 2 ~+1) [2-i, 2-‘+1) yields a factor of 2n ~ . . Therefore

the sum in the lefthand side of the statement of the Proposition is majorized by

n 
==0 j=i

which is majorized by

n .

==o j=i

summing over j reduces the above to

n .

i==0

Because a  3/2 - x (d ,M )12 this sum over i is bounded by
Ka(E [ I B n I ])2 for finite Ka and Ka not depending on n. The pro-

position follows.
a

Corollary 2.4
There exists c > 0 and finite K such that with probability at least c for each n

1|Bn’|2 1 |x-y|03B1
K
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Proof
First note that by Lemma 2.1, it is sufficient to show that there exist c and K so that
with probability at least c

1 y 1 
~

~-~

for each n. Also note that 1,1 6 D~ implies that for positive a, 20142014’2014 ~ 2"~.
_ , 

!~’"
Therefore

’X-~~J
A simple Cauchy-Schmidt argument (see e.g. Kahane (1985), page 8) yields the con-
clusion that I > !]] > c(K) for c strictly positive depending on K but
not on n. Furthermore Proposition 2.2 guarantees that for G sufficiently large,

~20142014~2014r X 20142014~20142014~G >l-c(~)/2.P 
~-~ 

~ J 
> l-c(K)/2.

Therefore with probability at least c(K)/2

1|Bn|21 |x-y|03B1 G (c(K)) 2

a

Proof of Proposition 2.1
Recall that d and M have been chosen to ensure that 3/2 - x(d,M)/2 > 5/4 - e so we
can assume that a > 5/4 - e as well. Let ~ (o) be the union of the components of
(W > 1) which intersect the line segment (6A~}x[0,4A~] at points where W > 3/2.
By Lemma 2.2 there arc only finitely many such components and this is a closed set
Therefore its boundary is just the union of the boundaries of the individual com-
ponents. For each n, B,/c: 8~ and (by Proposition 2.2) with probability at least c >
0,

20142014 E 201420142014~

Therefore with probability at least c > 0,

20142014 x 20142014~

occurs for infinitely many n. Thus (by Landkoff (1972)), with probability at least c,
the capacitory dimension of 03B4HM is at least 5/4 - e. The 0-1 law of Orey and Pruitt
(1973), page 141, implies that

P [ there exists components of ( W > 1) whose boundaries

have Hausdorff dimension at least a] = 1

Proposition 2.1 follows.
a
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Section Three

This section is devoted to proving Lemma 2.4 of the previous section. We start
by proving the lemma for the easiest case: ~  ,f. Though more complicated, the proof
for the other cases can be broken down into the same basic steps.

It is readily seen that Lemma 2.4 is equivalent to

Lemma 2.4a

Let t and s be elements of Dn with = max{ |t1-s1|, E

2~[(1+~)’’(1+~), mint , t~-~) ~ 2~[(1-~’(1+~)~). Then there
exists K such that

P (~ and ,~ E S 

Proof of Lemma 2.4a for the case ~  ,~.

Let s and t satisfy . 
.

i Isl-rll I 
ii -~ I = I I E 2’n[(1+d)‘,(1+d)‘+1)
The event (~, 1 E is contained in the intersection of four events:

A 1: :  ~) if j/2-k z 0; = Q the whole probability space if j/2-k  0,
A2:  ~},
A3 {,~ E Kn }, ,
A4 .

In defining event Al, the constant k is the constant of Lemma 1.3. Accordingly, the
event Al is measurable with respect to the a-field 

i+2-~ (l+~]x[0~2+2~ i+2~ 
Therefore it is independent of the event A2, and, using Corollary 1.3, we obtain the
inequality

P[A1~A2]  .  

Also the event A2nAl is independent of the random variable The event A3 is
contained in the event + (2~‘,0)) E (2’"n,22’"~)}. These observations imply
that P[A3 I A1 ~ A2] S K2-n/2. Similarly, the event A4 is contained in the event

+ (2",0)) E (2-n/2,22-n/2)}. Let the a-field G equal a-

The events A1, A2,
A3 are measurable with respect to G; in addition the random variable W(l,
s 2 + 2’" ( 1+d ~’1 ) - W(I, s 2 +2’" ( 1+d ~’1 +2 " ( 1+d )‘’1 ) is independent of G and
"contributes" to W(~ + (2~‘ ,0)). We conclude that P[A4 I A 1 n A2 n A3]
S K ( 1+d )’~ . n for some K not depending on n,i, j. The result follows.

D
This approach can be followed in the general case once we have proven
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Proposition 3.1

Let s and t be as in Lemma 2.3. Let k be as in Lemma 1.3. Then

 ~l  

for some K independent of n and j.

In the following for the sake of concreteness we will deal with the case

s 1  t i, s2>t2, t i-s i > s 2-t 2. It will be clear that only minor relabeling in our argu-
ments will establish the desired bounds for the other cases.

We wish to bound P  is measurable with respect
to G (~,~+2~ ((1+d ~ ,(1+d }~ ))) and U~n x (~) is measurable with respect to

G (~,~+(2~‘ ((1+d }~ ,(1+d ~ ))). The problem is that these sigma fields are not indepen-
dent. They both contain the sigma-field generated by the white noise of the shaded
region in the diagram below.

Lemma 3.1

Let c be a fixed positive constant and let B be a standard Brownian motion. Sup-
pose Z(t) = + f(t) where f is a process satisfying If (t) I  ~, for all t z 0.

Define T z = inf{ t: Z(t) = c or -1 } and T B = inf t: B (t) = c or -1 } and the events

>M} ) A~(B~~)= M} )

= =x~ Tz > M) ) = =x~ Tz  M} )
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There exists a constant K (=K(c)) so that for all 03BB, M and x ~ { -1, c}

P[A(B,x,M) A(Z,x,m)] + P[A(Z,x,M) A(B,x,M)]~K03BB1/2
and 

P [A’(B,x,M) A’(Z ,x ,M ) + P A’(Z ,x ,M ) A’(B ,x ,M ) S 
Proof
For brevity we will only prove that 

A ’(Z,c,M) ] S K’)..ll2
for suitable K, the other proofs are similar. We need only concern ourselves with 03BB
much smaller than c.

The event (A ’(B ,c ,M) A ’(Z,c ,M ) } is contained in the union of the events

A E [M-~,~, M ] }
and

B {sup B(TB +  03BB(2+c) 1-03BB}.
Our desired inequality follows from standard Brownian inequalities. See e.g. Ito and

McKean (1965).
D

It is necessary to introduce the sigma fields

Gi = a{ G G~~U~-1(~))~ G C~~U~-iC~))~ }
= a{ G G (~)), }

If it were possible to prove inequalities such as

I P [Ui (~)  ~ I - c (d ,M ) i  k 2’~~6

I P [Ul (~)  °° I Gt,+1- c (d,M) l  k2’~~6

then the bound claimed in Proposition 3.1 would follow easily. Unfortunately this is
not true in total generality as there may be path wildness.

It is true that, for instance, given a stopping point the Brownian motion

B(r) = 1 T2W(T1+r,T2) - W(T1,T2)

is independent of . Our problem is that the Brownian motion

1 W (T 1,T 2+r ) - 
is not independant of a-{G (f,T ), G . In fact

- =

W (T 1~T 2+r) - W (T 1~T 2) - W ([Urrl~)]1~T2+r) - +
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W ((U~-iG~)]1~T2+r) - - +

The first and third processes are independant of a-{G G (~,U~_1)~. , Therefore if
we can control the middle process we will be in a position to apply Lemma 3.1. We
hope this will motivate the following.

We proceed to define "wild" sets we wish to discard from consideration. For 0
S 1 ,h S j !2 k we define

A (1,~) _ ( there exists r,r’E (t2,t2 + 4M(2’"n(1+d )l )2 :

r) - r~ + > (2-~r~(1+d)1 )3r~
= { there exists r,r’e (sl,s1 + 4M (2~‘~(1+d )1 )2 :

W (r,[U~ (~)]~ - W (r,t~ - + W (r’,t~ > (2-"~(1+d )1 )3n

Lemma 3.2

There exist constants c and K so that P[A (1,~)]  Ke’~2"~‘~~1’~~’n. This
lemma follows from bounds found in Orey and Pruitt (1973).

Lemma 3.3

There exists a constant c so that .

 ~ ~  c(2’"~(1+d)~)‘~~6
on A (1,~ )~ . Similarly

~  °° ~  
on B .

Proof
We will just give the proof for Ul (~) as that for Ul (~) is almost identical. In addition
we will assume for simplicity that 1 is even. The proof for 1 even is slightly more
complicated but no new ideas are needed.

As I is even, Ul (~) = Also for any stopping point p, ,
greater ( in natural partial order) than ~, we have B 1~ is independent of G~, our prob-
lem comes down to dealinf with step one defining BY. . Consider the Brownian motion
Z(r) = W ([Uj 1(~)J1,[U~ (~)J2+r) - W([U~-1(~)J1,(UI-1(~)J2). As noted above, this
can be decomposed as

Z (r) = W (tU~ 1(~)Ji,[Ur 1(~)J~ _

(W([Ul-1(t)]1,[Ul-1(t)]2+r)-W([Ul-1(t)]1,[Ul-1(t)]2)-
W 

+ 
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W(s W (S 1,[Ut-1(~)J~

+ W (s I~[UJ 1(~)J2+r ) - 

Given a { G the first and third processes above, sum to a process equal in law
to

+s 1]1/2B (s )
where B is a standard Brownian motion independent of . The second
process above is measureable with respect to this a field. On the event A (1,~)~, this
process is bounded in magnitude by (2 "n( 1+d )~ )3n. The result now follows from
scaling and Lemma 3.1. .

D

Proof of Proposition 3.I
Let L(w) = inf {1z0: ~E A (1,f)UB (1,~)). . We decompose the event

( U~ C~)  ~ j into

.

~ {Uj/2-k(s), Uj/2+k(t)  °°, y=1 ) U  ~, V > jl2-k }

~ {Ul-1(s), Ul-1(t)  ~, V=l l l.J  ~, V > jl2-k }

By lemmas 3.2 and 3.3 the probability of the latter event is bounded by

K (c (d M)2(l-1)e-c(2-n/2(1+d)l)1/2 + (c (d )
/=0

This is easily seen to be bounded by the appropriate quantity.
[]

Proof of Lemma 2.4a
The case ~  ~ has already been dealt with. Of the remaining cases ( since they are
essentially the same) we will consider the case where 

|t1-s1| ~ |t2-s2|. Let s2-t2 E 2-n/2[(1+d)j,(1+d)j+1). By definition,
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P VO)  P  ~]. This latter expression is equal to

L l=j/2-k+1 

~ E  -, jj P[U’ L 
By Lemma 1.2, the above is majorized by

E (s), Uj/2-k(t)  -, , ( c ( d ,NI ))(1 +c .L J
By Proposition 3.1, this is less than K (c (d (d ,M )~ .

The remainder of the proof follows as with the case 1.  ~.

D

Section Four

Section Two shows that, for each e > 0, with probability one there exist com-
ponents of ( W > 1 } whose boundary has Hausdorff dimension at least 5/4 - e. In
this section we use standard properties of the Brownian sheet to show that every such
component must have a boundary with dimension at least 5/4.

Proposition 4.1
The Hausdorff dimension of every component of ( W > 1 } is at least 5/4.

To show the above it is sufficient to show that for every e > 0 and every rational
time point ~ e Q+xQ+, the component of (W > 1) containing ~ (if it exists) has,
with probability one, a boundary of dimension at least 5/4 - e. We will prove this fact
for the point (1,1) but the reader will see that the proof works for any fixed time point.

We now state some propositions without proof. We give some remarks which
will hopefully convince the reader that no new ideas are required to prove the stated
propositions.

Given e > 0, the arguments of S ections Two and Three can be refined to show
that with probability c (e) > 0, there is a component C of
(W > 1) n[ 1,2]2 such that 8C has dimension at least 5/4 - e, and (2,2) is in C. If
we denote this event by A(e), then we may even prove that

Proposition 4.2
For some k (e) > 0, P [A (e) I W (2,2)] > k (E) on the event (W(2,2) e (2,3) } . .

The arguments used in Section Two and Three for our Brownian sheet process work
equally well with the process 

’

for two independant, not necessarily standard, Brownian motions. In fact the major
problems of calculations dissappear as - W(Sl,t2) - W(tl,s + 
become stochastically insignificant. Similarly if we consider the process
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= 1 [W(t + c2s) - W(t)] for c small, the terms

Wc,t(s1’,s2’) - W (s l,s 2 ) - + W (s l,s 2)are stochastically manageable and all
estimates derived in Section Two and Three will hold uniformly for c e (0,1]. So no
new ideas are required to prove .

Proposition 4.3
Let A~ (E,~,c ) be the event that there is a component C of

(W > 1 such that

1 8C has dimension at least 5/4 - e,
2 t+(c2,c2) e C For M > 1, there exists a constant k (E,M ) > 0 such that for all t

e [ 1,M ]2 and c > 1 + (c 2,c 2))l > on 

(1+c ,1+2c).

Given (t 1,t2), we define the Brownian sheet

Wt’(s1,s2)=s1 s2 t1 t2W(t21 s1,t22 s2)
and the let the stopping points U1’(t), U2’(t), ...,UN’(f), be defined for
the sheet W’ above.

Finally define the random points U2", ..., V " by,

Uj" = [(Uj")1,(Uj")2] = [t21 (Uj’)1,t22 (Uj’)2],

These random points can play the same role as the points Uj in Section Two and
Three, the only essential difference being that they decrease as j decreases. They will
also be used in Section Six. Using these points instead of the Ui we can prove our
final stated result

Proposition 4.4
Let be the event there is a component C of

(W > 1 such that

1 SC has dimension at least 5/4 - e,
2 ~E C

Let M be > 1. There exists a constant > 0 such that for all stopping
points ~ e [1,M]2 and c > 1 P[B I W (~)J > k (E,M) on (1+c
,1+2c)}. .

To finish the proof of Proposition 4.1 from Proposition 4.4, we require some fresh
arguments.
We require some notation: Given time point I, we define to be the com-

ponent of (W > 1 containing t if it exists. Given in addition a time rectangle R con-
taining i, we define T (~,R ) to be 8(C 8R .
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Before proving Proposition 4.1, we require two preliminary lemmas. In the fol-
lowing, given a process X and a point y,

TX(y)= inf { r>1:X(r)y}. .
Throughout, B and V will denote independant standard Brownian motions.

Lemma 4.1

Let e be a positive constant, less than two. Let ~, be a positive constant less than
1/2. Define Z = B + Let R be a fixed constant.

P I T IS i (E) - T i z i (E) I ~ ~,l a~ i (E)  R  C (R )~,14
Proof
Consider the events

1 I T B (~) - TB (~I,1~) I z 
2 sup 

+I] 
I V (s ) I 03BB-1/2.

Outside of these two events, the events { |T|B|(~)-T|Z|(~) I ~ 03BB1/4} and (
’(e)  R ) are incompatible. The lemma follows from simple bounds for Brownian

motion.

D
Similar elementary considerations give the following, whose proof is therefore omitted.

Lemma 4.2

With the notation of the previous lemma, let Ff be 6{B(t): t 5 R}. . Then
(a): For small ~,,

p |Z|(E) _ T|B|(~) ~ 03BB3 I FBR] > 113
on A B (E,~,) _
{T I B I (E)E [ 1 ~ (~ + ~,1~) - T B (e)  ~,1~, T B (e) - T B (E ~,4~) > ~,3 }.

(b): P[A B (E,~,)c (T ~B ~ (~) not in [1,R] } ] SK (R )~,1~4 for some finite K(R).

Proof of Proposition 4.1
Fix e > 0, arbitrarily small. Choose M sufficiently large that ( 1 ) > M/2 ] 

e/4 for a standard Brownian motion. Here TB (1) is the stopping time of Lemma 4.1. .
Let d = k(e,M) > 0. The main part of the proof consists of establishing that, given r
(large), we can choose c (small) so that there are increasing stopping points S l, .. , Sr
such that outside of a set of probability e
1 For each i, Si > S; _i+(2c ,2c ).
2 For each i, S~ e [ 1,M )2.
3 For each ie (1, 2,... r} ~ is in C(I,I).

Once this has been proven Proposition 4.4 yields the bound P[C(I,l) has a boun-
dary of Hausdorff dimension at least 5/4 - e] > 1-E-(1-d )r, and Proposition 4.1
follows.
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Choose n large and even (how large is to be determined later). Let c = e-100°.Let = W(~l). For i~= 1, 2, ... n/2, define = Define

the stopping times T’ = Clearly (by Lemma 4.1, our choice of M and ele-

mentary considerations) for n sufficiently large, P[for some 0 n/2, f > M] +

P[for some i ~ n/2, C(l,l) is non-empy but (1,1+~~’ ) is not 
in C(l,l)]  e/4.

Consider the stopping times V~ = T~ r~... 7~. . By Lemma 4.2 (a) and the obser-

vation above, outside of the event , we have

, , 
i=0

P[Tj > + > 1/3. By Lemma 4.2 (b), for large n,

> M)]  e/4. Also outside of the events
=o =o

{|Ti-1(c)-Ti(1+c)| ~ e-100n-i/8,Ti-1(1+c)  M I, ,

it is the case that (r > + (e-100n-j4/2,e-100n-j4/2)} implies
(r~ > + (2c,2c)). . Also, by Lemma 4.1, we have for large n,

p ~-i~~,  M}
t/==o J

C(M)~~~"~e/8
=C

Collecting these bounds together, we conclude that if N = #(j ~ n/2:
y7 > then for n large, P[N  r]  U4 + U4 + U8 + U8 + P[ B(n/2,
1/3)  r], where B(n/2, 1/3) is a binomial random variable with parameters n/2 and
1/3. If n is sufficiently large our result follows.

D

The thoughts for this proof were suggested to the authour during a conversation with
Robert Dalang, Steve Evans and Davar Khoshnevisan.

Section Five

In this section we establish that the Hausdorff dimension of boundary points is
strictly less than 3/2. We will show that for any v greater than zero, the dimension of
the set B = ti e [1,2]~: is a boundary point of a component of diameter greater
than v)
has dimension bounded below 3/2 - c for some c > 0 not depending on v. The proof
and elementary scaling ideas will convince the reader that this is enough.

The j-ring around the point l is the set = : !~-1 L = 2"~}. . A j-ring is
good if sup ~)-~a)}-2~.

Given 8 ~ (0, 1/2), we say a point (j 2n,k 2n) ~ [1,2]2, is n-bad if

i |W(j,k)-1| ~ n22-n/2
~ 2"

ii There does not exist a good j-ring for j ~ [(1-8)/! 
Orey and Pruitt (1973) prove that a.s. for n sufficiently large,
~ ~ [1,2]~, -i!~  2’"~ implies that 1  ~2’~. Therefore for n

large
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B c U [1+-~,1+~]x[1+ k ,1+~].
j , k E [ 1,2" ] 2n 2n 2n 2n

2* 2

We proceed to estimate the probability of a time point being n-bad. For notational
simplicity we will work with the time point ( 1,1 ) but all conclusions found will be
valid for an arbitrary time point .~ in [ 1,2]2. Define the processes

B 1(t) = W(t+l,l) - W(1,1),tE [0,1]
B2(t) = W(1,1),tE [o,l]

B3(t) = W (1’1 t ) - W(I,I) t E [0,1),1-t

8 4(t ) = W(1-t,l) W(I,I) t e [0, 1). B 4(t ) = 
1-t t 

’ 
- W ( l,1 ) t E [o,1 ). These four processes are independent of

each other and of W(I,I). The first two processes are Brownian motions, the last
two are such that Bi (=) are Brownian motions and so in a neighbourhood of
0, the properties of all Bj will be Brownian. For i e { 1, 2, 3, 4 } and j e
(di, ( 1-8)n ], define the event

A M’‘ = sup B.(s) S J 

Lemma 5.1

There exists strictly positive c such that for i e { l, 2, 3, 4 } and all n large
enough

P[IAM,ij ~ (1-03B4)n15 16 ] ~ 1-e-cn
Proof
We give the proof for i = 1, the prove for the cases i = 3 or 4 is essentially the same,
that for i = 2 is of course exactly the same.

For j E (~In , ( 1-8)n ], define

Tl = inf { s >0: B 1 (s ) z 

The T~ are stopping times with respect to the natural filtration of Bland the
corresponding a-fields. FT form a reverse filtration. The quantity is

equal to 0 if z 2-j; if Tj+1  2-j then it is equal to

P[ sup B (s ) ~M-j/2 -M-(j+1)/2]

where B is a Brownian motion. This term is less than or equal to

P sup B (s ) z M -j/2(1- 1 ) = 2P [B ( 1 ) ~ M ( 1- 1 
)] = f (M ).

Since clearly S f (M), we conclude that is stochastically greater
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than a Binomial random variable with parameters and I-f(M). Since f(M)
tends to zero as M tends to infinity, the result follows from standard large deviations
estimates for binomial random variables. See for example Bollabas (1985).

D

Define the two dimensional processes:
= W (1+s,l+t) - W(I,I+t) - W (1+s,l) + W(I,I)
= W(I,I+t) - + W (1,1)

W3(s,t) = W(1+s,l) + W (1,1)
= - + W(I,I)

The estimates below follow directly from estimates in Orey and Pruitt (1973).

Lemma 5.2

Let i e { 1, 2, 3, 4}, j E (~n , (1-8)n ) be the event { there exists s e [o, 2’J ]
s.t. W ‘ (s ,2’t ) z 2-j/4 or W (2-j ,s ) ~ 2-j 14 } . . There exist strictly positive K and c so
that

P[Vij ] ~Ke-c2n
Lemma 5.3

Let Cj by the event { for every i ~ {1,2,3,4} Bi(2-j+1) ~ -(M+2)2-j, and 
Bi (s) ~ (M+1 2)2-j}. Then there exists strictly positive c so that

P U Cj > 1- J
for all n large enough.
Proof
Let = a-{Bs: i =1,2,3,4, s S 2’~ }. . There exists k > 0 so that . I > k on

Therefore 

P[Cj)c]~P[AM,ij ~ (1-03B4 )n12 16 ] + (1 -k)(1-03B4)3n/4

The result now follows from Lemma 5.1
D

Proposition 5.1

For every (j 2n,k 2n) e [1,2]2 and some finite K, P[(j 2n,k 2n)] is n-bad

~Kn22-n(1 2+c).
Proof
We prove this just for j = k = 2n .

If (for j E (~n , (1-8)n )) C~ occurs, then the j+l-ring will be good unless for
some i e { 1, 2, 3, 4 }
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> 2 J12

or

> 2 ~ 12.

By Lemma 5.2 this can only happen on a set of measure bounded by Ke’~ 2~" Given
this bound Lemma 5.3 implies that the probability that there does not exist a good j-
ring for j E [n, (1-S)n ] is less than or equal to for some c strictly positive.
This event is measure able with respect to G([ 1, 3 ]x[o, 3 ] [0, 3 ]x[ 1, 3 ]]. W(l,l)
is equal to W(1/2, 112) plus a random variable measureable with respect to

G([ 2’ 2 ]x[~’ 2 ]U[~’ 2 ]x[ 2’ 2 ]]’ Since W(1~2, 1I2) is independent of the latter

sigma-field we deduce

~ n22n~IG([1,3]x[o,3] [o,3]x[1,3]]Kn22"~z
and so P[(I,I) is n-bad] S Kn 2 2 _n(2 +c) .

D
We can now complete the proof of Theorem One with the following proposition.

Proposition 5.2
The Hausdorff dimension of the set of time points that are in the boundary of

some component of {~ : W (~ ) > 0) is less than or equal to 3/2 - c. Here c is the posi-
tive constant of Lemma 5.3 and Proposition 5.1. .
Proof
As was mentioned in the introductory paragraph of this section, a.s. for all n large

~ [1+-~-,1+~]x[1+ k ,1+~k+1 ~,
j 2n 2" 

" 
2n 2n

(j 2n, k 2n)n-bad

is a covering of B. For a > 3/2 - c by Proposition 4.1, ,
E[ 2-n03B1]  22nKn22-n(1/2+c)2-n03B1

( ~ , ~ 
which tends to zero as n tends to infinity. The result now follows by Fatou’s lemma.

D

Section Six

In this section we use the ideas of Section Two to establish Theorem Two, stated
in the introduction.

To prove this result we follow a path close to that of Section Two.
We reason along the following lines: if there are such points then with positive

probability there ought to be points in a given rectangle which are on the boundary
both of components of { W > 1) of diameter > 1, and of components of (W  1 } of
diameter > 1. We consider time points in the square [L,L+1]2, where L is a large
constant to be fully specified later. Suppose we can "pick out" some finite number of
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components of (W > 1) (hereafter positive components) of diameter > 1 and some
finite number of components of (W  1 } ) (hereafter negative components) of diameter
> 1. The boundaries of these components intersected with [L,L+1]2 are compact sets
disjoint boundaies, then these boundaries should be separated by a strictly positive dis-
tance. Accordingly, if we can show that, with probability bounded away from zero,
for each n there exists a point in [L , L+1 ]2 which is within 2 " of a positive com-
ponent and a negative component, then we will have shown that with positive proba-
bility there exist points which are boundary points of both positive and negative com-
ponents. A routine application of a 0-1 law of Orey and Pruitt (1973) will complete
the proof.

We now introduce, recall or redefine some notation.

D = { ( ~ ,--~) : ( n ,-~-) E [L,L+1]2}. Let M and d be chosen (and fixed) so
2" 2~ 2" 2n

that x (d ,M ), the constant introduced in Section Two, is strictly less than 1. Let L be
a large number much larger than 12M2 We define, for 1 e Dn, the stopping points
U 1 (1), U2(~), ... , UN (f ) as before (with our fixed M). We need a new definition for

however:
If  ~, we define to equal (L +2, (U 1 )~ if for each s in L +2],
W(s,(UN) > 312. Otherwise V is equal to infinity.
We also require some random points in the quadrant below ,~, uj". We define the
Brownian sheet

W1’(s1,s2)=s1 t2 s2 t2W(t21 s1,t22 s2)

and the let the stopping points U1’(t), U2’(t), ...,UN’(I) be defined for the sheet W’
above.

Finally define the random points U2", ..., V " by,

Uj"=[(Uj")1,(Uj")2]=[t21 (Uj’)1,t22 (Uj’)2],
if Uj’  oo; = ~ otherwise. We now define a random subset of D; analogous to B" .
Let Vn consist of those elements 1 of D; such that
a I W(~)-1 I  2-"~,
b W(1+(2-",0)) E (1+2’"~,1+22’"~),
c W(~-(2’",0)) e (1-22’n~2,1_2-n~2)~
d  oo

e V "(f)  ~. The following lemmas follow in the same way as their Section Two
and Three counterparts:

Lemma 6.1

For some strictly positive K not depending on n, E [ I Vn I ] ~ .

Lemma 6.2

There exists a finite K’ not depending on n so that for t and s, elements of Dn
with = max{ |t1-s1|, It2 s21 } E [2-i,2-i+1) and = mine

[2 l,2 ~+1),
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P (~ and , E Vn ) S )

We are now in a position to prove Theorem Two.

Proof of Theorem Two
We first estimate E [ V !~].
This quantity is equal to

n n

_ J+1) 
E vn]

2-r+i)

By Lemma 6.2, the above is bounded by

H 22" n 2-(n-i j12~ x (d JblXn ! )
j=i

which equals

H 2+3n " 2-i ,  H’23n 
’

We conclude that E [ I Vn I 2]  K (E [ I Vn I ])2 for some finite constant K. Therefore, as
before, it follows that there is a constant c, not depending on n so that P[ i V~ I > 0] >
c for all n. Therefore, with probability at least c, the set V; must be non-empty for
infinitely many n. If t ~ VLn, then 1 + (2-",0) must belong to a component of {W >
1) which intersects the line segment {L+2}x[L,G+2] at points where W is greater than
1+1/2, similarly 1 - (2-n,0) must belong to a component of {W  1) which intersects
the line segment {L2 L+2 } [L2 L+2,L] at points where W is less than 1/2. It follows that

(with positive probability) the boundaries of these two sets of finite components are
not disjoint. Hence with positive probability there exist in [L,L+1]2 points which are
on the boundary of both positive nad negative components.

D
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